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Abstract: In this brief, we consider the mean-field type H− index problem for stochastic Marko-
vian jump systems. A sufficient condition is derived for stochastic Markovian jump systems with
(x, u)-dependent noise based on generalized differential Riccati equations. Especially for stochastic
Markovian jump systems with only x-dependent noise, a sufficient and necessary condition is devel-
oped to characterizeH− index larger than some ξ > 0. Finally, a numerical example is addressed to
verify the effectiveness of our obtained results.
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1. Introduction

It is universally acknowledged that almost all dynamical systems in practice are un-
avoidably affected by unknown inputs and faults that resulted from actuators, components,
or sensors. The design of the fault diagnosis filter aims at improving the robustness against
unknown inputs and sensitivity to fault. To achieve such a goal, some practical criteria have
been applied, such as H2 norm, H∞ norm, and H− index [1–6]. Based on these criteria,
some multi-objective optimization problems such asH−/H∞,H2/H∞ andH∞/H∞ have
attracted the attention of many scholars [7–9]. H∞ norm measures the unknown input’s
maximum influence on the residual signal. By comparison, the fault’s minimum influence
on residual signal is measured by H− index, which is first introduced in [7]. In the past
few years, the fault diagnosis filter design involvingH−/H∞ has attracted the attention of
many scholars [10–17].

The H− index was first defined in the frequency domain. The H− index at zero
frequency was defined and investigated in [2], which means the smallest singular value of
non-zero. In [5], the generalized famous KYP lemma was used to characterizeH− index
problem of finite frequency. TheH− index of all frequency range was investigated by matrix
inequality and equality in [6], which denotes the minimum singular value. TheH−/H∞
fault detection of finite frequency and infinite frequency were characterized in [12,13].
However, in practical applications, the frequency domain is very limited. Corresponding
H− index problems of time domain have attracted many scholars’ interest. In [9], the
optimal solutions to robust H−/H∞ problem in infinite and finite horizon were given
for linear time-varying systems, which generalize corresponding resolutions to the time
domain. In [11], theH− index was attributed to the existence of the solution to differential
Riccati equation for time-varying systems, and corresponding results were extended to
systems whose initial condition was unknown. H−/H∞-optimization was used to design
the fault detection filter for nonlinear systems in discrete-time in [10]. For time-invariant
systems, the method of matrix factorization was used to develop theH−/H∞ FD problem
in [14]. In [15], the FD observer design was formulated as anH−/H∞ problem, which the
solution was given via LMI formulation for the T-S fuzzy system. Fault detection for linear
and nonlinear discrete-time systems were discussed in [16,17]. In [18,19], for discrete and
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continuous time-varying systems with Markov jump, corresponding finite horizon and
infinite horizonH− index were investigated via GDREs.

Considering that systems in the practical world are always affected by stochastic distur-
bances, many researchers have transferred their interest in stochastic control problems from
determinate systems to stochastic systems [20–25]. Especially, interest in stochastic systems
of mean-field type has been increasing. The mean-field theory is developed to study the
collective behaviors resulting from individuals’ mutual interactions in various physical and
sociological dynamical systems [26,27]. To date, many results on finite and infinite horizon
linear quadratic optimal control of mean-field stochastic systems have been presented, we
refer the reader to [28–31] and references therein. For mean-field stochastic differential
and difference equations, the H∞ control and finite horizon mixed H2/H∞ control of
mean-field stochastic systems were characterized in [32–35]. Refs. [36,37] investigated
finite and infinite horizon Pareto-based optimality of mean-field stochastic systems.H−
index of mean-field stochastic system was characterized in [38].

In [19], the H− index of classic stochastic differential equation with Markov jump
was studied. The corresponding results will be generalized to the mean-field stochastic
differential equation with the Markov jump in this paper. Since the expectations Ext and
Eut appear in equations, the problem is not a simple generalization. The main contributions
of this note are as follows: Based on existing research results, the definition and attribute
of H− index are extended to mean-field stochastic systems. The appearance of Ext, Eut
and Markov jumps in differential equations lead to more higher difficulty in mathematical
deductions. This note illustrates the H− index of mean-field stochastic continuous time-
varying systems with Markovian jump in the finite horizon. The main result is about the
necessary and sufficient condition of theH− index greater than a given positive number,
which is given by coupled generalized differential Riccati equation.

The remainder of the note is arranged as follows: The system considered in this article
is formulated and some preliminary results are presented in Section 2, Section 3 gives the
main results in terms of generalized differential Riccati equations. Numerical example is
provided in Section 4 to show the effectiveness of our obtained results. Section 5 presents
the conclusions of this article.

Notation. Rm is the set of all m−dimensional real vectors. S̃ = {1, 2, ..., s}. W ′ denotes
the transpose of W. W > 0 (W ≥ 0) means that W is positive definite (positive semi-
definite) symmetric matrix. Rn×m: the set of all n × m-dimensional real matrices. Il×l
is the l × l identity matrix. . Sm(R) is the set of all real symmetric matrices Rm×m. A
wide (square or tall) system is the system whose inputs dimensions is more than (is equal
to or less than) the outputs dimensions. M2

F ([0, T], Rl) is the space of nonanticipative
stochastic processes xt ∈ Rl with respect to an increasing algebras Ft(t ≥ 0) satisfying
‖xt‖[0,T] = {E

∫ T
0 ‖xt‖2dt}1/2 = {E

∫ T
0 xtx′tdt}1/2 < ∞. C1,2([0, T] × Rn; R) is the class

of R-valued functions V(t, x) which are once continuously differentiable with respect to
t ∈ [0, T], and twice continuously differential with respect to x ∈ Rn, except possibly at the
point x = 0.

2. Preliminaries
In this section, a useful lemma will be given for the following stochastic Markov jump

systems of the mean-field type in continuous-time:
dxt = [At,ζt xt + A0

t,ζt
Ext + Bt,ζt ut + B0

t,ζt
Eut]dt

+[Ct,ζt xt + C0
t,ζt

Ext + Dt,ζt ut + D0
t,ζt

Eut]dWt,

yt = Kt,ζt xt + K0
t,ζt

Ext + Ft,ζt ut + F0
t,ζt

Eut,

x0 ∈ Rn, t ∈ [0, T].

(1)

where, xt ∈ Rn2 , ut ∈ M2
F ([0, T], Rn1) and yt ∈ Rn3 are the system state, control input and

regulated output, respectively. Wt is the one-dimensional standard Brownian motion, E



Processes 2022, 10, 1656 3 of 14

denotes the expectation . {ζt, t ≥ 0} is a continuous-time discrete-state Markov process,
whose values is taken in S̃ and has the transition probability described by

P(ζt+∆t = j|ζt = i) =

{
gij∆t + o(∆t), i 6= j,
1 + gii∆t + o(∆t), i = j,

(2)

where ∆t > 0, lim∆t→0
o(∆t)

∆t = 0 and gij ≥ 0 for i 6= j, i, j ∈ S̃, determine the transition rate
from mode i to mode j, and G = (gij)s×s with gii = −∑S

j=1,j 6=i gij for all i ∈ S̃. At,ζt , A0
t,ζt

,
Bt,ζt , B0

t,ζt
, Ct,ζt , C0

t,ζt
, Dt,ζt , D0

t,ζt
, Kt,ζt , K0

t,ζt
, Ft,ζt and F0

t,ζt
are corresponding weighted coeffi-

cient matrices. In different practical problems, their meanings are different. At,ζt = At,i,
A0

t,ζt
= A0

t,i, Bt,ζt = Bt,i, B0
t,ζt

= B0
t,i, Ct,ζt = Ct,i, C0

t,ζt
= C0

t,i, Dt,ζt = Dt,i, D0
t,ζt

= D0
t,i,

Kt,ζt = Kt,i, K0
t,ζt

= K0
t,i, Ft,ζt = Ft,i and F0

t,ζt
= F0

t,i when ζt = i, are assumed to be continu-
ous matrix-valued functions of proper dimensions. The process ζt and Wt are defined on
filtered probability space (Ω,F ,P) with the natural filter Ft = {Ws, ζs|0 ≤ s ≤ t}, and ζt
is independent of Wt. For any given 0 < T < ∞ and (ut, x0) ∈ M2

F ([0, T], Rn1)× Rn2 , the
unique solution of (1) is denoted by xt = x(t,u;x0,ζ0)

∈ M2
F ([0, T], Rn2) with deterministic

initial condition ζ0, x0.

Definition 1. For system (1), theH− index is defined as

‖Γ‖[0,T]
− := inf

ut∈M2
F ([0,T],Rn1 ),ut 6=0,ζ0∈S̃,x0=0

‖yt‖[0,T]

‖ut‖[0,T]
. (3)

Remark 1. When ut and yt denote fault signal and residual signal, respectively, the minimum
sensitivity of system (1) from input ut to output yt is depicted as ‖Γ‖[0,T]

− . For wide system,

‖Γ‖[0,T]
− = 0, so it is supposed that system (1) is a tall system or square system.

For ξ > 0, 0 < T < ∞ and i ∈ S̃, we want to investigate the condition of the smallest
sensitivity greater than ξ, i.e., ‖Γ‖[0,T]

− > ξ. Define

ĴT
ξ (x0, u) := E

∫ T

0
[‖yt‖2 − ξ2‖ut‖2]dt, (4)

and
J̃T
ξ (x0, i, u) := E

{∫ T

0
[‖yt‖2 − ξ2‖ut‖2]dt|ζ0 = i

}
, (5)

then ĴT
ξ (0, u) > 0 yields ‖Γ‖[0,T]

− > ξ.

Lemma 1. [39] (Generalized Itô formula): Let αt,x,i, βt,x,i ∈ Rn be Ft-adapted process, i ∈ S̃,
dxt = αt,x,ζt dt + βt,x,ζt dWt. Then for given Υt,x,i ∈ C1,2([0, T]× Rn; R), i ∈ S̃, we have

E{ΥT,xT ,ζT − Υk,xk ,ζk
|ζk = i}

=E{
∫ T

k
∆Υt,xt ,ζt dt|ζk = i},

where

∆Υt,xt ,i =
∂Υt,xt ,i

∂t
+ αT

t,xt ,i
∂Υt,xt ,i

∂x

+
1
2

βT
t,xt ,i

∂2Υt,xt ,i

∂x2 βt,xt ,i +
N

∑
j=1

gijΥt,xt ,j.



Processes 2022, 10, 1656 4 of 14

For system (1), by taking mathematical expectations, we can express Ext and xt − Ext
as following:

dExt = [(At,ζt + A0
t,ζt

)Ext + (Bt,ζt + B0
t,ζt

)Eut]dt, (6)

{
d(xt − Ext) = [At,ζt (xt − Ext) + Bt,ζt (ut − Eut)]dt

+[Ct,ζt (xt − Ext) + (Ct,ζt + C0
t,ζt

)Ext + Dt,ζt (ut − Eut) + (Dt,ζt + D0
t,ζt

)Eut]dWt.
(7)

Lemma 2. For system (1), assume P̃t and Q̃t are differentiable, where

P̃t= [P̃t,1, P̃t,2, . . . , P̃t,s],

Q̃t = [Q̃t,1, Q̃t,2, . . . , Q̃t,s],

P̃t,i, Q̃t,i ∈ Sn(R) with i ∈ S̃, t ∈ [0, T]. Let

Si(Q̃t,i) =

[
˙̃Qt,i + Li(Q̃t,i) Hi(Q̃t,i)

Hi(Q̃t,i)
′ Mξ

i (Q̃t,i)

]

and

Ŝi(Q̃t,i, P̃t,i) =

[ ˙̃P t,i + L̂i(Q̃t,i, P̃t,i) Ĥi(Q̃t,i, P̃t,i)

Ĥi(Q̃t,i, P̃t,i)
′ M̂ξ

i (Q̃t,i, P̃t,i)

]
,

where

Li(Q̃t,i) = A′t,iQ̃t,i + Q̃t,i At,i + C′t,iQ̃t,iCt,i + K′t,iKt,i +
s

∑
j=1

gijQ̃t,j,

Hi(Q̃t,i) =Q̃t,iBt,i + C′t,iQ̃t,iDt,i + K′t,iFt,i,

Mξ
i (Q̃t,i) =D′t,iQ̃t,iDt,i + F′t,iFt,i − ξ2 In1 ,

L̂i(Q̃t,i, P̃t,i) =A
′
t,iP̃t,i + P̃t,iAt,i + C

′
t,iQ̃t,iC t,i +K

′
t,iKt,i +

s

∑
j=1

gijP̃t,j,

Ĥi(Q̃t,i, P̃t,i) =P̃t,iBt,i + C
′
t,iQ̃t,iDt,i +K

′
t,iF t,i,

M̂ξ
i (Q̃t,i, P̃t,i) =D

′
t,iQ̃t,iDt,i +F

′
t,iF t,i − ξ2 In1 ,

and

At,i = At,i + A0
t,i, Bt = Bt,i + B0

t,i, C t,i = Ct,i + C0
t,i,

Dt,i = Dt,i + D0
t,i,Kt,i = Kt,i + K0

t,i,F t,i = Ft,i + F0
t,i.

Then for ∀x0 ∈ Rn2 , ut ∈ M2
F ([0, T], Rn1), we have

J̃T
ξ (x0, i, u) = E[(x0 − Ex0)

′Q̃0,i(x0 − Ex0)] + Ex′0P̃0,iEx0

− E[(xT − ExT)
′Q̃T,ζT (xT − ExT)|ζ0 = i]

− E[Ex′TP̃T,ζT ExT |ζ0 = i]

+ E

{∫ T

0

[
xt − Ext
ut − Eut

]′
Sζt(Q̃t,ζt)

[
xt − Ext
ut − Eut

]
dt|ζ0 = i

}

+

{∫ T

0

[
Ext
Eut

]′
Ŝζt(Q̃t,ζt , P̃t,ζt)

[
Ext
Eut

]
dt|ζ0 = i

}
. (8)

Proof. According to Lemma 1,

E{ΥT,xT ,ζT − Υ0,x0,ζ0 |ζ0 = i} = E{
∫ T

0
∆Υt,xt ,ζt dt|ζ0 = i}.
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Applying Lemma 1 for Υt,xt ,ζt = Ex′tP̃t,ζt Ext and Υt,xt ,ζt = (xt − Ext)′Q̃t,ζt(xt − Ext),
respectively, we obtain

[Ex′TP̃T,ζT ExT |ζ0 = i]− Ex′0P̃0,iEx0

+ E[(xT − ExT)
′Q̃T,ζT (xT − ExT)|ζ0 = i]− (x0 − Ex0)

′Q̃0,i(x0 − Ex0)

=

{∫ T

0

[
Ext
Eut

]′
Ũ(Q̃t,ζt , P̃t,ζt)

[
Ext
Eut

]
dt|ζ0 = i

}

+ E

{∫ T

0

[
xt − Ext
ut − Eut

]′
U(Q̃t,ζt)

[
xt − Ext
ut − Eut

]
dt|ζ0 = i

}
, (9)

where

U(Q̃t,ζt) =


˙̃Qt,ζt + C′t,ζt

Q̃t,ζt Ct,ζt + A′t,ζt
Q̃t,ζt Q̃t,ζt Bt,ζt + D′t,ζt

Q̃t,ζt Ct,ζt

+Q̃t,ζt At,ζt + ∑s
j=1 gζt jQ̃t,j

B′t,ζt
Q̃t,ζt + C′t,ζt

Q̃t,ζt Dt,ζt D′t,ζt
Q̃t,ζt Dt,ζt

,

Ũ(Q̃t,ζt , P̃t,ζt) =


˙̃P t,ζt +A

′
t,ζt P̃t,ζt + P̃t,ζtAt,ζt P t,ζt B̃t,ζt +D

′
t,ζtQ̃t,ζtC t,ζt

+C ′t,ζtQ̃t,ζtC t,ζt + ∑s
ζt=1 gζt jP̃t,j

B′t,ζt P̃t,ζt + C
′
t,ζtQ̃t,ζtDt,ζt D′t,ζtQ̃t,ζtDt,ζt

.

In addition,

E
{∫ T

0
[‖yt‖2 − ξ2‖ut‖2]dt|ζ0 = i

}
=

{∫ T

0

[
Ext
Eut

]′
Ṽ
[

Ext
Eut

]
dt|ζ0 = i

}
+ E

{∫ T

0

[
xt − Ext
ut − Eut

]′
V
[

xt − Ext
ut − Eut

]
dt|ζ0 = i

}
(10)

with

Ṽ =

[
K′t,ζtKt,ζt K′t,ζtF t,ζt

F ′t,ζtKt,ζt F
′
t,ζtF t,ζt − ξ2 In1

]
and

V =

[
K′t,ζt

Kt,ζt K′t,ζt
Ft,ζt

F′t,ζt
Kt,ζt F′t,ζt

Ft,ζt − ξ2 In1

]
.

According to (9) and (10), we can obtain (8), the proof is end.

3. Finite Horizon Mean-Field Type StochasticH− Index

The mean-field type stochastic H− index will be investigated in this section, the
sufficient and necessary condition of ‖Γ‖[0,T]

− > ξ, which means ĴT
ξ (0, u) > 0, ∀ut ∈

M2
F ([0, T], Rn1), ut 6= 0, ζ0 ∈ S̃.

Theorem 1. If for a given ξ > 0 there exist Q̃ξ
t = [Q̃ξ

t,1, Q̃ξ
t,2, . . . , Q̃ξ

t,s] and

P̃ ξ
t = [P̃ ξ

t,1, P̃ ξ
t,2, . . . , P̃ ξ

t,s], t ∈ [0, T], such that the following GDREs are fulfilled
Hi(Q̃t,i)M

ξ
i (Q̃t,i)

−1Hi(Q̃t,i)
′ = ˙̃Qt,i + Li(Q̃t,i),

Ĥi(Q̃t,i, P̃t,i)M̂
ξ
i (Q̃t,i, P̃t,i)

−1Ĥi(Q̃t,i, P̃t,i)
′ = ˙̃P t,i + L̂i(Q̃t,i, P̃t,i),

Mξ
i (Q̃t,i) > 0, M̂ξ

i (Q̃t,i, P̃t,i) > 0,

Q̃T,i = P̃T,i = 0, i = 1, . . . , s,

(11)

then ‖Γ‖[0,T]
− > ξ.
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Proof. In view of Q̃T,i = P̃T,i = 0, by Lemma 2, for any ut ∈ M2
F ([0, T], Rn1) with ut 6= 0,

x0 = 0, it can be obtained that

J̃T
ξ (0, i, u)= E

{∫ T

0

[
xt − Ext
ut − Eut

]′
Sζt (Q̃

ξ
t,ζt

)

[
xt − Ext
ut − Eut

...

]
dt|ζ0 = i

}

+

{∫ T

0

[
Ext
Eut

]′
Ŝζt (Q̃

ξ
t,ζt

, P̃ ξ
t,ζt

)

[
Ext
Eut

...

]
dt|ζ0 = i

}
.

By (11) and the technique of completing squares, it follows that

ĴT
ξ (0, u) = E

∫ T

0

[
xt − Ext
ut − Eut

]′
Sζt (Q̃

ξ
t,ζt

)

[
xt − Ext
ut − Eut

]
dt

+
∫ T

0

[
Ext
Eut

]′
Ŝζt (Q̃

ξ
t,ζt

, P̃ ξ
t,ζt

)

[
Ext
Eut

]
dt

=E
∫ T

0
(xt − Ext)

′
[

˙̃Q
ξ

t,ζt
+ Lζt (Q̃

ξ
t,ζt

)−Hζt (Q̃
ξ
t,ζt

)Mξ
ζt
(Q̃ξ

t,ζt
)−1Hζt (Q̃

ξ
t,ζt

)′
]
(xt − Ext)dt

+E
∫ T

0
[(ut − Eut)− (u∗t − Eu∗t )]

′Mξ
ζt
(Q̃ξ

t,ζt
)[(ut − Eut)− (u∗t − Eu∗t )]dt

+
∫ T

0
(Ext)

′
[

˙̃P
ξ

t,ζt
+ L̂ζt (Q̃

ξ
t,ζt

, P̃ ξ
t,ζt

)− Ĥζt (Q̃
ξ
t,ζt

, P̃ ξ
t,ζt

)

×M̂ξ
ζt
(Q̃ξ

t,ζt
, P̃ ξ

t,ζt
)−1Ĥζt (Q̃

ξ
t,ζt

, P̃ ξ
t,ζt

)′
]
(Ext)dt

+
∫ T

0
[Eut − Eu∗t ]

′M̂ξ
ζt
(Q̃ξ

t,ζt
, P̃ ξ

t,ζt
)[Eut − Eu∗t ]dt.

=E
∫ T

0
[(ut − Eut)− (u∗t − Eu∗t )]

′Mξ
ζt
(Q̃ξ

t,ζt
)[(ut − Eut)− (u∗t − Eu∗t )]dt

+
∫ T

0
[Eut − Eu∗t ]

′M̂ξ
ζt
(Q̃ξ

t,ζt
, P̃ ξ

t,ζt
)[Eut − Eu∗t ]dt. (12)

where
u∗t − Eu∗t = −Mξ

ζt
(Q̃ξ

t,ζt
)−1Hζt(Q̃

ξ
t,ζt

)′(xt − Ext),

Eu∗t = −M̂ξ
ζt
(Q̃ξ

t,ζt
, P̃ ξ

t,ζt
)−1Ĥζt(Q̃

ξ
t,ζt

, P̃ ξ
t,ζt

)′Ext.

SinceMξ
i (Q̃

ξ
t,i) > 0 and M̂ξ

i (Q̃
ξ
t,i, P̃

ξ
t,i) > 0, (12) provides ĴT

ξ (0, u) ≥ 0 , which means

‖Γ‖[0,T]
− ≥ ξ.
To prove ĴT

ξ (0, u) > 0, we define the operator L̃1 : L̃1(ut − Eut) = (ut − Eut)− (u∗t −
Eu∗t ) with its realization

d(xt − Ext) = [At,ζt(xt − Ext) + Bt,ζt(ut − Eut)]dt
+[Ct,ζt(xt − Ext) + C t,ζt Ext + Dt,ζt(ut − Eut) +Dt,ζt Eut]dWt,

(ut − Eut)− (u∗t − Eu∗t ) = (ut − Eut) +Mξ
ζt
(Q̃ξ

t,ζt
)−1Hζt(Q̃

ξ
t,ζt

)′(xt − Ext).

and define the operator L̃2 : L̃2(Eut) = Eut − Eu∗t with its realization{
dExt = (At,ζt Ext + Bt,ζt Eut)dt,
Eut − Eu∗t = Eut + M̂ξ

ζt
(Q̃ξ

t,ζt
, P̃ ξ

t,ζt
)−1Ĥζt (Q̃

ξ
t,ζt

, P̃ ξ
t,ζt

)′Ext.

Then L̃−1
1 and L̃−1

2 exist, which are determined by



d(xt − Ext) = {Bt,ζt [(ut − Eut)− (u∗t − Eu∗t )]
+[At,ζt − Bt,ζtM

ξ
ζt
(Q̃ξ

t,ζt
)−1Hζt (Q̃

ξ
t,ζt

)′](xt − Ext)}dt

+{[Ct,ζt − Dt,ζtM
ξ
ζt
(Q̃ξ

t,ζt
)−1Hζt (Q̃

ξ
t,ζt

)′](xt − Ext) + Ct,ζt [(ut − Eut)− (u∗t − Eu∗t )]

+[C t,ζt −Dt,ζtM̂
ξ
ζt
(Q̃ξ

t,ζt
, P̃ ξ

t,ζt
)−1Ĥζt (Q̃

ξ
t,ζt

, P̃ ξ
t,ζt

)′]Ext +Dt,ζt (Eut − Eu∗t )}dWt,

x0 − Ex0 = 0
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and{
dExt = {Bt,ζt (Eut − Eu∗t ) + [At,ζt −Bt,ζtM̂

ξ
ζt
(Q̃ξ

t,ζt
, P̃ ξ

t,ζt
)−1Ĥζt (Q̃

ξ
t,ζt

, P̃ ξ
t,ζt

)′]Ext}dt,

Ex0 = 0,

respectively, where

ut − Eut = −Mξ
ζt
(Q̃ξ

t,ζt
)−1Hζt(Q̃

ξ
t,ζt

)′(xt − Ext)

+ [(ut − Eut)− (u∗t − Eu∗t )],

Eut =− M̂ξ
ζt
(Q̃ξ

t,ζt
, P̃ ξ

t,ζt
)−1Ĥζt(Q̃

ξ
t,ζt

, P̃ ξ
t,ζt

)′Ext

+ (Eut − Eu∗t ).

Since Mξ
i (Q̃

ξ
t,i) > 0 and M̂ξ

i (Q̃
ξ
t,i, P̃

ξ
t,i) > 0, i = 1, . . . , s are continuous functions

on [0, T], there exist λi > 0 and λ̂i > 0 for i = 1, . . . , s, such thatMξ
i (Q̃

ξ
t,i) > λi In1 and

M̂ξ
i (Q̃

ξ
t,i, P̃

ξ
t,i) > λ̂i In1 on [0, T]. Let λ = min{λ1, λ2, . . . , λs, λ̂1, λ̂2, . . . , λ̂s}, it follows that

Mξ
ζt
(Q̃ξ

t,ζt
) > λIn1 and M̂ξ

ζt
(Q̃ξ

t,ζt
, P̃ ξ

t,ζt
) > λIn1 for t ∈ [0, T], i ∈ S̃. So, there exist constants

θ > 0 and ε > 0, such that

ĴT
ξ (0, u)= E

∫ T

0
[Eut − Eu∗t ]

′M̂ξ
ζt
(Q̃ξ

t,ζt
, P̃ ξ

t,ζt
)[Eut − Eu∗t ]dt

+ E
∫ T

0
[(ut − Eut)− (u∗t − Eu∗t )]

′Mξ
ζt
(Q̃ξ

t,ζt
)[(ut − Eut)− (u∗t − Eu∗t )]dt

≥ λ[‖L̃2(ut − Eut)‖2
[0,T] + ‖L̃1(Eut)‖2

[0,T]]

≥ λδ[‖ut − Eut‖2
[0,T] + ‖Eut‖2

[0,T]] = ε‖ut‖2
[0,T] > 0

for ut 6= 0, which yields ‖yt‖2
[0,T] − ξ2‖ut‖2

[0,T] ≥ ε‖ut‖2
[0,T]. So, ‖yt‖2

[0,T] ≥ (ξ2 + ε)‖ut‖2
[0,T],

it is concluded that ‖Γ‖[0,T]
− ≥ (ξ2 + ε) > ξ, which ends the proof.

In what follows, the necessary condition of ‖Γ‖[0,T]
− > ξ will be given for the following

square and time-invariant system:
dxt = (Aζt xt + A0

ζt
Ext + Bζt ut + B0

ζt
Eut)dt + (Cζt xt + C0

ζt
Ext)dWt,

yt = Kζt xt + K0
ζt

Ext + Fζt ut + F0
ζt

Eut,

x0 ∈ Rn, t ∈ [0, T].

(13)

Theorem 2. For system (13) and some given ξ > 0, which satisfies F′i Fi − ξ2 In1 > 0 and

F ′iF i − ξ2 In1 > 0, if ‖Γ‖[0,T]
− > ξ, there exist unique Q̃ξ

t = [Q̃ξ
t,1, Q̃ξ

t,2, . . . , Q̃ξ
t,s] and P̃ ξ

t =

[P̃ ξ
t,1, P̃ ξ

t,2, . . . , P̃ ξ
t,s], t ∈ [0, T] satisfying the following GDRE

A′iQ̃t,i + Q̃t,i Ai + C′iQ̃t,iCi + K′i Ki +
˙̃Qt,i + ∑s

j=1 gijQ̃t,j

= (Q̃t,iBi + K′i Fi)(F′i Fi − ξ2 In1 )
−1(Q̃t,iBi + K′i Fi)

′,

A′iP̃t,i + P̃t,iAi + C
′
iQ̃t,iC i +K

′
iKi +

˙̃P t,i + ∑s
j=1 gijP̃t,j

= (P̃t,iBi +K
′
iF i)(F

′
iF i − ξ2 In1 )

−1(P̃t,iBi +K
′
iF i)

′,

Q̃T,i = P̃T,i = 0, i = 1, . . . , s

(14)



Processes 2022, 10, 1656 8 of 14

Moreover, J̃T
ξ (x0, i, u) and ĴT

ξ (x0, u) are minimized by u∗t = U∗ζt
(xu∗

t −Exu∗
t )+U∗ζt Exu∗

t ,

with U∗ζt
= −(F′ζt

Fζt − ξ2 In1)
−1(B′ζt

Q̃ξ
t,ζt

+ F′ζt
Kζt) and U∗ζt = (F ′ζtF ζt − ξ2 In1)

−1(B′ζt P̃
ξ
t,ζt

+

F ′ζtKζt), where xu∗
t is the state trajectory of system (13) when ut = u∗t , and

min
ut∈M2

F ([0,T],Rn1 ),i∈S̃
J̃T
ξ (x0, i, u) = J̃T

ξ (x0, i, u∗) = Ex′0P̃
ξ
0,iEx0

min
ut∈M2

F ([0,T],Rn1 ),ζ0∈S̃
J̃T
ξ (x0, u) = J̃T

ξ (x0, u∗) = Ex′0P̃
ξ
0,ζ0

Ex0 = Ex′0 ∑s
i=1 P̃

ξ
0,iP(ζ0 = i)Ex0,

(15)

where Aζt = Aζt + A0
ζt

, Bζt = Bζt + B0
ζt

, Cζt = Cζt + C0
ζt

,Kζt = Kζt + K0
ζt

,F ζt = Fζt + F0
ζt

.

Proof. It will be proved that ‖Γ‖[0,T]
− > ξ can imply that there is a unique solution (Q̃ξ

t , P̃ ξ
t )

of (14) on [0, T]. Otherwise, according to standard theory of differential equations, there
is a finite escape time for (14), i.e., (14) has a unique solution P̃ ξ

t on a maximal interval
(t1, T] with t1 ≥ 0, and P̃ ξ

t becomes unbounded when t → t1. Next, a contradiction will
be derived.

For 0 < ρ < T − t1, xt1+ρ = xt1,ρ ∈ Rn, similar to the method of Theorem 3.1, it can be
shown that

J̃T
ξ (xt1,ρ, i, u) = E

{∫ T

t1+ρ
[‖yt‖2 − ξ2‖ut‖2]dt|ζt1+ρ = i

}
=Ex′t1,ρP̃

ξ
t1+ρ,iExt1,ρ +

{∫ T

t1+ρ
[Eut − Eu∗t ]

′(F ′ζt
F ζt − ξ2 In1 )[Eut − Eu∗t ]dt|ζt1+ρ = i

}
+ E

{∫ T

t1+ρ
[(ut − Eut)− (u∗t − Eu∗t )]

′(F′ζt
Fζt − ξ2 In1 )[(ut − Eut)− (u∗t − Eu∗t )]dt|ζt1+ρ = i

}
, (16)

where

Eu∗t = −(F ′ζt
F ζt − ξ2 Iq)

−1(B′ζt
P̃T

t +F ′ζt
Kζt )Ext,

u∗t − Eu∗t =− (F′ζt
Fζt − ξ2 Iq)

−1(B′ζt
Q̃T

t + F′ζt
Kζt )(xt − Ext).

In addition, it is obviously that there exists v1 > 0 such that

J̃T
ξ (xt1,ρ, i, 0) = E

{∫ T

t1+ρ
y′tytdt|ζt1+ρ = i

}
=E
{∫ T

t1+ρ
(‖Kζt (x(t,0;xt1,ρ ,ζt1+ρ) − Ex(t,0;xt1,ρ ,ζt1+ρ))‖

2dt|ζt1+ρ = i
}

+

{∫ T

t1+ρ
‖Kζt Ex(t,0;xt1,ρ ,ζt1+ρ)‖

2)dt|ζt1+ρ = i
}

≤v1[‖xt1,ρ − Ext1,ρ‖2 + ‖Ext1,ρ‖2] = v1‖xt1,ρ‖2. (17)

Combining (16) and (17), it yields immediately

min
ut∈M2

F ([t1+ρ,T],Rn1 )
J̃T
ξ (xt1,ρ, i, u) = J̃T

ξ (xt1,ρ, i, u∗) = Ex′t1,ρP̃
ξ
t1+ρ,iExt1,ρ

≤ J̃T
ξ (xt1,ρ, i, 0) ≤ v1‖xt1,ρ‖2. (18)

Let x(t,u;xt1,ρ ,ζt1+ρ) be the solution of (13) with initial state ζt1+ρ and xt1,ρ, by linearity

x(t,u;xt1,ρ ,ζt1+ρ) = x(t,0;xt1,ρ ,ζt1+ρ) + x(t,u;0,ζt1+ρ).
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Suppose Ωt = (Ωt,1, . . . , Ωt,l) and Ξt = (Ξt,1, . . . Ξt,l) satisfy the following equation

Ω̇t,i + ∑s
j=1 gijΩt,j + K′iKi

+A′iΩt,i + Ωt,i Ai + C′i Ωt,iCi = 0,
Ξ̇t,i + ∑s

j=1 gijΞt,j +K
′
iKi

+A′iΞt,i + Ξt,iAi + C
′
iΩt,iC i = 0,

ΩT,i = ΞT,i = 0, i = 1, . . . , s,

(19)

one has

J̃T
ξ (xt1,ρ, i, u) = J̃T

ξ (0, i, u) + Ex′t1,ρΞt1+ρ,iExt1,ρ

+ [xt1,ρ − Ext1,ρ]
′Ωt1+ρ,i[xt1,ρ − Ext1,ρ]

+ E
{∫ T

t1+ρ
2Vζt [ut − Eut]dt|ζt1+ρ = i

}
+

{∫ T

t1+ρ
2Vζt Eutdt|ζt1+ρ = i

}
, (20)

where Vζt = [x(t,0;xt1,ρ ,ζt1+ρ) − Ex(t,0;xt1,ρ ,ζt1+ρ)]
′(Ωt,ζt Bζt + K′ζt

Fζt ), Vζt = Ex′
(t,0;xt1,ρ ,ζt1+ρ)

(Ξt,ζtBζt +

K′ζt
F ζt ).

According to (16), there exists α > 0 such that

J̃T
ξ (0, i, u) =

{∫ T

t1+ρ
[Eut − Eu∗t ]

′(F ′ζt
F ζt − ξ2 In1 )[Eut − Eu∗t ]dt|ζt1+ρ = i

}
+ E

{∫ T

t1+ρ
[(ut − Eut)− (u∗t − Eu∗t )]

′(F′ζt
Fζt − ξ2 In1 )[(ut − Eut)− (u∗t − Eu∗t )]dt|ζt1+ρ = i

}
≥ α(‖ut − Eut‖2

[t1+ρ,T] + ‖ut‖2
[t1+ρ,T]). (21)

Combining (20) and (21), it follows that

J̃T
ξ (xt1,ρ, i, u) ≥ [xt1,ρ − Ext1,ρ]

′Ωt1,ρ[xt1,ρ − Ext1,ρ] + Ex′t1,ρΞt1+ρExt1,ρ

+ E
{∫ T

t1+ρ
(2Vζt [ut − Eut] + α‖ut − Eut‖2

[t1+ρ,T])dt|ζt1+ρ = i
}

+

{∫ T

t1+ρ
(2Vζt Eut + α‖ut‖2

[t1+ρ,T])dt|ζt1+ρ = i
}

,

≥[xt1,ρ − Ext1,ρ]
′Ωt1+ρ,i[xt1,ρ − Ext1,ρ] + Ex′t1,ρΞt1+ρ,iExt1,ρ

+ E
{∫ T

t1+ρ
‖α[(ut − Eut) + α−2V′ζt

]‖2dt|ζt1+ρ = i
}

− E
{∫ T

t1+ρ
‖α−1V′ζt

‖2dt|ζt1+ρ = i
}

+

{∫ T

t1+ρ
‖α[Eut + α−2V′ζt

‖2dt|ζt1+ρ = i
}

− E
{∫ T

t1+ρ
‖α−1V′ζt

‖2dt|ζt1+ρ = i
}

+ Ex′t1,ρΞt1+ρ,iExt1,ρ

≥[xt1,ρ − Ext1,ρ]
′Ωt1+ρ,i[xt1,ρ − Ext1,ρ] + Ex′t1,ρΞt1+ρ,iExt1,ρ

− E
{∫ T

t1+ρ
‖α−1V′ζt

‖2dt|ζt1+ρ = i
}

− E
{∫ T

t1+ρ
‖α−1V′ζt

‖2dt|ζt1+ρ = i
}

. (22)

Obviously, there exists η > 0 such that
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η(‖xt1,ρ − Ext1,ρ‖2 + ‖Ext1,ρ‖2) ≥ E
∫ T

t1+ρ
‖[x(t,0;xt1,ρ ,ζt1+ρ) − Ex(t,0;xt1,ρ ,ζt1+ρ)]‖

2dt

+
∫ T

t1+ρ
‖Ex(t,0;xt1,ρ ,ζt1+ρ)]‖

2dt. (23)

Therefore, there is some constant ω0 > 0 satistying the following inequality

E
{∫ T

t1+ρ
‖α−1V′ζt

‖2dt|ζt1+ρ = i
}
+

{∫ T

t1+ρ
‖α−1V′ζt

‖2dt|ζt1+ρ = i
}

≤ω0‖xt1,ρ − Ext1,ρ‖2 + ω0‖Ext1,ρ‖2. (24)

According to Lemma 1,

E{ΥT,xT ,ζT − Υt1+ρ,xt1,ρ ,ζt1+ρ
|ζt1+ρ = i} = E

{∫ T

t1+ρ
∆Υt,xt ,ζt dt|ζt1+ρ = i

}
.

Let Υt,xt ,ζt = Ex′tΞt,ζt Ext and Υt,xt ,ζt = (xt − Ext)
′Ωt,ζt (xt − Ext) respectively, there is ω1 > 0

such that

[xt1,ρ − Ext1,ρ]
′Ωt1+ρ[xt1,ρ − Ext1,ρ] + Ex′t1,ρΞt1+ρExt1,ρ

= −E
{∫ T

t1+ρ
‖Kζt [x(t,0;xt1,ρ ,ζt1+ρ) − Ex(t,0;xt1,ρ ,ζt1+ρ)]‖

2dt|ζt1+ρ = i
}

−
{∫ T

t1+ρ
‖Kζt Ex(t,0;xt1,ρ ,ζt1+ρ)‖

2dt|ζt1+ρ = i
}

≥ −ω1‖xt1,ρ‖2. (25)

From (22), (24), and (25), it can be obtained that

J̃T
ξ (xt1,ρ, i, u) ≥ −(ω0 + ω1)‖xt1,ρ‖2. (26)

Combining (18) and (26), it yields−(ω0 +ω1)In2 ≤ P̃
ξ
t1+ρ,i ≤ v1 In2 . So P̃ ξ

t1+ρ,i can not be unbounded

when ρ→ 0, which lead to a contradiction. Therefore, there is unique Q̃ξ
t = [Q̃ξ

t,1, Q̃ξ
t,2, . . . , Q̃ξ

t,s] and

P̃ ξ
t = [P̃ ξ

t,1, P̃ ξ
t,2, . . . , P̃ ξ

t,s] satisfying (14) on t ∈ [0, T].
Moreover, similar to Equation (18), we have

min
ut∈M2

F ([0,T],Rn1 ),i∈S̃
J̃T
ξ (x0, i, u) = J̃T

ξ (x0, i, u∗) = Ex′0P̃
ξ
0,iEx0

min
ut∈M2

F ([0,T],Rn1 ),ζ0∈S̃
J̃T
ξ (x0, u) = J̃T

ξ (x0, u∗) = Ex′0P̃
ξ
0,ζ0

Ex0 = Ex′0 ∑s
i=1 P̃

ξ
0,iP(ζ0 = i)Ex0.

For system (13), Theorem 1 and Theorem 2 can yield the following equivalence rela-
tionships immediately:

Theorem 3. For system (13) and some given ξ > 0, which satisfies F′i Fi − ξ2 In1 > 0 and
F ′iF i − ξ2 In1 > 0, the following are equivalent:

(1) ‖Γ‖[0,T]
− > ξ,

(2) there exist unique Q̃ξ
t = [Q̃ξ

t,1, Q̃ξ
t,2, . . . , Q̃ξ

t,s] and P̃ ξ
t = [P̃ ξ

t,1, P̃ ξ
t,2, . . . , P̃ ξ

t,s], t ∈ [0, T]
satisfying GDRE (14)

Moreover 
min

ut∈M2
F ([0,T],Rn1 )

J̃T
ξ (x0, i, u) = J̃T

ξ (x0, i, u∗) = Ex′0P̃
ξ
0,iEx0

min
ut∈M2

F ([0,T],Rn1 )
J̃T
ξ (x0, u) = J̃T

ξ (x0, u∗) = Ex′0P̃
ξ
0,ζ0

Ex0,
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Theorem 4. For system (13) and some given ξ > 0, which satisfies F′i Fi − ξ2 In1 > 0 and

F ′iF i− ξ2 In1 > 0, ‖Γ‖[0,T]
− > ξ, then the P̃T

t,i satisfying (14) decreases as T increases for t ∈ [0, T].

Proof. Suppose T̂ > T, J̃T−t
ξ (x0, i, u) is optimal when u = uT−t,∗, set

Euκ =

{
EuT−t,∗

κ , κ ∈ [0, T − t],
−(F ′ζt

F ζt − ξ2 In1 )
−1F ′ζt

Kζt Exκ , κ ∈ (T − t, T̂ − t].

uκ − Euκ ={
uT−t,∗

κ − EuT−t,∗
κ , κ ∈ [0, T − t],

−(F′ζt
Fζt − ξ2 In1 )

−1F′ζt
Kζt (xκ − Exκ), κ ∈ (T − t, T̂ − t],

The time-invariance of P̃T
t,i yields P̃T−t

0,i = P̃T
t,i. Therefore, for ∀x0 ∈ Rn, we can obtain

Ex′0P̃ T̂
t,iEx0 = Ex′0P̃ T̂−t

0,i Ex0

≤ J̃T−t
ξ (x0, i, uT−t,∗) + E

{∫ T̂−t

T−t
[y′κyκ − ξ2u′κuκ ]dκ|ζ0 = i

}

= J̃T−t
ξ (x0, i, uT−t,∗) +

{
E
∫ T̂−t

T−t
Ex′κK

′
ζκ
[I −F ζκ

(F ′ζκ
F ζκ
− ξ2 In1 )

−1F ′ζκ
]Kζκ

Exκdκ|ζ0 = i

}

+E

{∫ T̂−t

T−t
[Kζt (xκ − Exκ)]

′[I − Fζκ
(F′ζκ

Fζκ
− ξ2 In1 )

−1F′ζκ
][Kζt (xκ − Exκ)]dκ|ζ0 = i

}
≤ J̃T−t

ξ (x0, i, uT−t,∗) = Ex′0P̃T
t,iEx0,

which indicates that P̃T
t,i decreases as T increases for t ∈ [0, T].

4. Numerical Example

A simple example ofH− index is given to demonstrate the effectiveness of our results.

Example 1. We consider mean-field stochastic Markov system (13), corresponding parameters are
given as following:

A1 =

[
0.3 0.2
0.1 0.2

]
, A0

1 =

[
0.2 0.1
0.1 0.1

]
, A2 =

[
0.3 0.1
0.2 0.2

]
, A0

2 =

[
0.1 0.2
0.1 0.1

]
,

B1 =

[
0.2 0.1
0.2 0.4

]
, B0

1 =

[
0.1 0.2
0.1 0.1

]
, B2 =

[
0.2 0.1
0.2 0.4

]
, B0

2 =

[
0.2 0.2
0.1 0.2

]
,

C1 =

[
0.3 0.1
0.2 0.1

]
, C0

1 =

[
0.1 0.3
0.1 0.1

]
, C2 =

[
0.2 0.2
0.1 0.2

]
, C0

2 =

[
0.1 0.2
0.3 0.1

]
,

K1 =

[
0.8 0
0 0.8

]
, K0

1 =

[
0.4 0
0 0.5

]
, K2 =

[
0.7 0
0 0.7

]
, K0

2 =

[
0.5 0
0 0.5

]
,

F1 =

[
0.8 0
0 0.7

]
, F0

1 =

[
0.1 0
0 0.1

]
, F2 =

[
0.7 0
0 0.8

]
, F0

2 =

[
0.1 0
0 0.1

]
,

G =

[
−0.8 0.8
0.6 −0.6

]
, ξ = 0.6.

By solving the GDRE (14), we can obtain

Q̃t,1 =

[
Q̃11

t,1 Q̃12
t,1

Q̃12
t,1 Q̃22

t,1

]
, P̃t,1 =

[
P̃11

t,1 P̃12
t,1

P̃12
t,1 P̃22

t,1

]
,
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Q̃t,2 =

[
Q̃11

t,2 Q̃12
t,2

Q̃12
t,2 Q̃22

t,2

]
, P̃t,2 =

[
P̃11

t,2 P̃12
t,2

P̃12
t,2 P̃22

t,2

]
.

Figures 1–3 present their trajectories.

Figure 1. The trajectories of Q̃t,1 and Q̃t,2.

Figure 2. The trajectories of P̃t,1 and P̃t,2.

Figure 3. The trajectories of det(Q̃t,1), det(Q̃t,2), det(P̃t,1), and det(P̃t,2).

Figures 1–3 show that P̃t,1 ≤ 0 and P̃t,2 ≤ 0, which means ‖Γ‖[0,T]
− > ξ.

5. Conclusions

This paper investigates the problem ofH− index for stochastic mean-field type Markov
jump systems with multiplicative noise. It is shown that when corresponding generalized
differential Riccati equations is solvable,H− index is greater than a given positive number
for mean-field stochastic differential equation with state and input-dependent noise. Partic-
ularly, under some appropriate conditions, we obtain a sufficient and necessary condition
for mean-field stochastic system with only x-dependent noise, which illustrate that H−
index greater than a given positive number is equivalent to the solvability of GDREs. A
numerical example is given to shed light on obtained theoretical results.
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