A Tesla Valve as a Micromixer for Fe3O4 Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.Y.; Fu, L.M. Recent Advances and Applications of Micromixers. Sens. Actuators B Chem. 2018, 259, 677–702. [Google Scholar] [CrossRef]
- Lee, C.Y.; Chang, C.L.; Wang, Y.N.; Fu, L.M. Microfluidic Mixing: A Review. Int. J. Mol. Sci. 2011, 12, 3263–3287. [Google Scholar] [CrossRef] [PubMed]
- Green, J.; Holdø, A.; Khan, A. A Review of Passive and Active Mixing Systems in Microfluidic Devices. Int. J. Multiphys. 2007, 1, 1–32. [Google Scholar] [CrossRef]
- Bayareh, M.; Ashani, M.N.; Usefian, A. Active and Passive Micromixers: A Comprehensive Review. Chem. Eng. Process. Process Intensif. 2020, 147, 107771. [Google Scholar] [CrossRef]
- Cai, G.; Xue, L.; Zhang, H.; Lin, J. A Review on Micromixers. Micromachines 2017, 8, 274. [Google Scholar] [CrossRef]
- Karvelas, E.; Liosis, C.; Karakasidis, T.; Sarris, I. Mixing of Particles in Micromixers under Different Angles and Velocities of the Incoming Water. Proceedings 2018, 2, 577. [Google Scholar] [CrossRef]
- Liosis, C.; Karvelas, E.G.; Karakasidis, T.; Sarris, I.E. Numerical Study of Magnetic Particles Mixing in Waste Water under an External Magnetic Field. J. Water Supply Res. Technol. 2020, 69, 266–275. [Google Scholar] [CrossRef]
- Karvelas, E.; Liosis, C.; Benos, L.; Karakasidis, T.; Sarris, I. Micromixing Efficiency of Particles in Heavy Metal Removal Processes under Various Inlet Conditions. Water 2019, 11, 1135. [Google Scholar] [CrossRef]
- Barai, D.P.; Bhanvase, B.A.; Żyła, G. Experimental Investigation of Thermal Conductivity of Water-Based Fe3O4 Nanofluid: An Effect of Ultrasonication Time. Nanomaterials 2022, 12, 1961. [Google Scholar] [CrossRef]
- Liosis, C.; Papadopoulou, A.; Karvelas, E.; Karakasidis, T.E.; Sarris, I.E. Heavy Metal Adsorption Using Magnetic Nanoparticles for Water Purification: A Critical Review. Materials 2021, 14, 7500. [Google Scholar] [CrossRef]
- Sindhu, S.; Gireesha, B.J.; Sowmya, G.; Makinde, O.D. Hybrid Nanoliquid Flow through a Microchannel with Particle Shape Factor, Slip and Convective Regime. Int. J. Numer. Methods Heat Fluid Flow 2022, 32, 3388–3410. [Google Scholar] [CrossRef]
- Serga, V.; Burve, R.; Maiorov, M.; Krumina, A.; Skaudžius, R.; Zarkov, A.; Kareiva, A.; Popov, A.I. Impact of Gadolinium on the Structure and Magnetic Properties of Nanocrystalline Powders of Iron Oxides Produced by the Extraction-Pyrolytic Method. Materials 2020, 13, 4147. [Google Scholar] [CrossRef]
- Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.R.; Sood, A.K. Graphene Oxide-MnFe2O4 Magnetic Nanohybrids for Efficient Removal of Lead and Arsenic from Water. ACS Appl. Mater. Interfaces 2014, 6, 17426–17436. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Barick, K.C.; Bahadur, D. Surface Engineered Magnetic Nanoparticles for Removal of Toxic Metal Ions and Bacterial Pathogens. J. Hazard. Mater. 2011, 192, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, Y.; He, X.; Lin, J.; Yang, X.; Li, D.; Yu, M.; Yu, C.; Tang, C. Synergistic Adsorption of Pb(II) Ions by Fe3O4 Nanoparticles-Decorated Porous BN Nanofibers. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124400. [Google Scholar] [CrossRef]
- Berrehal, H.; Sowmya, G.; Makinde, O.D. Shape Effect of Nanoparticles on MHD Nanofluid Flow over a Stretching Sheet in the Presence of Heat Source/Sink with Entropy Generation. Int. J. Numer. Methods Heat Fluid Flow 2021, 32, 1643–1663. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Chalmpes, N.; Gournis, D.; Kostopoulou, N.; Efthimiadou, E. Synthesis, Characterization and Evaluation of Aqueous Zn-Based Quantum Dots for Bioapplications. Dalt. Trans. 2022, 51, 3452–3461. [Google Scholar] [CrossRef]
- Aksimentyeva, O.I.; Savchyn, V.P.; Dyakonov, V.P.; Piechota, S.; Horbenko, Y.Y.; Opainych, I.Y.; Demchenko, P.Y.; Popov, A.; Szymczak, H. Modification of Polymer-Magnetic Nanoparticles by Luminescent and Conducting Substances. Mol. Cryst. Liq. Cryst. 2014, 590, 35–42. [Google Scholar] [CrossRef]
- Arockiam, S.; Cheng, Y.H.; Armenante, P.M.; Basuray, S. Experimental Determination and Computational Prediction of the Mixing Efficiency of a Simple, Continuous, Serpentine-Channel Microdevice. Chem. Eng. Res. Des. 2021, 167, 303–317. [Google Scholar] [CrossRef]
- Nguyen, Q.M.; Abouezzi, J.; Ristroph, L. Early Turbulence and Pulsatile Flows Enhance Diodicity of Tesla’s Macrofluidic Valve. Nat. Commun. 2021, 12, 2884. [Google Scholar] [CrossRef]
- Weng, X.; Yan, S.; Zhang, Y.; Liu, J.; Shen, J. Design, Simulation and Experimental Study of a Micromixer Based on Tesla Valve Structure. Huagong Jinzhan/Chem. Ind. Eng. Prog. 2021, 40, 4173–4178. [Google Scholar] [CrossRef]
- Hossain, S.; Ansari, M.A.; Husain, A.; Kim, K.Y. Analysis and Optimization of a Micromixer with a Modified Tesla Structure. Chem. Eng. J. 2010, 158, 305–314. [Google Scholar] [CrossRef]
- Wang, C.T.; Chen, Y.M.; Hong, P.A.; Wang, Y.T. Tesla Valves in Micromixers. Int. J. Chem. React. Eng. 2014, 12, 397–403. [Google Scholar] [CrossRef]
- Bhagat, A.A.S.; Papautsky, I. Enhancing Particle Dispersion in a Passive Planar Micromixer Using Rectangular Obstacles. J. Micromechanics Microengineering 2008, 18, 085005. [Google Scholar] [CrossRef]
- Yang, A.S.; Chuang, F.C.; Chen, C.K.; Lee, M.H.; Chen, S.W.; Su, T.L.; Yang, Y.C. A High-Performance Micromixer Using Three-Dimensional Tesla Structures for Bio-Applications. Chem. Eng. J. 2015, 263, 444–451. [Google Scholar] [CrossRef]
- Hong, C.C.; Choi, J.W.; Ahn, C.H. A Novel In-Plane Passive Microfluidic Mixer with Modified Tesla Structures. Lab Chip 2004, 4, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Vartholomeos, P.; Mavroidis, C. In Silico Studies of Magnetic Microparticle Aggregations in Fluid Environments for MRI-Guided Drug Delivery. IEEE Trans. Biomed. Eng. 2012, 59, 3028–3038. [Google Scholar] [CrossRef]
- Teja, A.S.; Koh, P.-Y. Synthesis, Properties, and Applications of Magnetic Iron Oxide Nanoparticles. Prog. Cryst. Growth Charact. Mater. 2009, 55, 22–45. [Google Scholar] [CrossRef]
- Chicot, D.; Mendoza, J.; Zaoui, A.; Louis, G.; Lepingle, V.; Roudet, F.; Lesage, J. Mechanical Properties of Magnetite (Fe3O4), Hematite (α-Fe2O3) and Goethite (α-FeO·OH) by Instrumented Indentation and Molecular Dynamics Analysis. Mater. Chem. Phys. 2011, 129, 862–870. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Chen, D.-H. Preparation and Adsorption Properties of Monodisperse Chitosan-Bound Fe3O4 Magnetic Nanoparticles for Removal of Cu(II) Ions. J. Colloid Interface Sci. 2005, 283, 446–451. [Google Scholar] [CrossRef]
- Zhang, Y.; Ni, S.; Wang, X.; Zhang, W.; Lagerquist, L.; Qin, M.; Willför, S.; Xu, C.; Fatehi, P. Ultrafast Adsorption of Heavy Metal Ions onto Functionalized Lignin-Based Hybrid Magnetic Nanoparticles. Chem. Eng. J. 2019, 372, 82–91. [Google Scholar] [CrossRef]
- Karvelas, E.; Liosis, C.; Karakasidis, T.; Sarris, I. Micromixing Nanoparticles and Contaminated Water under Different Velocities for Optimum Heavy Metal Ions Adsorption. Environ. Sci. Proc. 2020, 2, 65. [Google Scholar] [CrossRef]
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques. Comput. Phys. 1998, 12, 620. [Google Scholar] [CrossRef]
- Ramesha, D.K.; Anvekar, A.; Raj, A.; Vighnesh, J.; Tripathi, S. A DSMC Analysis of Gas Flow in Micro Channels Using OpenFOAM. In Proceedings of the International Conference on Advances in Mechanical Engineering Sciences (ICAMES-17), P.E.S. College of Engineering, Mandya, India, 21–22 April 2017. [Google Scholar]
- Su, Y.; Lautenschleger, A.; Chen, G.; Kenig, E.Y. A Numerical Study on Liquid Mixing in Multichannel Micromixers. Ind. Eng. Chem. Res. 2014, 53, 390–401. [Google Scholar] [CrossRef]
- Ortega-Casanova, J.; Lai, C.H. CFD Study about the Effect of Using Multiple Inlets on the Efficiency of a Micromixer. Assessment of the Optimal Inlet Configuration Working as a Microreactor. Chem. Eng. Process. Process Intensif. 2018, 125, 163–172. [Google Scholar] [CrossRef]
- Chen, X.; Shen, J. Numerical Analysis of Mixing Behaviors of Two Types of E-Shape Micromixers. Int. J. Heat Mass Transf. 2017, 106, 593–600. [Google Scholar] [CrossRef]
- Peng, G.; He, Q.; Lu, Y.; Huang, J.; Lin, J.M. Flow Injection Microfluidic Device with On-Line Fluorescent Derivatization for the Determination of Cr(III) and Cr(VI) in Water Samples after Solid Phase Extraction. Anal. Chim. Acta 2017, 955, 58–66. [Google Scholar] [CrossRef]
- Lok, K.S.; Kwok, Y.C.; Nguyen, N.T. Passive Micromixer for Luminol-Peroxide Chemiluminescence Detection. Analyst 2011, 136, 2586–2591. [Google Scholar] [CrossRef]
Number of Tesla Micromixers | Direction of Flow | Contact Angle θ° | Reynolds Number (Re) | Mixing Efficiency | Ref. |
---|---|---|---|---|---|
20 | 0.1 | 0.78 | [24] | ||
10 | 100 | 0.950 | [26] | ||
20 | 100 | 0.97 | [25] | ||
6 | 40 | 0.702 | [22] | ||
3 | Inverse | 30 | 1 | 0.953 | [23] |
8 | Inverse | 30 | 52.5 | 0.9647 | [21] |
2 | Normal | 30 | 0.62 | 0.63 | present study |
Case | Mean Velocity (μm/s) | Std Velocity (μm/s) |
---|---|---|
Experiment, Ref. [27] | 7.5 | 1 |
Numerical, Ref. [27] | 9 | 2 |
Present study | 8.3 | 1.4 |
Simulation Parameters | ||
---|---|---|
inlet and outlet dimensions (m) | Height (H) = Width (W) = 10−4 | |
diameter of Fe3O4 nanoparticles (nm) | 13.5, 27 | |
inlet rate of Fe3O4 nanoparticles | 500/s, 1000/s, 3000/s | |
Boundary conditions | ||
(Vc) contaminated water (m/s) | 0.0005, 0.00005, 0.000025 | zero gradient |
(Vp) nanoparticles (m/s) | 0.0005 | zero gradient |
outlet | zero gradient | 0 |
walls | 0 | zero gradient |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liosis, C.; Sofiadis, G.; Karvelas, E.; Karakasidis, T.; Sarris, I. A Tesla Valve as a Micromixer for Fe3O4 Nanoparticles. Processes 2022, 10, 1648. https://doi.org/10.3390/pr10081648
Liosis C, Sofiadis G, Karvelas E, Karakasidis T, Sarris I. A Tesla Valve as a Micromixer for Fe3O4 Nanoparticles. Processes. 2022; 10(8):1648. https://doi.org/10.3390/pr10081648
Chicago/Turabian StyleLiosis, Christos, George Sofiadis, Evangelos Karvelas, Theodoros Karakasidis, and Ioannis Sarris. 2022. "A Tesla Valve as a Micromixer for Fe3O4 Nanoparticles" Processes 10, no. 8: 1648. https://doi.org/10.3390/pr10081648
APA StyleLiosis, C., Sofiadis, G., Karvelas, E., Karakasidis, T., & Sarris, I. (2022). A Tesla Valve as a Micromixer for Fe3O4 Nanoparticles. Processes, 10(8), 1648. https://doi.org/10.3390/pr10081648