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Abstract: In this brief, we consider the mean-field type H_ index problem for stochastic Marko-
vian jump systems. A sufficient condition is derived for stochastic Markovian jump systems with
(x, u)-dependent noise based on generalized differential Riccati equations. Especially for stochastic
Markovian jump systems with only x-dependent noise, a sufficient and necessary condition is devel-
oped to characterize #_ index larger than some ¢ > 0. Finally, a numerical example is addressed to
verify the effectiveness of our obtained results.
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1. Introduction

It is universally acknowledged that almost all dynamical systems in practice are un-
avoidably affected by unknown inputs and faults that resulted from actuators, components,
or sensors. The design of the fault diagnosis filter aims at improving the robustness against
unknown inputs and sensitivity to fault. To achieve such a goal, some practical criteria have
been applied, such as H, norm, He norm, and H_ index [1-6]. Based on these criteria,
some multi-objective optimization problems such as H_ /Hoo, H2/Hoo and Heo/ Heo have
attracted the attention of many scholars [7-9]. He norm measures the unknown input’s
maximum influence on the residual signal. By comparison, the fault’s minimum influence
on residual signal is measured by H_ index, which is first introduced in [7]. In the past
few years, the fault diagnosis filter design involving H_ / Ho has attracted the attention of
many scholars [10-17].

The H_ index was first defined in the frequency domain. The #_ index at zero
frequency was defined and investigated in [2], which means the smallest singular value of
non-zero. In [5], the generalized famous KYP lemma was used to characterize H_ index
problem of finite frequency. The H _ index of all frequency range was investigated by matrix
inequality and equality in [6], which denotes the minimum singular value. The H_/Heo
fault detection of finite frequency and infinite frequency were characterized in [12,13].
However, in practical applications, the frequency domain is very limited. Corresponding
‘H_ index problems of time domain have attracted many scholars’ interest. In [9], the
optimal solutions to robust H_/H problem in infinite and finite horizon were given
for linear time-varying systems, which generalize corresponding resolutions to the time
domain. In [11], the H_ index was attributed to the existence of the solution to differential
Riccati equation for time-varying systems, and corresponding results were extended to
systems whose initial condition was unknown. H _ / H-optimization was used to design
the fault detection filter for nonlinear systems in discrete-time in [10]. For time-invariant
systems, the method of matrix factorization was used to develop the H_ /Hc FD problem
in [14]. In [15], the FD observer design was formulated as an H_ / Ho problem, which the
solution was given via LMI formulation for the T-S fuzzy system. Fault detection for linear
and nonlinear discrete-time systems were discussed in [16,17]. In [18,19], for discrete and
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continuous time-varying systems with Markov jump, corresponding finite horizon and
infinite horizon H_ index were investigated via GDREs.

Considering that systems in the practical world are always affected by stochastic distur-
bances, many researchers have transferred their interest in stochastic control problems from
determinate systems to stochastic systems [20-25]. Especially, interest in stochastic systems
of mean-field type has been increasing. The mean-field theory is developed to study the
collective behaviors resulting from individuals’ mutual interactions in various physical and
sociological dynamical systems [26,27]. To date, many results on finite and infinite horizon
linear quadratic optimal control of mean-field stochastic systems have been presented, we
refer the reader to [28-31] and references therein. For mean-field stochastic differential
and difference equations, the H control and finite horizon mixed H;/Ho control of
mean-field stochastic systems were characterized in [32-35]. Refs. [36,37] investigated
finite and infinite horizon Pareto-based optimality of mean-field stochastic systems.H
index of mean-field stochastic system was characterized in [38].

In [19], the H_ index of classic stochastic differential equation with Markov jump
was studied. The corresponding results will be generalized to the mean-field stochastic
differential equation with the Markov jump in this paper. Since the expectations Ex; and
Eu; appear in equations, the problem is not a simple generalization. The main contributions
of this note are as follows: Based on existing research results, the definition and attribute
of H_ index are extended to mean-field stochastic systems. The appearance of Ex;, Eu;
and Markov jumps in differential equations lead to more higher difficulty in mathematical
deductions. This note illustrates the H_ index of mean-field stochastic continuous time-
varying systems with Markovian jump in the finite horizon. The main result is about the
necessary and sufficient condition of the H _ index greater than a given positive number,
which is given by coupled generalized differential Riccati equation.

The remainder of the note is arranged as follows: The system considered in this article
is formulated and some preliminary results are presented in Section 2, Section 3 gives the
main results in terms of generalized differential Riccati equations. Numerical example is
provided in Section 4 to show the effectiveness of our obtained results. Section 5 presents
the conclusions of this article.

Notation. R™ is the set of all m—dimensional real vectors. S = {1, 2,..., s}. W' denotes
the transpose of W. W > 0 (W > 0) means that W is positive definite (positive semi-
definite) symmetric matrix. R"*™: the set of all n x m-dimensional real matrices. Ijy;
is the [ x I identity matrix. . S, (R) is the set of all real symmetric matrices R"*". A
wide (square or tall) system is the system whose inputs dimensions is more than (is equal
to or less than) the outputs dimensions. MZ%([0, T],R!) is the space of nonanticipative
stochastic processes x; € R! with respect to an increasing algebras F(t > 0) satisfying
Ixellor) = {E fy llxel?de}1/? = {E [ xxjdt} /2 < co. C'2([0,T] x R™;R) is the class
of R-valued functions V(t, x) which are once continuously differentiable with respect to
t € [0, T], and twice continuously differential with respect to x € R", except possibly at the
point x = 0.

2. Preliminaries

In this section, a useful lemma will be given for the following stochastic Markov jump
systems of the mean-field type in continuous-time:

dx; = [At/gtxt + Al Ex; + Btrgtut + BY Eut]dt

£, t,Qt
—&—[Ct@xt + CtO,Q Ex; + Dt,gfut + DgétEut]th,

@
Yr = Kt,@xt + KgglExt + Ft,@ut + F&tEut,

xg € R",t € [0, T].

where, x; € R"2, u; € M%_-( [0,T],R™) and y; € R" are the system state, control input and
regulated output, respectively. W; is the one-dimensional standard Brownian motion, E
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denotes the expectation . {(;,t > 0} is a continuous-time discrete-state Markov process,
whose values is taken in S and has the transition probability described by

. . gi]‘At + O(At), i ?é j/
P = =i)= 2
(Ctrar = jICt ) {1+giiAt+o(At), i=], ()
where At > 0, limAHo% =0and g;; > Ofori #j,i,j € S, determine the transition rate
from mode i to mode j, and G = (gij)sxs with g;; = — Z]-S:L]-#i gijforalli € S. Az, Agéﬂ

Bz, BYy, i Cor,o Digo DYy Kigy KYp , Fig, and FYy are corresponding weighted coeffi-
cient matrices. In different practical problems, their meanings are different. A;;, = A;;,
Al = AYy Big = Bii, By = B), Cigy = Gy G, = G, Dyg, = Dy, D = DY,
Kiz, = Ky, K?,Z;t = K?,i' Fiz, = F;and Fgét = ng when {; = i, are assumed to be continu-
ous matrix-valued functions of proper dimensions. The process {; and W; are defined on
filtered probability space (Q), F, P) with the natural filter 7; = {W;, {5|0 < s < t}, and {;
is independent of W;. For any given 0 < T < o0 and (ut, x9) € M%([0, T], R™) x R"2, the
unique solution of (1) is denoted by x; = x ) € M?3.([0, T], R™) with deterministic
initial condition {j, xo.

£,1;%0,80

Definition 1. For system (1), the H _ index is defined as

0T ._ . Iytlljo,7)

T)= I e T
€ M2-([0,T],R™ ) 11, 20,508, x0=0 11t ]l0,7]

®)

Remark 1. When u; and y; denote fault signal and residual signal, respectively, the minimum

sensitivity of system (1) from input u; to output y; is depicted as ||T| [0.7]

. For wide system,

(IT]] [E'T] = 0, so it is supposed that system (1) is a tall system or square system.

For¢ >0,0<T<ooandi € §, we want to investigate the condition of the smallest
sensitivity greater than ¢, i.e., ||F||[£)’T] > ¢. Define

T
T Gro,u) 1= B [l = &2 e, 4)
and
T . T 2 a2 2 .
(o) = B [ [l = &2 Pltico = i, ©)
then Tg(O,u) > 0 yields ||T| oI S ¢

Lemma 1. [39] (Generalized 1t0 formula): Let a; i, Brxi € R" be Fi-adapted process, i € S,
dxt = ap g, dt + Bpxz,dWy. Then for given Yy ; € C1*([0, T] x R";R),i € S, we have

E{YT 100 — Yixz |0k = i}

T
—E{ /k AY, s, = i},

where

1.1 azYt,xt,l' N
+7ﬁt,xt,i 2 ,Bt,xt,i + Z gint,x,,j-
2 ox a
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For system (1), by taking mathematical expectations, we can express Ex; and x; — Ex;
as following:
dEx; = [(Agg, + AY; JEx: + (Byg, + B, )Eudldt, (6)

{ d(x,g — Ext) = [At,ét (Xt — Ext) + Btlgt(ut — Eut)]dt %

+[Ct,§f(xt — Ext) + (thgt + C?,Q)Ext + Dtlgt(ut — Eut) + (Dt,{,'; + Dggt)Eudth.

Lemma 2. For system (1), assume ﬁt and Qt are differentiable, where

ﬁt: [ﬁt,l/ ﬁt,Z/ ey ﬁt,s]/
ét = [@t,ll ét,ZI ey ét,s]/

Pri, Qi € Su(R) withi € S,t € [0, T). Let

$:(3y;) = Qi+ Li(Qri)  Hi(Qsi) ]
' Hi(Qr)  ME(Qy)
and N o o
S(O.. D Pri+ Li(QuiPri)  Hi(QrisPri) }
5,(@[,’73,,) — t’l,\ ~1 ~,1 , Thil=t, 4 ,
R { Hi(Qri Pri) M?(Qt,ifpt,i)
where
o~ ~ ~ ~ S ~
Li(Qpi) = AL Qi+ QuiAri + CpQ1iCri + KL Ky i + ) 8179,
i=1
Hi(Qyi) =By + Cf;QpiDyi + K iFyi,
ME(Qy) =D}; 1Dy + FliF i — &y,
S
Sox = — = ~ — S = = =l = ~
Li(Qti, Pri) =Ay i Pri+ PriAsi +CpiQpiCri + Ky iy i + Z 8ij Pt
=1
S e,
Hi(Qtis Pri) =PriBii+CyiQ4iDyi + Ky i Fi i
M?(Qt,iz Pii) =Dy ; Q1 Dri+ FpiFti — &lny,
and

Api = Api+ A(t),zv By =By + B?,i/ Cri=Cpi+ C?,i,
Dy =Dyi+ D), Kyi =Ky + K, Fri = B+ F.

Then for Vxy € R"2, u; € M%([O, T],R™), we have

JZ (xo,4,u) = E[(xo — Exo)' Qg (x0 — Exo)] + ExPo,iExo
— E[(xr — Ex7)' Or ¢, (x1 — Ext)| {0 = 1]
— E[Ex}Prg, Exr|fo = i]

T Xt — Ext ! ~ Xt — E.Xt -
+E{/O { ut — Euy ] SQ(Q@Q)[ ur — Euy }dﬂéo = 1}
T E I _ E ’
+ {/0 |: Ezi :| Sét(Qt,QIPt,gt)|: Eii :|dt§0 = 1}‘ ®)

Proof. According to Lemma 1,

T
E{Y7,cr — Yoxo,00|00 = i} = E{/O Ay, 7,dt[Co = i}.
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Applying Lemma 1 for Y;,,; = Exﬁst@Ext and Y;y, 0, = (%t — Ext)’@t@(xt — Exy),
respectively, we obtain

[ExlTﬁTlgTExﬂgo = l] — ExéﬁO,iExo
+ E[(xy — Ext)' Or ¢, (x7 — Ex1)|g0 = i] — (x0 — Ex0)' Qp,i(x0 — Exq)

T E /~ . _ E |
—{/0 |: Ezi :| U(Qt,Ct/Pt,Ct)[ Eii :|dt|€0 = 1}

T Xt — Ext ' Ext
+E{/O |: u; — Euy :l (tht)[ + — Euy :|dt|CO_l (9)
where
. ét/é’-t _J: C;,gt Qtlé’-t Ctlgt + A;,Q ét/gt ét/gt Btlgt + D;,gt étlgf Ctlgt
U( Qt,g) = + QtrQAfrCt + Z;]S=~1 84j Qt,j ’

B;,ét Qtrgt + Ci{,ét Qtrgt Dtlgt D;,ét Qtré! Dtlgt

o _ Pf ot 'Af CrPf ot Pl‘ Q'Af Gt ft/étgtréf _'_ﬁilét @tréra‘,ét
U(Qig, Prgy) = | +C, G Q17,Crg, + Y71 8P
Byt Pig +Cig, Qi Dig, Diz, 012, Dig,
In addition,

T
B [ ol = &l Plaico = 1}
_ T Ext /~ Ext o T Xt — Ext ! Xt — Ext .
a {/0 { Euy } V{ Euy }dthZ}+E{./O { up — Euy } V[ ur — Euy ]dt|§0 1} (19

with o
7_ l ’Cta’cta _ Kea s ]
Fiokig FigFeg — 8y
and
V= Ki,g'thrét K; QFfrét ]
Ftl,QKtrgt Ft/,QFt gt — C I"l

According to (9) and (10), we can obtain (8), the proof isend. O

3. Finite Horizon Mean-Field Type Stochastic H _ Index
The mean-field type stochastic H_ index will be investigated in this section, the
> ¢, which means Tg(O,u) > 0, Vu; €

sufficient and necessary condition of ||T'||Z’
MZ(0, T], R™), us #0,p € S.

Theorem 1. Ifforagwen & > 0 there exist Qr: = [Qt 17 Qt sy @fs] and
73g = [Pfl, Pt oreee PES], t € [0, T|, such that the following GDREs are fulfilled

Hi(Qui) MG (Q1i) 1 Hi( Qi) = Qi+ Li(Q1),
ﬁi(Qf,irﬁt,i)ﬂf(ét,i/,ﬁt,i)ilﬁi(ét,i/,ﬁt,i)/ =Pri+ Li(Qui Pr),
ME(Qi) > 0, M; (Qyi Pri) > 0,

Qri=Pr;=0,i=1,...,5,

1)

[0,T]

then T2 > €.
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Proof. In view of @T,i = ﬁT,i = 0, by Lemma 2, for any u; € MET([O, T],R™) with u; # 0,
xg = 0, it can be obtained that

. T x—E —Ex; :
JE(0iu0)= E{/0 ] sg(th,)[ I :}dtm—z}

TT Ex Ex; - '
AL Vo] & o)

By (11) and the technique of completing squares, it follows that
T /
=T _ xt — Ext x; — Ex;
]g(O,M)—E/ { + — Euy :| gt(tht)|: u; — Euy :|dt
L s, B

/| 58 A O 05 )~ 05y
:E/O (x; — Exy) [Qt@+£Q(Q§,Q)77{@(@5@)%[(@5&) YHe, (O, | (xi — Exe)dt
T ¢ 58

+E/ ut—Eut)—(u*—Euf)]'M (Q )[(ut—Eu,)—(u;‘—Euf)]dt
+/ (Ext) {Pté +£gl(Qt€’ tg) Hét(th, tQ)

< MG (QF Pl ) e (Q8, Py )| (Bxo)at
+/ [Bus — Euf) ME (OF,, PE, ) [Bur — Euf dt.
—E / (ur — Buy) — (uf — Buf))' ME (QF ) [(ur — Euy) — (uf — Eu )]t
+/ [Eu; — Buj] Mé thl pe )[Eut—Euf]dt. (12)

where B
~ B = — M (0) e ()~ Bxi),
* v
Eu; = - M (Qt I tQ) 17—[gt(Qt o , Pt g,)/Ext-
Since./\/l;:(Qt/i) > 0and M?(thl,Pg ) > 0, (12) provides Tg(O, u) > 0, which means
s e
To prove Tg(O,u) > 0, we define the operator £; : £ (us — Eus) = (uy — Buy) — (uf —
Euj) with its realization

d(xt — Ext) = [At,Ct (xt — Ext) + Bt,§t<ut — Eut)]dt
+[Ci¢, (xt — Ext) + Cy 7, Ext + Dy gt(ut Eut) + Dt,@Eut]th,
(ur — Bug) — (uf — Buf) = (w — Bug) + M (O )1 He, (Qf ) (x4 — Exy).

and define the operator Lo Zz(Eut) = Eu; — Euj with its realization

dEx; = (jt gtExt —l-gt gtEut)dt
Eu; — Buf = Buy + /\/lg (Qt P ) 1H§t(Q§@,PEQ)’Ext.

Then Zf land ZE 1 exist, which are determined by

d(x; — Exy) = {Bt,g,[(ut Euy) — (uf — Euf)]

+H[Apg, — Big ME (95) 1 H (95 g,) J(xt — Ex¢) }dt

H[Crg, — Drg M gf(Qt gt) 1Hgt(Qt ) 1(xt Ext) + Cog, [(ur — Buy) — (uy — Eup)]
+[Ciz, — Dy gtMét(Qt 0P ) T, (S5 o tg )'|Ext + Dy ¢, (Euy — Euj ) }dW,
xg—Exg =0
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and

{ dEx; = {By g, (Buy — Euf) + [Ayg, — By, ME(Q5, P, ) A QL PL, ) |Exi b,

EXO = 0,

respectively, where

— By = —ME (Q5) " He, (95, ) (xi — Exi)
+ [(ur — Buy) — (uf — Euy)],
Eup = — ME (95, Pf) "H (95, PE, ) Ex
+ (Eus — Euy).

Since Mlg(@i) > 0 and Mé(Qtl,PEi) > 0,i = 1,...,s are continuous functions
on [0, T], there exist A; > 0 and A;>0fori=1,...,s such that Mf(@fl) > Ajly, and
ﬂ?(g?ﬂp@) > A iIn, on [0, T). Let )\ = min{A1,Az, ..., s, A1, As, ..., As}, it follows that

ME(Q5,) > ALy, and M (OF
6 > 0and ¢ > 0, such that

t@t

T7(0,u)= E/ (B, — Euj) ME (QF, , PE, ) [Eus — Eufdt

8 [~ B) — G — B VM (@) [(ws — B o — B e
> AUIZ (s — )y gy + 121 (But) By )
> Ad[||ur — EWH%O,T] + HEWH[ZO,T]] = £||ut||[20,r] >0

) > Aly, fort € [0,T],i € S. So, there exist constants

for uy 7 0, which yields |y ||f, 1 — & luellfy ) > elluellfy 7y- So, lyellfy ) = (8 + &) [Juellfy 1y,

[0,7]

> (Cz +¢) > ¢, Wthh ends the proof. D

In what follows,
square and time-invariant system:

dx; = (Aétxt + AgtExt + Bétut + BgtEut)dt + (Cétxt + CgtExt)th,
ye = Kgxe + thExt + Fpue + thEut,
xo € R",t € [0,T].

oIS ¢ will be given for the following

(13)

Theorem 2. For system (13) and some given ¢ > 0, which satzsﬁes FIF, — ¢ In1 > 0 and

FiFi— 521,11 >0, o]

[7751, Pt sy PES], te [0, T| satisfying the following GDRE

AlQpi+ QpiAi + Cfét,ici + KiK; + Oy + I 181794
= (OB +K’F)( gzlnl) (QuiBi + K/Fi)',
Apt1+PtzA +C Qtzc +’CIC +Ptz+z 1g1]Pt]
(PMB —I-IC Fi )(}']: Elyy) ™ (Pt,,B +K; F)

Qri=Pr;=0,i=1,...,s

> ¢, there exist unique Qg [Qtl, Qt orennr Qt,s] and Pt =

(14)
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Moreover, Tg(xo,i u) and ]Ag(xo, ) are minimized by u} = Uz-‘t(xk‘* —Ex) —i—UZtEx;‘*,
. * — = R
with U} = —(F, pgt &) N(BL Q8- + FLKy,) and Uy, = (F, Fe, — &21) 1By, Py +

7&%5,), where x¥" is the state tra]ectory of system (13) when u; = u}, and

min ~T§T(x01 i u) = Tg(X(), i, u*) = Ex(’)ﬁg/iExo
ur €M ([0,T],R" ),i€§ _ (15)
min Tg(xol u) = Tg(xO, u*) = EX(/)Pg Exo = Exo Pglp(g i)ExO/

u €M% ([0,T],R"),go€S
where Agt = AQ + A BCt = BCt + B CQ C@t + C ’CQ th + K .FQ th + th.

Proof. It will be proved that ||T|| o1 ¢ can imply that there is a unique solution (@é, ﬁf )
of (14) on [0, T]. Otherwise, according to standard theory of differential equations, there

is a finite escape time for (14), i.e., (14) has a unique solution ﬁf on a maximal interval
(t1, T] with t; > 0, and 755 becomes unbounded when ¢ — t;. Next, a contradiction will

be derived.
For0 < p < T —ty, xt;+p = xt; p € R", similar to the method of Theorem 3.1, it can be

shown that

A W e TG A
=Ex}, pPEﬂ,lExtl o+ {/f P[Eut — Eu}) (Fp, Fy, — &1 ) [Bup — Euf]dt| G = i}
+ E{/t:rp[(ut — Euy) — (uf — Euy)]'(F, Fy, — EIn) [(ur — Buy) — (uf — Euf)|dt|ln4p = i}, (16)
where
Euj = —(F( Fq, — &21y) (B, PI + Fp, Ky, )Exi,
— Euj =— (F,Fy, — &%1y) ' (B, Qf + F},Kg,)(xt — Exy).

In addition, it is obviously that there exists @; > 0 such that
5T ' T j
J& (xt,,0,1,0) = E{~/t1+p Yiyedt|Ch4p = 1}
T
— 2 —
B K 000~ B, )Pt =

T
_ ) .
+ {/t1+p 1K BX (101, 0, 1) Cti 10 = 1}

<@1[llxt,p — Exe, p|1? + |[Exe, p*] = @1 [le |- 17)

Combining (16) and (17), it yields immediately
: 7T : 7T P 1 e
min Xt; 0,0, U) = Xt o, 1, u") = Ex;p. [P Ex
uterr([thP,T],R”l)]g Ctuprirtt) = Jg G ir26) e tkpd T
SE(xtl/plilo) S (Dl”thr‘gHz. (18)

Let X (tuixe, oGty +0) be the solution of (13) with initial state (¢, 1, and xy, », by linearity

Yty plrp) = (800,08t +p) + X(tu:0,1,4p)"
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Suppose Oy = (Q1,..., Q) and & = (8;1,... By ) satisfy the following equation

Opi + L5y 81O j + KK
+A;Qf,i + Qt,iAi + C{Qt,iCi =0,
- - =
Bri+ X 8ijBej + KiKi (19)
— - —_ —/ —
+AE; + 8 A +CiyiCi = 0,
Qr;i=Er;=0,i=1,...,5,
one has
jg(xtl/P’ i’ M) = jg(ol i/ u) + EfoPEtlerl,-Extl,p

+ [xl‘lfp - Extl,P]/Qtler,i [xtl/,o - Ext1,p]

T
+E{/ ZVQ [ut — Eut]dt|§tl+p = l}
ti+p

1
T o
+ {/ 2V, Eupdt| G, 4p = z}, (20)
t1+p

where V;, = [x<

.
Kz, Fe,)-
According to (16), there exists @ > 0 such that

B0ty .Gty +p) Ex(ffO;xtw'gtﬁp)]/(Qt'nggf + K/Cthf)’ ng - Ele‘rO;xtw,étﬁp)(Et’g’ggf +

T g
J£(0,i,u) = { t +P[Eut — Eu}) (Fp, Fy, — &1 ) [Bup — Eufdt| G4 = i}
v
T
+ E{/t +p[(ut — Euy) — (uf — Buy)]' (Ff, Fy, — & In, ) [(we — Bug) — (uf — Buf)]dt|Zhp = i}
1
> a((lur — Eutl\ﬁﬁ,ﬂ] + \Iutl\ﬁ]+p,T])- (21)

Combining (20) and (21), it follows that
E(xtl,,vl i u) > [xh,P - Exfl,P]/Qtl,P [xtl,P - Exf1,P] + Exllf1,PEf1+pExt1,P

T
2 .
+ E{/Hp(ngt [ur — Bue] + allus — Bue|f, |, 7y)t(Ch+p = 1}

T
_ , |
+ {/tlJrP(ZVgtEut +alluelly, 4 om0 = ,},

/ /=
z[xtl/P - E’xtllp] Qtﬁ-p,i [xl‘lfp - Extllp] + Extl,p:‘tl-ﬁ-p,iExtl/P

T
+ E{/w e[ (s — Bg) + o2V, )Pt G p = i}

T
~B{ [ v P :i}
(I iz,

T —
S albu+ a2V gy - i)
Jti+p

-T
—157/ 112 .
—E{ [ IV Ptz = )

/ —
+ Exi‘l,pd‘tl +p,iExt1,p

! ! -
Z[xtl/P - Extl/P] Ot 1pi [xtl/P - Extl/P] + Exh,p‘:‘thp,iExter

—1y,/ Zd
—E / a 'V t =i
{ ti+p ” b ” ‘gtl P }

T —
SR AT @
ti+p

Obviously, there exists 7 > 0 such that
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2
11t — Exey pl? + [[Exty o) > E/ X (10521, 9,00, 1)~ EX (L0001, 051, 5) ) |7

- / Xt 050,00 o)) I @3)

Therefore, there is some constant wy > 0 satistying the following inequality

T T
E / a VL | Pat :i}+{/ a1V |2t :i}
(L 1ve g, IV Pz

<wollxt,0 — Ext, pl|* + wol|Ex, p||*. (24)

According to Lemma 1,

T
E{YT,xT,gT - Yt1+pfxf1,pr§f1+p|gt1+p =it = E{/t +p AYf,XuCtdtMUﬂJ = l}'

1

Let Yix, ¢ = Ex{E; s Bx; and Yy, ¢ = (¥ — Ext)'Qy g, (x; — Ex;) respectively, there is w; > 0
such that

/ -
[xt1,0 = Exty,p] Q4 p[xe,p — Exry p] + Exp, pBiy 4 pEXty o

T
_ 2 "
= _E{/t1+ 1K 11,0001, 21, ) — EX (10521, 0.1 o) 70 C 49 = 1}

T
_ : |
IR PG = i}
= —awnlxn ol (25)

From (22), (24), and (25), it can be obtained that

T (xty,0,i,4) > —(wo + w1) |18, 0| (26)

Combining (18) and (26), it yields —(wq + w1)In, < Pt i S @1 In,. So Pt }p,i CANTIOt be unbounded
when p — 0, which lead to a contradiction. Therefore, there is unique Qté [Q i1 Qt oreens Qt,s} and

755 = [7551,7552, . ,7555} satisfying (14) on t € [0, T].
Moreover, similar to Equation (18), we have

min 5 (Xo,l u) = ]g (xo,i,u*) = Exopg Exo
weMZ([0,T],R™ ) ie§

min

M2 ([0 T] R )g ng(x()/ 1/[) = ]C (XO,M ) = EXOP E.XO = Ex(’) Z?:l 'ﬁgﬂ’P(go = i)EXO.
ureM% (10,11, "),l0€

¢

For system (13), Theorem 1 and Theorem 2 can yield the following equivalence rela-
tionships immediately:

Theorem 3. For system (13) and some given & > 0, which satisfies F/F; — ¢*I,, > 0 and
F 1-]-" i — %1y, > 0, the following are equivalent:

W |7 > ¢

(2) there exist unique Qb = [Qtl, Qt e @té | and Pt = [Ptl,’Pt 97 .,7355], te[0,T]
satisfying GDRE (14)

Moreover
. . o AT . % . ’ ~€r
i xo,i,u) = Jz (xo,i,u*) = Ex{P; . Ex
uy €M% ([0,T],R") (xo0,1,14) ]é( 0 ) 0770,i 40
min Xo,U) = Xo, U Ex 7) Ex ,
uteM;([o,T],Rﬂl)]g( 0, t) ]é'( o,u") = Exg 0

SN



Processes 2022, 10, 1656 11 of 14

Theorem 4. For system (13) and some given & > 0, which satisfies F/F; — ¢*I,, > 0 and
]-"i]-'l — &Iy, >0, ||FH[£) s ¢, then the Pgi satisfying (14) decreases as T increases for t € [0, T].

Proof. Suppose T > T, ] !(x0,i, 1) is optimal when u = uT~*, set
{ Eul %, k€ [0,T—t,
(F. Fr — &1n,) " Fy Ky Exe k€ (T—1,T — 1],
— Euy =
uzft*fEu,z bx xe[0,T—t,
{ —(F}F, = §%1n,) 'L K, (% — Bxe),x € (T — £, T — 1],

The time-invariance of PtT yields PT ! PT Therefore, for Vxo € R", we can obtain
ExéﬁZ»Exo = ExéﬁgftExo

- T—t
STCT (xg,z ul 7h) + E{/Tt [Viyx — Eujug]dx|Zo = 1}

— T—t _ .y —y —
:’jgit(xoi i/ uTit’*) + {E /Tft Ex;(lcéx [I - ng (F%Kfék - gzlnl)ilfék]ICgKEdeK|€o = l}

Tt
+E{/T_t [Kq, (xx — Bxi))'[I = Fy, (Ff Fp, — &%) "' Ff ] [Ky, (x5 — Exi)]dx| o = i}
gfgft(xo, i, qut’*) = Ex{ﬂSZExO,
which indicates that ﬁth decreases as T increases for t € [0, T]. O

4. Numerical Example
A simple example of H_ index is given to demonstrate the effectiveness of our results.

Example 1. We consider mean-field stochastic Markov system (13), corresponding parameters are
given as following:

_[03 02 o_[02 01] (03 01 o_[01 02
Al_[o.l 0.2}’ A= | 01 01 | AZ_[O.Z 0.2}' AZ_[OJ 0.1}’
(02 01 o_[01 02] (02 01 o_[02 02
Bl[o.z 0.4}’ Bl*_0.1 01 |’ Bz[o.z 0.4} Bz{0.1 0.2]
(03 01 o_[01 03] (02 02 o_[01 02
Cl{o.z 01]' Cl*_01 01_’C2{01 0.2] Cz{os 0.1]
_[os8 0 _Jo07 o0 o _[05 0
Kl_{o ] [0 0.5}'K2_[0 0.7}’K2_{0 0.5]’
_[os8 01 0 (07 0 o _[01 0
Fl_{o ] [0 0.1}’5_{0 0.8]’1:2_[0 0.1}’
—08 0.8
9= o5 o) e=0s

By solving the GDRE (14), we can obtain
- AH11 12 _ ﬁll ﬁlZ
0= 24| Pa=|Da Bl
Qt,l Qt,l 7Di!,l 7Dt,l
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02 04 06 08 1 12 14 16 18 2
time

Figure 1. The trajectories of Qt,l and Q,,Z.

1 T T T T

time

Figure 2. The trajectories of 75t,1 and 75t,2-

3 T T T

25 o |
] ~

\ - det(Q41)

L \_\.\ ~. ~ .
o \\\\ _______ det(Pyq)

15) N 0 |
S o det( Q)

1 ) - :\\\ [ det(?sr,z) )

Figure 3. The trajectories of det(Q; 1), det(Q; ), det(Py 1), and det(P; ).

Figures 1-3 show that P, ; < 0 and P}, < 0, which means ||| 0TS £,

5. Conclusions

This paper investigates the problem of H _ index for stochastic mean-field type Markov
jump systems with multiplicative noise. It is shown that when corresponding generalized
differential Riccati equations is solvable, H_ index is greater than a given positive number
for mean-field stochastic differential equation with state and input-dependent noise. Partic-
ularly, under some appropriate conditions, we obtain a sufficient and necessary condition
for mean-field stochastic system with only x-dependent noise, which illustrate that H_
index greater than a given positive number is equivalent to the solvability of GDREs. A
numerical example is given to shed light on obtained theoretical results.
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