Eugenol, Isolated from the Essential Oil from Lonicera japonica Flower Buds, Could Increase the Oxidative Stability of Sunflower Oil in the Deep-Frying Procedure of Youtiao
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Chemical Analysis of LJEO
2.3. Selection of Concentration for Antioxidants
2.4. Deep-Frying Procedure of Youtiao
2.5. Sensorial Evaluation of Fried Youtiao
2.6. Bioassay-Guided Fractionation of LJEO
2.7. Antioxidant Employment of in Deep-Frying Procedure of Youtiao
2.8. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of LJEO
3.2. Optimization of Concentration for Antioxidants
3.3. Changes for Physico-Chemical Properties of SFO during Deep-Frying Procedure
3.4. Changes for Sensorial Attributes of Youtiao during Deep-Frying Procedure
3.5. Antioxidant Effect of Eugenol in SFO during Deep-Frying Procedure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galvan, D.; Effting, L.; Neto, L.T.; Conte-Junior, C.A. An overview of research of essential oils by self-organizing maps: A novel approach for meta-analysis study. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3136–3163. [Google Scholar] [CrossRef]
- Rossi, C.; Chaves-López, C.; Serio, A.; Casaccia, M.; Maggio, F.; Paparella, A. Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: An updated review. Crit. Rev. Food Sci. 2022, 62, 2172–2191. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Li, Z.; Li, X.; Fan, G. Bioactive properties of the aromatic molecules of spearmint (Mentha spicata L.) essential oil: A review. Food Funct. 2022, 13, 3110–3132. [Google Scholar] [CrossRef] [PubMed]
- Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol. 2019, 229, 29–45. [Google Scholar] [CrossRef]
- Hawkins, J.; Hires, C.; Dunne, E.; Baker, C. The relationship between lavender and tea tree essential oils and pediatric endocrine disorders: A systematic review of the literature. Complement. Ther. Med. 2020, 49, 102288. [Google Scholar] [CrossRef]
- Hao, R.; Roy, K.; Pan, J.; Shah, B.R.; Mraz, J. Critical review on the use of essential oils against spoilage in chilled stored fish: A quantitative meta-analysis. Trends Food Sci. Technol. 2021, 111, 175–190. [Google Scholar] [CrossRef]
- da Silva, B.D.; Bernardes, P.C.; Pinheiro, P.F.; Fantuzzi, E.; Roberto, C.D. Chemical composition, extraction sources and action mechanisms of essential oils: Natural preservative and limitations of use in meat products. Meat Sci. 2021, 176, 108463. [Google Scholar] [CrossRef]
- da Silva, B.D.; do Rosário, D.K.A.; Weitz, D.A.; Conte-Junior, C.A. Essential oil nanoemulsions: Properties, development, and application in meat and meat products. Trends Food Sci. Technol. 2022, 121, 1–13. [Google Scholar] [CrossRef]
- Wang, D.; Fan, W.; Guan, Y.; Huang, H.; Yi, T.; Ji, J. Oxidative stability of sunflower oil flavored by essential oil from Coriandrum sativum L. during accelerated storage. LWT—Food Sci. Technol. 2018, 98, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Meng, Y.; Zhao, X.; Fan, W.; Yi, T.; Wang, X. Sunflower oil flavored by essential oil from Punica granatum cv. Heyinshiliu peels improved its oxidative stability and sensory properties. LWT—Food Sci. Technol. 2019, 111, 55–61. [Google Scholar]
- Wang, D.; Wang, Q.; Li, S.; Xu, Y.; Wang, X.; Wang, C. Carvacrol methyl ether, a compound from the essential oil of Gardenia jasminoides fruits, exhibits antioxidant effects in the deep-frying of Chinese Youmotou using sunflower oil. LWT—Food Sci. Technol. 2020, 128, 109502. [Google Scholar] [CrossRef]
- Wang, D.; Chen, X.; Wang, Q.; Meng, Y.; Wang, D.; Wang, X. Influence of the essential oil of Mentha spicata cv. Henanshixiang on sunflower oil during the deep-frying of Chinese Maye. LWT—Food Sci. Technol. 2020, 122, 109020. [Google Scholar] [CrossRef]
- Yang, H.; Wang, D.; Lu, X.; Wang, X.; Blasi, F. Eugenol, obtained from the bioassay-guided fractionation of Coriandrum sativum essential oil, displayed antioxidant effect in deep-frying procedure of sunflower oil and improved sensory properties of fried products, Caijiao. J. Essent. Oil Res. 2022, 34, 240–250. [Google Scholar] [CrossRef]
- Shang, X.; Pan, H.; Li, M.; Miao, X.; Ding, H. Lonicera japonica Thunb.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2011, 138, 1–21. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Fu, C.; Song, Y.; Fu, Q. Lonicerae japonicae flos and Lonicerae flos: A systematic review of ethnopharmacology, phytochemistry and pharmacology. Phytochem. Rev. 2020, 19, 1–61. [Google Scholar] [CrossRef] [Green Version]
- Jintao, X.; Quanwei, Y.; Chunyan, L.; Xiaolong, L.; Bingxuan, N. Rapid and simultaneous quality analysis of the three active components in Lonicerae Japonicae Flos by near-infrared spectroscopy. Food Chem. 2021, 342, 128386. [Google Scholar] [CrossRef]
- Wan, H.; Ge, L.; Xiao, L.; Li, J.; Wu, W.; Peng, S.; Huang, J.; Zhou, B.; Zeng, X. 3,4,5-Tri-O-caffeoylquinic acid methyl ester isolated from Lonicera japonica Thunb. Flower buds facilitates hepatitis B virus replication in HepG2.2.15 cells. Food Chem. Toxicol. 2020, 138, 111250. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, S.; Li, X.; Zhang, F.; Fan, Y.; Liu, Q.; Wan, X.; Lin, T. Postharvest UV-B radiation increases enzyme activity, polysaccharide and secondary metabolites in honeysuckle (Lonicera japonica Thunb.). Ind. Crops Prod. 2021, 171, 113907. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, H.; Bai, X.; Liu, P.; Yang, Y.; Huang, J.; Zhou, L.; Min, X. Fractionation and antioxidant activities of the water-soluble polysaccharides from Lonicera japonica Thunb. Int. J. Biol. Macromol. 2020, 151, 1058–1066. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, X.; Liu, Y. Hypoglycemic and hypolipidemic effects of a polysaccharide from flower buds of Lonicera japonica in streptozotocin-induced diabetic rats. Int. J. Biol. Macromol. 2017, 102, 396–404. [Google Scholar] [CrossRef]
- Jiao, M.; Zhao, M.; Lin, L.; Wang, Y. Lonicera japonica Thunb. extract improves the quality of cold-stored porcine patty through inhibition of lipid and myofibrillar protein oxidation. Int. J. Food Sci. Technol. 2018, 53, 986–993. [Google Scholar] [CrossRef]
- Rahman, A.; Kang, S.C. In vitro control of food-borne and food spoilage bacteria by essential oil and ethanol extracts of Lonicera japonica Thunb. Food Chem. 2009, 116, 670–675. [Google Scholar] [CrossRef]
- Rabail, R.; Shabbir, M.A.; Sahar, A.; Miecznikowski, A.; Kieliszek, M.; Aadil, R.M. An intricate review on nutritional and analytical profiling of coconut, flaxseed, olive, and sunflower oil blends. Molecules 2021, 26, 7187. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Wang, Z. The processing technology practice of aroma sunflower seed oil. Cereal Food Ind. 2020, 27, 33–35. [Google Scholar]
- Mezza, G.N.; Borgarello, A.V.; Grosso, N.R.; Fernandez, H.; Pramparo, M.C.; Gayol, M.F. Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil. Food Chem. 2018, 242, 9–15. [Google Scholar] [CrossRef]
- Tokur, B.; Korkmaz, K.; Uçar, Y. Enhancing sunflower oil by the addition of commercial thyme and rosemary essential oils: The effect on lipid quality of Mediterranean horse mackerel and anchovy during traditional pan-frying. Int. J. Gastron. Food Sci. 2021, 26, 100428. [Google Scholar] [CrossRef]
- Wang, D.; Meng, Y.; Wang, C.; Wang, X.; Blasi, F. Antioxidant activity and sensory improvement of Angelica dahurica cv. Yubaizhi essential oil on sunflower oil during high-temperature storage. Processes 2020, 8, 403. [Google Scholar]
- Wang, D.; Yang, H.; Lu, X.; Wu, Y.; Blasi, F. The inhibitory effect of chitosan based films, incorporated with essential oil of Perilla frutescens leaves, against Botrytis cinerea during the storage of strawberries. Processes 2022, 10, 706. [Google Scholar] [CrossRef]
- Adiani, V.; Gupta, S.; Chatterjee, S.; Variyar, P.S.; Sharma, A. Activity guided characterization of antioxidant components from essential oil of Nutmeg (Myristica fragrans). J. Food Sci. Technol. 2015, 52, 221–230. [Google Scholar] [CrossRef]
- Yuan, R.; Zhang, D.; Yang, J.; Wu, Z.; Luo, C.; Han, L.; Yang, F.; Lin, J.; Yang, M. Review of aromatherapy essential oils and their mechanism of action against migraines. J. Ethnopharmacol. 2021, 265, 113326. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.; Yan, Y.; Ao, M.; Wu, G.; Yu, L. Influence of flowering stage of Lonicera japonica Thunb. on variation in volatiles and chlorogenic acid. J. Sci. Food Agric. 2009, 89, 953–957. [Google Scholar] [CrossRef]
- Kumar, N.; Bhandari, P.; Singh, B.; Kaul, V.K. Saponins and volatile constituents from Lonicera japonica growing in the western Himalayan region of India. Nat. Prod. Commun. 2007, 2, 633–636. [Google Scholar] [CrossRef]
- Vukovic, N.; Kacaniova, M.; Hleba, L.; Sukdolak, S. Chemical composition of the essential oils from the flower, leaf and stem of Lonicera japonica. Nat. Prod. Commun. 2012, 7, 641–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirinos, R.; Huamán, M.; Betalleluz-Pallardel, I.; Pedreschi, R.; Campos, D. Characterisation of phenolic compounds of Inca muña (Clinopodium bolivianum) leaves and the feasibility of their application to improve the oxidative stability of soybean oil during frying. Food Chem. 2011, 128, 711–716. [Google Scholar] [CrossRef]
- Guo, Q.; Gao, S.; Sun, Y.; Gao, Y.; Wang, X.; Zhang, Z. Antioxidant efficacy of rosemary ethanol extract in palm oil during frying and accelerated storage. Ind. Crops Prod. 2016, 94, 82–88. [Google Scholar] [CrossRef]
- Farahmandfar, R.; Asnaashari, M.; Pourshayegan, M.; Sara Maghsoudi, S.; Moniri, H. Evaluation of antioxidant properties of lemon verbena (Lippia citriodora) essential oil and its capacity in sunflower oil stabilization during storage time. Food Sci. Nutr. 2018, 6, 983–990. [Google Scholar] [CrossRef]
- Cardoso-Ugarte, G.A.; Morlán-Palmas, C.C.; Sosa-Morales, M.E. Effect of the addition of basil essential oil on the degradation of palm olein during repeated deep frying of french fries. J. Food Sci. 2013, 78, C978–C984. [Google Scholar] [CrossRef]
- Horuz, T.İ.; Maskan, M. Effect of the phytochemicals curcumin, cinnamaldehyde, thymol and carvacrol on the oxidative stability of corn and palm oils at frying temperatures. J. Food Sci. Technol. 2015, 52, 8041–8049. [Google Scholar] [CrossRef] [Green Version]
- Phuong, N.N.M.; Le, T.T.; Nguyen, M.V.T.; Camp, J.V.; Raes, K. Antioxidant activity of rambutan (Nephelium lappaceum L.) peel extract in soybean oil during storage and deep frying. Eur. J. Lipid Sci. Technol. 2020, 122, 1900214. [Google Scholar] [CrossRef]
- Chammem, N.; Saoudi, S.; Ines Sifaoui, I.; Sifi, S.; de Person, M.; Abderraba, M.; Moussa, F.; Hamdi, M. Improvement of vegetable oils quality in frying conditions by adding rosemary extract. Ind. Crops Prod. 2015, 74, 592–599. [Google Scholar] [CrossRef]
- Cherif, M.; Rodrigues, N.; Veloso, A.C.A.; Zaghdoudi, K.; Pereira, J.A.; Peres, A.M. Kinetic-thermodynamic study of the oxidative stability of Arbequina olive oils flavored with lemon verbena essential oil. LWT—Food Sci. Technol. 2021, 140, 110711. [Google Scholar] [CrossRef]
- Golmakani, M.T.; Mansouri, Z.; Ansari, S.; Alavi, N. Improving oxidative stability of pomegranate seed oil using Oliveria decumbens essential oil. J. Food Process. Preserv. 2021, 45, e15483. [Google Scholar] [CrossRef]
- Solati, Z.; Baharin, B.S. Antioxidant effect of supercritical CO2 extracted Nigella sativa L. seed extract on deep fried oil quality parameters. J. Food Sci. Technol. 2015, 52, 3475–3484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sehwag, S.; Upadhyay, R.; Mishra, H.N. Assessment of thermo-oxidative rancidity in sunflower oil and fried potato chips stabilised with oleoresin sage (Salvia officinalis L.) and ascorbyl palmitate by altered triglycerides and electronic nose. Int. J. Food Sci. Technol. 2018, 53, 1211–1218. [Google Scholar] [CrossRef]
- Fu, M.; Qu, Q.; Dai, H. Variation in antioxidant properties and metabolites during flower maturation of Flos Lonicerae Japonicae flowers. Eur. Food Res. Technol. 2015, 240, 735–741. [Google Scholar] [CrossRef]
- Sunil, L.; Vanitha Reddy, P.; Gopala Krishna, A.G.; Urooj, A. Retention of natural antioxidants of blends of groundnut and sunflower oils with minor oils during storage and frying. J. Food Sci. Technol. 2015, 52, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Ghafoor, K.; Yüksel, B.; Juhaimi, F.A.L.; Özcan, M.M.; Uslu, N.; Babiker, E.E.; Ahmed, I.M.A.; Azmi, I.U. Effect of frying on physicochemical and sensory properties of potato chips fried in palm oil supplemented with thyme and rosemary extracts. J. Oleo Sci. 2020, 69, 1219–1230. [Google Scholar] [CrossRef]
- Purkait, S.; Bhattacharya, A.; Bag, A.; Chattopadhyay, R.R. TLC bioautography–guided isolation of essential oil components of cinnamon and clove and assessment of their antimicrobial and antioxidant potential in combination. Environ. Sci. Pollut. Res. 2021, 28, 1131–1140. [Google Scholar] [CrossRef]
Antioxidant a | Addition Amount (Antioxidant/Sunflower Oil, g/kg) | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | |
LJEO | 0 | 0.03 | 0.06 | 0.09 | 0.12 | 0.15 |
TBHQ | 0 | 0.03 | 0.06 | 0.09 | 0.12 | 0.15 |
BHA | 0 | 0.03 | 0.06 | 0.09 | 0.12 | 0.15 |
BHT | 0 | 0.03 | 0.06 | 0.09 | 0.12 | 0.15 |
No. | RI a | RI b | Compound Names | RA c (%) |
---|---|---|---|---|
1 | 884 | 884 | cis-4-Heptenal | 0.39 |
2 | 961 | 961 | 1-Octen-3-ol | 0.85 |
3 | 1003 | 1003 | p-Cymene | 0.32 |
4 | 1005 | 1005 | 1, 8-Cineole | 4.11 |
5 | 1017 | 1017 | Acetophenone | 2.17 |
6 | 1036 | 1036 | Benzyl alcohol | 0.56 |
7 | 1061 | 1061 | cis-Linalool oxide | 0.92 |
8 | 1076 | 1076 | Linalool | 1.47 |
9 | 1085 | 1085 | trans-Linalool oxide | 6.48 |
10 | 1136 | 1136 | Phenylethyl alcohol | 2.42 |
11 | 1159 | 1159 | α-Terpineol | 1.23 |
12 | 1163 | 1163 | Citronellyl acetate | 1.01 |
13 | 1182 | 1182 | Decanal | 0.56 |
14 | 1200 | 1200 | Dodecane | 0.38 |
15 | 1238 | 1238 | Geraniol | 1.15 |
16 | 1287 | 1287 | Undecanal | 4.17 |
17 | 1368 | 1368 | Geranyl acetate | 3.25 |
18 | 1372 | 1372 | cis-Jasmone | 0.77 |
19 | 1380 | 1380 | Eugenol | 7.22 |
20 | 1397 | 1397 | Dodecanal | 3.28 |
21 | 1414 | 1414 | β-Caryophyllene | 1.54 |
22 | 1431 | 1431 | Geranylacetone | 1.70 |
23 | 1438 | 1438 | Aromadendrene | 0.26 |
24 | 1448 | 1448 | β-Ionone | 4.14 |
25 | 1529 | 1529 | Elemol | 0.94 |
26 | 1550 | 1550 | Spathulenol | 7.45 |
27 | 1567 | 1567 | Caryophyllene oxide | 19.17 |
28 | 1574 | 1574 | Epiglobulol | 5.14 |
29 | 1626 | 1626 | α-Cadinol | 0.65 |
30 | 1660 | 1660 | Junipher camphor | 0.85 |
31 | 1697 | 1697 | cis, trans-Farnesol | 7.71 |
32 | 1769 | 1769 | Tetradecanoic acid | 0.64 |
33 | 1816 | 1816 | Hexahydrofarnesylacetone | 0.74 |
34 | 1869 | 1868 | Pentadecanoic acid | 1.53 |
35 | 1968 | 1968 | Hexadecanoic acid | 0.87 |
36 | 2175 | 2175 | Octadecanoic acid | 1.41 |
Total | 97.45 |
Attributes | Hour | Control | LJEO-0.06 | TBHQ-0.09 | BHA-0.12 | BHT-0.12 |
---|---|---|---|---|---|---|
Flavor | 0 | 8.9 ± 0.8 | 8.9 ± 0.8 | 8.9 ± 0.8 | 8.9 ± 0.8 | 8.9 ± 0.8 |
6 | 8.3 ± 0.7 | 8.4 ± 0.7 | 8.0 ± 0.7 | 8.1 ± 0.7 | 8.2 ± 0.9 | |
12 | 6.9 ± 0.7 | 7.8 ± 0.9 | 6.8 ± 0.7 | 6.6 ± 0.7 | 6.8 ± 1.5 | |
18 | 6.1 ± 0.8 | 7.3 ± 0.8 c | 6.5 ± 0.6 | 6.2 ± 0.6 | 6.5 ± 0.6 | |
24 | 5.2 ± 0.7 | 7.1 ± 0.8 c | 5.4 ± 0.5 | 5.6 ± 0.6 | 6.3 ± 0.5 | |
30 | 4.3 ± 0.6 | 6.5 ± 0.7 d | 4.4 ± 0.7 | 4.3 ± 0.7 | 4.4 ± 0.5 | |
Taste | 0 | 8.8 ± 1.2 | 8.8 ± 1.2 | 8.8 ± 1.2 | 8.8 ± 1.2 | 8.8 ± 1.2 |
6 | 8.3 ± 0.7 | 8.4 ± 0.7 | 7.8 ± 0.8 | 7.9 ± 0.6 | 7.5 ± 0.6 | |
12 | 7.4 ± 0.9 | 7.7 ± 0.7 | 7.1 ± 0.6 | 7.3 ± 0.8 | 7.1 ± 0.6 | |
18 | 6.3 ± 0.8 | 7.2 ± 0.9 | 6.5 ± 0.6 | 6.2 ± 0.7 | 5.9 ± 0.4 | |
24 | 5.2 ± 0.7 | 6.9 ± 0.6 c | 5.4 ± 0.5 | 5.3 ± 0.7 | 5.2 ± 0.6 | |
30 | 4.3 ± 0.7 | 6.7 ± 0.6 d | 4.7 ± 0.7 | 5.2 ± 0.4 | 4.2 ± 0.6 | |
Crispness | 0 | 8.3 ± 0.8 | 8.3 ± 0.8 | 8.3 ± 0.8 | 8.3 ± 0.8 | 8.3 ± 0.8 |
6 | 7.6 ± 0.8 | 7.9 ± 0.5 | 7.8 ± 0.5 | 7.7 ± 0.7 | 7.5 ± 0.8 | |
12 | 6.5 ± 0.9 | 7.5 ± 0.5 | 6.4 ± 0.6 | 6.4 ± 0.4 | 6.3 ± 0.9 | |
18 | 5.7 ± 0.7 | 7.1 ± 0.8 c | 6.0 ± 0.9 | 6.0 ± 0.5 | 6.1 ± 0.7 | |
24 | 5.1 ± 0.6 | 6.7 ± 0.9 c | 5.6 ± 0.5 | 5.3 ± 0.7 | 5.1 ± 0.7 | |
30 | 4.2 ± 0.3 | 6.5 ± 0.6 d | 3.7 ± 0.8 | 4.0 ± 0.5 | 4.3 ± 0.3 | |
Overall acceptability | 0 | 8.7 ± 1.4 | 8.7 ± 1.4 | 8.7 ± 1.4 | 8.7 ± 1.4 | 8.7 ± 1.4 |
6 | 8.0 ± 0.7 | 8.3 ± 0.8 | 7.8 ± 0.7 | 7.6 ± 0.7 | 8.3 ± 0.9 | |
12 | 6.8 ± 0.6 | 8.0 ± 0.6 c | 6.5 ± 0.8 | 6.5 ± 0.9 | 7.0 ± 0.5 | |
18 | 5.5 ± 0.8 | 7.6 ± 0.6 d | 5.7 ± 0.7 | 5.4 ± 0.9 | 5.8 ± 0.7 | |
24 | 4.7 ± 0.6 | 7.0 ± 0.9 d | 4.5 ± 0.6 | 4.6 ± 0.7 | 4.4 ± 0.4 | |
30 | 4.0 ± 0.6 | 6.6 ± 0.6 d | 4.1 ± 0.6 | 4.0 ± 0.5 | 4.0 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, W.; Yang, H.; Meng, Y.; Wang, D.; Li, C.; Lu, S.; Ye, R.; Blasi, F. Eugenol, Isolated from the Essential Oil from Lonicera japonica Flower Buds, Could Increase the Oxidative Stability of Sunflower Oil in the Deep-Frying Procedure of Youtiao. Processes 2022, 10, 1670. https://doi.org/10.3390/pr10091670
Fan W, Yang H, Meng Y, Wang D, Li C, Lu S, Ye R, Blasi F. Eugenol, Isolated from the Essential Oil from Lonicera japonica Flower Buds, Could Increase the Oxidative Stability of Sunflower Oil in the Deep-Frying Procedure of Youtiao. Processes. 2022; 10(9):1670. https://doi.org/10.3390/pr10091670
Chicago/Turabian StyleFan, Wenchang, Haoduo Yang, Yudong Meng, Dongying Wang, Chenhui Li, Suhong Lu, Ranzhi Ye, and Francesca Blasi. 2022. "Eugenol, Isolated from the Essential Oil from Lonicera japonica Flower Buds, Could Increase the Oxidative Stability of Sunflower Oil in the Deep-Frying Procedure of Youtiao" Processes 10, no. 9: 1670. https://doi.org/10.3390/pr10091670
APA StyleFan, W., Yang, H., Meng, Y., Wang, D., Li, C., Lu, S., Ye, R., & Blasi, F. (2022). Eugenol, Isolated from the Essential Oil from Lonicera japonica Flower Buds, Could Increase the Oxidative Stability of Sunflower Oil in the Deep-Frying Procedure of Youtiao. Processes, 10(9), 1670. https://doi.org/10.3390/pr10091670