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Abstract: In this article, a new design method for an adaptive fast finite-time controller (FTC) is
proposed for the finite-time stability (FTS) issue of a class of high-order stochastic nonlinear systems
(HOSNSs) with unknown parameters. Using a power integrator technology and Lyapunov function
approach, an adaptive state feedback controller is derived to ensure fast FTS of HOSNSs. The
developed adaptive fast FTC is equipped with less settling time to obtain better steady-state accuracy
compared with the traditional FTC. The effectiveness of the proposed adaptive control scheme is
demonstrated by a numerical example.
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1. Introduction

As typical dynamic systems, the controller design problem of high-order nonlinear
systems (HONSs) has drawn great attention due to its important applications in the in-
dustry. However, HONSs are neither feedback linearization at the origin nor affine in the
control input, which makes the control issues challenging. Fortunately, with the aid of the
homogeneous domination technique [1] and by adding a power integrator technique [2],
tremendous progress has been made for stability issues of HONSs [3–7]. Recently, the
research on this subject has been further expended to HONSs with unknown nonlinear
functions. To overcome the obstacles arising from the unknown nonlinearities, the adaptive
control scheme is one of the most effective methods to deal with unknown functions; for
instance, refer to [8–13] and references therein.

It should be noted that all the above results are asymptotically convergent, which
cannot meet the transient performance requirements of practical application systems.
As a matter of fact, it is expected that nonlinear system trajectories can converge to a
Lyapunov stable equilibrium state in finite time, while also having better robustness and
faster convergence speed. Based on this problem, Bhat et al. first presented the concept of
FTS for continuous autonomous systems [14]. Moulay et al. extended the FTS theory of
autonomous systems to non-autonomous systems [15]. In [16], a finite-time tracking control
method of an uncertain nonlinear system was discussed in virtue of the approximation
ability of fuzzy logic systems. Furthermore, there are also other remarkable achievements
on FTS, such as [17–19] and the references therein.

Unfortunately, random disturbances are inevitable and often lead to the instability of
the system in engineering systems. Consequently, it is very important to establish a stochas-
tic system model and solve the issue of stability for stochastic nonlinear systems [20–27].
As far as the stability of the HOSNSs is investigated, the finite-time control is of great
research value. For this purpose, Chen et al. and Yin et al. presented the finite-time
attractiveness (FTA) concept and FTS theorem for stochastic nonlinear systems in [28,29]
separately. Recently, by relaxing the constraint of the differential operator, Yu et al. proved
that an unstable deterministic system can obtain finite-time convergence by Brownian
noise [30], and a number of interesting results have been obtained [31–39].
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With more in-depth research on FTS, researchers found that the convergence rate was
even slower than the exponential when the initial state was far from the point of the origin.
To handle this faultiness, Shen et al. made an important step to improve the convergence
rate by adding a linear term into controller design processes [40]. Sun et al. presented fast
FTS theory to improve the traditional finite-time control scheme [41]. To date, the so-called
fast finite-time control scheme has received increasing interest from a variety of research
communities, such as [42–44]. However, it should be pointed out that very few results have
been available on fast FTS for stochastic nonlinear systems, and this leaves a gap that will
be narrowed through our endeavors in this article.

Fully taking into consideration the practical application system requirements, this
article strives to solve the adaptive fast finite-time control design issue for HOSNSs based
on the abovementioned discussion. The main difficulties stem from the following. In
comparison with the deterministic case, the stochastic nonlinear systems will generate
more tedious inequalities since Itô stochastic differentiation involves not only gradients but
also higher-order Hessian terms in the Lyapunov design process of HOSNSs. To solve this
problem, we extend the fast FTS theory to the corresponding stochastic cases. The novelties
of this article are summarized as follows:

1. Fast finite-time adaptive control strategy of deterministic systems is extended to
stochastic cases, which provides a new idea for the FTS of HOSNSs, and expands its
application scope in practical engineering successfully.

2. By choosing an appropriate Lyapunov function, an adaptive state feedback controller
is constructed accordingly to ensure that equilibrium at the origin of the closed loop
systems is fast finite-time stable in probability.

3. Compared with previous studies, it is shown that the fast finite-time adaptive control
strategy not only improves the control speed significantly, but also reduces the settling
time effectively.

Notations: To process further, we introduce the following useful notations. Rm is
the Euclidean space with dimension m for m = 1, 2, · · · , n and R≥1

odd = { a
b |a,b are posi-

tive odd integers satisfying a ≥ b}. V ∈ C2 means that V is a second-order differentiable
continuous function and its second derivative is also continuous. Consider stochastic
nonlinear system dx = f (t, x)dt + g(t, x)dω; the differential operator L is defined as
LV(x, t) = ∂V

∂t + ∂V
∂x f (x, t) + 1

2 trace[g(x, t)T ∂2V
∂x2 g(x, t)]. For all q ∈ R+ and y ∈ R, define

dyeq = |y|qsign(y).

2. Preliminaries

Now, a class of stochastic nonlinear systems are considered as follows:

dx1 = xp1
2 dt + f1(x̄2, d)dt + gT

1 (x1, d)dω,

dx2 = xp2
3 dt + f2(x̄3, d)dt + gT

2 (x̄2, d)dω,
...

dxn = upn dt + fn(x, u, d)dt + gT
n (x, d)dω,

x(0) = (x10, · · · , xn0)
T ,

(1)

where x(t) = (x1, x2, · · · , xn)T ∈ Rn is the system state, u(t) ∈ R is the control input,
d ∈ Rr is a parameter vector denoting an unknown value, and pi satisfies pi ∈ R≥1

odd. The
functions fi(·) and gi(·) are continuous with fi(0, d) = 0 and gi(0, d) = 0 for i = 1, 2, · · · , n.
ω is a standard Brownian motion defined on a probability space (Ω,F ,P). The following
assumptions are needed in this paper.
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Assumption 1. There exist known nonnegative smooth functions f̄i and ḡi such that, for arbitrary
i = 1, · · · , n

| fi(x̄i+1, d)| ≤ κi|xi+1|pi + θ
i

∑
l=1
|xl |

µi,l+
ri+ω

rl f̄i(x̄i), (2)

||gi(x̄i+1, d)|| ≤ θ
i

∑
l=1
|xl |

µ̄i,l+
2ri+ω

2rl ḡi(x̄i), (3)

where 0 ≤ κi < 1, ω ∈ (− 1
∑n

l=1 2p0···pl−1
, 0) ≤ 0 with p0 = 1, and µi,l ≥ 0, µ̄i,l ≥ 0, r1 = 1

2 ,

ri+1 = ri+ω
pi

are constants.

The following definitions and lemmas are needed for the processes of controller derivation.

Definition 1. [29] Consider a stochastic nonlinear system

dx(t) = f (t, x(t))dt + g(t, x(t))dw(t), (4)

where x(0) = x0 ∈ Rn is the initial value. For any x0 ∈ R, if the solution x(t; x0) satisfies the
following conditions, then the system (4) is finite-time stable in probability.

1. Finite-time attractiveness in probability: The stochastic settling time τ∗x0
= in f {t : x(t; x0) = 0}

with initial value x0 ∈ Rn \ {0} is finite almost surely; in other words, P{τx0 < +∞ = 1};
2. Stability in probability: For ε ∈ (0, 1) and s > 0, which means that there exists a

σ = σ(ε, s) > 0 such that P{|x(t; x0)| < s, ∀t ≥ 0} ≥ 1− ε, whenever |x0| < σ.

Lemma 1. [42]
For v1 ∈ Rm, v2 ∈ Rn, if ℵ(v1, v2) is a continuous function, then

|ℵ(v1, v2)| ≤ a(v1) + b(v2),

|ℵ(v1, v2)| ≤ c(v1)d(v2).

where a(v1) ≥ 0, b(v2) ≥ 0, c(v1) ≥ 1, d(v2) ≥ 1 are smooth functions.

Lemma 2. [41] Let real numbers v1, v2 > 0 and a smooth function ε(a, b) > 0; then, for arbitrary
a ∈ R, b ∈ R

|a|v1 |b|v2 ≤ v1

v1 + v2
ε(·)|a|v1+v2 +

v2

v1 + v2
ε
− v1

v2 (·)|v2|v1+v2 .

Lemma 3. [35] For a given p = a
b ∈ R≥1

odd, b ≥ 1, then for v1, v2 ∈ R,

|v1 + v2|
1
p ≤ |v1|

1
p + |v2|

1
p ,

|v1 + v2|p ≤ 2p−1(|v1|p + |v2|p),

|v
1
p
1 − v

1
p
2 | ≤ 2

p−1
p |v1 − v2|

1
p ,

|v
a
b
1 − v

a
b
2 | ≤ 2

b−1
b |dv1ea − dv2ea|

1
b .

Lemma 4. [41] For b ≥ 1, v ∈ R, if h̄(v) = sign(v)|v|b is C1, then

˙̄h(v) = b|v|b−1.
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Lemma 5. [30] For stochastic systems (4), if existing, C2 function V : Rn → R+ and constants
c > 0, γ ∈ (0, 1), the following inequality arises:

LV(x) ≤ 0, ∀x ∈ Rn,

K(V(x))[ck(V(x)) + LV(x)] ≤ K′(V(x))
2

| ∂V
∂x

g(x) |2, ∀x ∈ Rn\{0},

where K(V(x)) = Vγ(x) + V(x) is a continuous differentiable function with the derivative
K′(V(x)) ≥ 0 and K(V(x)) > 0 for any V(x) > 0 and∫ ε

0

1
K(V(x))

ds < ∞, ∀ε > 0,

then, the system (4) is finite-time stable in probability, and the settling time satisfies

Eτx0 ≤
1
c

∫ V(x0)

0

1
K(V(x))

ds.

Lemma 6. [39] For autonomous system (4), if existing, nonnegative and radially unbounded
function V ∈ C2, and there holds for all x ∈ Rn

LV(x) ≤ 0.

This means that autonomous system (4) has a solution for all initial data.

3. Design Procedures

We now derive the state feedback controller. Firstly, the following transformation
formations are introduced:

ξ1 = dx1e
1
r1 ,

ξk = dxke
1
rk − dx∗k (x̄k−1, Θ̂)e

1
rk ,

x∗k (x̄k−1, Θ̂) = −dξk−1erk β
rk
k−1(x̄k−1(t), Θ̂),

u = x∗n+1, k = 1, · · · , n,

(5)

where β1, · · · , βk are C2 functions, x∗k (x̄k−1, Θ̂) is called a virtual controller, and Θ̂(t) is the
estimate of the unknown constant parameter Θ = max{θ, θ2}. In view of (5), it follows that

˙̂Θ =
k

∑
i=1

τiξ
4
i ,

u(t) = x∗n+1 = −(γ + φn(x̄n, Θ̂)

1− κn
)

1
pn dξnern+1 .

(6)

Moreover, the current task is the confirmation of φn and τi in (6) to implement the
detailed expression of controller u(t). To this aim, one can consider Wk : Rk → R as

Wk(x̄k) =
∫ xk−1

x∗k−1

ddse
1

rk−1 − dx∗k−1e
1

rk−1 e4−rk pk−1 ds. (7)

Step 1: Let V1 = W1 +
1
2 Θ̃2, where Θ̃(t) = Θ− Θ̂(t). Using (5) and Lemma 3, one has

|x2|p1 ≤ |ξ2|r2 p1 + |ξ∗2 |p1 . In addition, there holds

|ξ1|−ω ≤ (1 + ξ2
1)
− ω

2 .
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Then, by Assumption 1 and Lemma 1, one can determine that

| f1| ≤ κ1|x2|p1 + Θ̃|ξ1|r1+ω l11 + Θ̂|ξ1|r1+ω l̄11,

‖gT
1 g1‖ ≤ Θ̃|ξ1|2r1+ω l12 + Θ̂|ξ1|2r1+ω l̄12,

where l̄11(x1) ≤ l11 , |x1|µ11 f̄1(x1), l̄12(x1) ≤ l12 , |x1|2µ̄11‖ḡT
1 ḡ1‖ are smooth and positive

functions. It should be noted that

m1W1 ≤ m1dξ1e4−r2 p1+r1 ≤ m1ξ4
1(1 + ξ2

1)
− ω

2 .

As a result, there holds

LV1 ≤ −(n− 1 + γ)ξ4
1 −m1W1 + dξ1e4−r2 p1(xp1

2 − x∗p1
2 )

+ Θ̃(τ1ξ4
1 −

˙̂Θ) + κ1|ξ
4−r2 p1
1 xp1

2 |
+ dξ1e4−r2 p1(x∗p1

2 + (n− 1 + γ + Θ̂l̄1 + φ1)dξ1er2 p1),

(8)

where l̄1(x1) = l̄11 +
4−r2 p1

2r1
l̄12, φ1 = m1(1+ ξ2

1)
− ω

2 , τ1(x1) = l11 +
4−r2 p1

2r1
l12 are C2 functions

and m is a positive number. With the choice of

β1(x1, Θ̂) = (
n− 1 + γ + Θ̂l̄1 + φ1

1− κ1
)

1
r2 p1 , (9)

it is directly deduced from (9) that

LV1 ≤ −(n− 1 + γ)ξ4
1 + dξ1e4−r2 p1(xp1

2 − x∗p1
2 )

+ Θ̃(τ1ξ4
1 −

˙̂Θ) + κ1|ξ1|4−r2 p1 |ξ2|r2 p1 .
(10)

Step 2: Let V2 = V1 + W2 be a Lyapunov candidate function; it can be deduced from
(10) that

LV2 ≤ −(n− 1 + γ)ξ4
1 −m1W1 −m1W2 + Θ̃(τ1ξ4

1 −
˙̂Θ) + dξ2e4−r3 p2(xp2

3 − x∗p2
3 )

+
∂W2

∂Θ̂
˙̂Θ + dξ1e4−r2 p1(xp1

2 − x∗p1
2 ) + κ1|ξ1|4−r2 p1 |ξ2|r2 p1 + m1W2

+
∂W2

∂x2
(x∗p2

3 + f2) +
∂W2

∂x1
(xp1

2 + f1) +
1
2

2

∑
i,j=1

∂2W2

∂xi∂xj
‖gT

i gj‖.

(11)

In view of Lemmas 2 and 3, there exists a constant φ21 ≥ 0 such that

dξ1e4−r2 p1(xp1
2 − x∗p1

2 ) + κ1|ξ1|4−r2 p1 |ξ2|r2 p1

≤ (21−r2 p1 + κ1)|ξ1|4−r2 p1 |ξ2|r2 p1

≤ 1
5

ξ4
1 + φ21ξ4

2.

(12)

By Assumption 1 and Lemmas 1–3, some tedious calculations show that

∂W2

∂x2
(x∗p2

3 + f2) ≤ dξ2e4−r3 p2 x∗p2
3 + κ2dξ2e4−r3 p2 |x3|p2 + Θ̃τ21ξ4

2 +
1
5

ξ4
1 + φ22ξ4

2, (13)

∂W2

∂x1
(xp1

2 + f1) ≤ Θ̃τ22ξ4
2 +

1
5

ξ4
1 + φ23ξ4

2, (14)

1
2

2

∑
i,j=1

∂2W2

∂xi∂xj
‖gT

i gj‖ ≤ Θ̃τ23ξ4
2 +

1
5

ξ4
1 + φ24ξ4

2, (15)

where τ2i(x̄2, Θ̂) are nonnegative continuous functions and φ2j ≥ 0 are smooth functions
for i = 1, 2, 3, j = 2, 3, 4. In addition, it is worth noting that
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m1W2 ≤ 21−r2 m1(1 + ξ2
2)
− ω

2 ξ4
2 , φ25ξ4

2, (16)

∂W2

∂Θ̂

2

∑
i=1

τiξ
4
i ≤

1
5

ξ4
1 + φ26ξ4

2, (17)

where φ25 ≥ 0, φ26 ≥ 0, τ2 = ∑3
i=1 τ2i are smooth functions. Let φ2 = ∑6

i=1 φ2i; substituting
(12)–(17) into (11) and choosing

β2(x̄2, Θ̂) = (
n− 2 + γ + φ2

1− κ2
)

1
r3 p2 ,

one can obtain

LV2 ≤ −(n− 2 + γ)(ξ4
1 + ξ4

2)−m1(W1 + W2) + dξ2e4−r3 p2(xp2
3 − x∗p2

3 )

+ (Θ̃− ∂W2

∂Θ̂
)(

2

∑
i=1

τiξ
4
i −

˙̂Θ) + κ2|ξ2|4−r3 p2 |ξ3|r3 p2 .
(18)

Step k: Assume that one can choose a C2 Lyapunov candidate function Vk−1 = Vk−2 +
Wk−1 to guarantee

LVk−1 ≤ −(n + 1− k + γ)
k−1

∑
i=1

ξ4
i −m1

k−1

∑
i=1

Wi + dξk−1e4−rk pk−1(xpk−1
k − x∗pk−1

k )

+ (Θ̃−
k−1

∑
i=2

∂Wi

∂Θ̂
)(

k−1

∑
i=1

τiξ
4
i −

˙̂Θ) + κk−1|ξk−1|4−rk pk−1 |ξk|rk pk−1 .

(19)

Consider a Lyapunov candidate function

Vk = Vk−1 + Wk = Vk−1 +
∫ xk

x∗k
ddse

1
rk − dx∗k e

1
rk e4−rk+1 pk ds, (20)

and it can be deduced from (19) and (20) that

LVk ≤ −(n + 1− k + γ)
k−1

∑
i=1

ξ4
i −m1

k

∑
i=1

Wi + dξk−1e4−rk pk−1(xpk−1
k − x∗pk−1

k )

+ (Θ̃−
k−1

∑
i=2

∂Wi

∂Θ̂
)(

k−1

∑
i=1

τiξ
4
i −

˙̂Θ) + κk−1|ξk−1|4−rk pk−1 |ξk|rk pk−1 +
∂Wk

∂Θ̂
˙̂Θ

+ m1Wk +
∂Wk
∂xk

(xpk
k+1 + fk) +

k−1

∑
i=1

∂Wk
∂xi

(xpi
i+1 + fi)

+
1
2
(

k−1

∑
i,j=1
| ∂2Wk

∂xi∂xj
| ‖gT

i gj‖+ 2
k−1

∑
i=1
| ∂2Wk

∂xk∂xi
| ‖gT

k gi‖+ |
∂2Wk

∂x2
k
| ‖gT

k gk‖).

(21)

First, the application of Lemmas 2 and 3 leads to

dξk−1e4−rk pk−1(xpk−1
k − x∗pk−1

k ) + κk−1|ξk−1|4−rk pk−1 |ξk|rk pk−1

≤ (21−rk pk−1 + κk−1)|ξk−1|4−rk pk−1 |ξk|rk pk−1

≤ 1
5

ξ4
k−1 + φk1ξ4

k ,

(22)

where φk1 is a positive constant.
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Second, it can be deduced from Assumption 1 and Lemmas 1–3 and some tedious
calculations that

k−1

∑
i=1

∂Wk
∂xi

(xpi
i+1 + fi) ≤Θ̃τk1ξ4

k +
1
5

ξ4
k−1 +

1
4

k−2

∑
i=1

ξ4
i + φk2ξ4

k , (23)

∂Wk
∂xk

(xpk
k+1 + fk) ≤dξke4−rk+1 pk xpk

k+1 + κk|ξk|4−rk+1 pk |xk+1|pk (24)

+ Θ̃τk2ξ4
k +

1
5

ξ4
k−1 +

1
4

k−2

∑
i=1

ξ4
i + φk3ξ4

k .

In addition, there holds

1
2
(

k−1

∑
i,j=1
| ∂2Wk

∂xi∂xj
| ‖gT

i gj‖+ 2
k−1

∑
i=1
| ∂2Wk

∂xk∂xi
| ‖gT

k gi‖+ |
∂2Wk

∂x2
k
| ‖gT

k gk‖)

≤ C[
k−1

∑
i,j=1,i 6=j

(
∫ xk

x∗k
ddse

1
rk − dx∗k e

1
rk e2−rk+1 pk ds· |

∂(−dx∗k e
1
rk )

∂xi
||

∂(−dx∗k e
1
rk )

∂xj
|

+
∫ xk

x∗k
ddse

1
rk − dx∗k e

1
rk e3−rk+1 pk ds· |

∂2(−dx∗k e
1
rk )

∂xi∂xj
|)‖gT

i gj‖

+
k−1

∑
i=1
|ξk|3−rk+1 pk ·

∂(−dx∗k e
1
rk )

∂xi
‖gT

k gi‖+ |ξk|3−rk+1 pk · |xk|
1
rk
−1‖gT

k gk‖]

≤ Θ̃τk3ξ4
k +

1
5

ξ4
k−1 +

1
4

k−2

∑
i=11

ξ4
i + φk4ξ4

k ,

(25)

where τki(x̄2, Θ̂) and φkj ≥ 0 are nonnegative smooth functions for i = 1, 2, 3, j = 2, 3, 4.
Third, by Lemmas 1 and 3, there exist smooth functions φk5 ≥ 0, φk6 ≥ 0, τk = ∑3

i=1 τki
such that

m1Wk ≤ 21−rk m1(1 + ξ2
k)
− ω

2 ξ4
k , φk5ξ4

k , (26)

∂Wk

∂Θ̂

k−1

∑
i=1

τiξ
4
i +

k

∑
i=2

∂Wi

∂Θ̂
τkξ4

k ≤
1
5

ξ4
k−1 +

1
4

k−2

∑
i=1

ξ4
i + φk6ξ4

k . (27)

Now, take the virtual control signal x∗k+1 as

x∗k+1(x̄k, Θ̂) = −β
rk
k (x̄k, Θ̂)dξkerk+1

= −(n− k + γ + φk
1− κk

)
1

pk dξkerk+1 ,

where φk = ∑6
i=1 φki.

Bringing the above inequalities into (21) yields

LVk ≤ −(n− k + γ)
k

∑
i=1

ξ4
i −m1

k

∑
i=1

Wi + dξke4−rk+1 pk (xpk
k+1 − x∗pk

k+1)

+ (Θ̃−
k

∑
i=2

∂Wi

∂Θ̂
)(

k

∑
i=1

τiξ
4
i −

˙̂Θ) + κk|ξk|4−rk+1 pk |ξk+1|rk+1 pk .

(28)
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Step n: Using the above inductive arguments, one can derive that

˙̂Θ =
k

∑
i=1

τiξ
4
i ,

u(t) = x∗n+1 = −(γ + φn(x̄n, Θ̂)

1− κn
)

1
pn dξnern+1

, −β
rn+1
n (x̄n)dξnern+1 ,

(29)

where βn ≥ 0 is a smooth function. Choose an integral Lyapunov function Vn(x̄n, Θ)
such that

LVn ≤ −γ
n

∑
i=1

ξ4
i −m1

n

∑
i=1

Wi(x̄i) ≤ −γW(x)
4

4−ω −m1W(x), (30)

where W(x) = ∑n
i=1 Wi(x̄i).

4. Main Results

Theorem 1. Under adaptive control law (29) and (30), stochastic system (1) and trajectory
(x(t), Θ̂(t)) are bounded in probability and x(t) is finite-time stable in probability for all ini-
tial states (x(t), Θ̂(t)).

Proof. (i) To begin with, we prove that the closed-loop system has a solution.

Obviously, V1 =
∫ x1

0 ds1e
4−r2 p1

r1 ds + 1
2 Θ̃2 is positive definite and for V1(x) → ∞,

‖x‖ → ∞. Supposing that Vk−1 is positive definite and radially unbounded with respect to
x̄k−1 and Θ̃, we now prove that Vk is positive definite and radially unbounded with respect
to x̄k and Θ̃. By Lemma 1, one has

Wi =
∫ xi

x∗i
dds1e

1
ri − dx∗i e

1
ri e4−ri+1 pi ds ≥ ri

2−ω
2

(2−ri+1 pi)(ri−1)
ri |xi − x∗i |

2−ω
ri . (31)

Therefore, there exists a ci =
ri

2−ω × 2
(2−ri+1 pi)(ri−1)

ri , such that

Vk(x̄k) =
k

∑
i=1

Wi +
1
2

Θ̃2 ≥
k

∑
i=1

ci | xi − x∗i |
2−ω

ri +
1
2

Θ̃2

≥
k

∑
i=1

ci | (ξi + dx∗i e
1
ri )ri − x∗i |

2−ω
ri +

1
2

Θ̃2,

(32)

that is, Vk is a positive definite function. In view of x̄k+1 = [x̄k, xk+1], one has ‖x̄k+1‖ → ∞,
which means that ‖x̄k‖ → ∞ or xk+1 → ∞. On one hand, by Vk+1 ≥ Vk and ‖x̄k‖ → ∞, it
is not difficult to derive Vk+1 → ∞, as ‖x̄k+1‖ → ∞. On the other hand, according to (32),
xk+1 → ∞ and the continuity of x∗k ensures Vk+1 → ∞, as ‖x̄k+1‖ → ∞. Consequently,
Vk(x, Θ̃)→ ∞, ‖x‖ → ∞, and Vk(x, Θ̃)→ ∞, Θ̃→ ∞. For stochastic systems (1), it can be
observed from (30) and Lemma 6 that there is a solution.

Based on the properties of positive definite Vn and radially unbounded with respect
to x̄k−1, Θ̃, and (30), it follows that the result is bounded in the probability of x and Θ̃.
Furthermore, one can obtain by Θ̃ = Θ− Θ̂ that Θ̂ is bounded in probability.

(ii) Next, we prove finite-time convergence of x.
With (30) and the fact that W is positive definite and radially unbounded with respect

to x and Θ̃ in mind, it is directly deduced that

LW(x) ≤ −γW(x)
4

4−ω −m1W(x) + (Θ− Θ̂) ˙̃Θ, (33)

where ˙̃Θ = ∑k
i=1 τiξ

4
i and γ, m1 are two positive constants, respectively.

If Θ ≤ Θ̂(0) with ˙̃Θ = ∑k
i=1 τiξ

4
i ≥ 0, one has LW(x) ≤ −γW(x)

4
4−ω −m1W(x).
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If Θ ≥ Θ̂(0), suppose that that there exists a finite time T1 ≥ 0 such that Θ ≤ Θ̂(t) for

any t ≥ T1. This means that LW(x(t)) ≤ −γW(x(t))
4

4−ω −m1W(x(t)) for any t ≥ T1.
Otherwise, there is another finite time T2 satisfying ˙̃Θ(t) = 0 and Θ ≤ Θ̂(t), which

leads to LW(x(t)) ≤ −γW(x(t))
4

4−ω −m1W(x(t)), for any t ≥ T2.
Combining the aforementioned two cases, we learn that, for any Θ̂(0), there is a finite

time T3 such that LW(x(t)) ≤ −γW(x(t))
4

4−ω −m1W(x(t)) for any t ≥ T3.
Since 0 < 4

4−ω < 1 and W(x(t)) is positive definite and radially unbounded with
respect to x, it can be proven that the solution x is fast finite-time stable in probability by
Lemma 5.

5. Simulation Example

Consider the uncertain stochastic nonlinear system dx1 = (x
7
5
2 + θ sin x1)dt,

dx2 = u
1
3 dt + x

7
5
2 dω,

(34)

where θ is an unknown parameter.
In the simulation, Assumption 1 is satisfied with r1 = 1

2 , r2 = 5
22 , r3 = 3

22 , ω = − 2
11 ∈

(− 5
14 , 0), p0 = 1, p1 = 7

5 , p2 = 1
3 , κ1 = 0, µ11 = µ̄22 = 0, µ̄21 = − 3

11 and the virtual
controller is designed as

x∗2 = −ξ
5
22
1 (1 + γ + Θ̂ + m1ξ

2
11
1 )

5
7 ,

and one can construct the controller in the form (29).
Take the initial condition [x1, x2]

T = [1,−1]T , and Θ̂(0) = 0, γ = 1, and m1 = 1. In
addition, the comparison results between the conventional finite-time controller (FTC) and
the proposed fast finite-time controller (fast FTC) are shown in Figures 1 and 2, where the
blue line describes FTC and the red dashed line represents fast FTC. Later, Figure 3 shows
the trajectories Θ̂(t). In addition, Figures 4 and 5 show that the convergent time becomes
larger with the decrease in m1 for fixed γ, and the convergent time is monotonously
decreasing with γ for fixed m1.

0 2 4 6 8 10

Time

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

Figure 1. Thetrajectories of x1(t).
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Figure 2. The trajectories of x2(t).
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Figure 3. The trajectories of Θ̂(t).
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Figure 4. The trajectories of x1(t).
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Figure 5. The trajectories of x2(t).

6. Conclusions

This paper has discussed an adaptive fast finite-time control for a class of HOSNSs.
The first control obstacle lies in the fact that the stochastic nonlinear systems will generate
more tedious inequalities since Itô stochastic differentiation involves not only gradients
but also higher-order Hessian terms in the Lyapunov design process of HOSNSs. The
second control obstacle comes from the fact that the adaptive and fast FTS of HOSNSs
are the inherent obstacles caused by complex structures. To cope with this difficulty, a
new adaptive fast finite-time control scheme is designed. Under the proposed scheme, the
system’s performance can be guaranteed in a finite time, and it also has better robustness
and faster convergence speed.
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