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Abstract: Cyanide compounds are hazardous compounds which are extremely toxic to living organ-
isms, especially free cyanide in the form of hydrogen cyanide gas (HCN) and cyanide ion (CN−).
These cyanide compounds are metabolic inhibitors since they can tightly bind to the metals of metal-
loenzymes. Anthropogenic sources contribute significantly to CN− contamination in the environment,
more specifically to surface and underground waters. The treatment processes, such as chemical and
physical treatment processes, have been implemented. However, these processes have drawbacks
since they generate additional contaminants which further exacerbates the environmental pollution.
The biological treatment techniques are mostly overlooked as an alternative to the conventional
physical and chemical methods. However, the recent research has focused substantially on this
method, with different reactor configurations that were proposed. However, minimal attention was
given to the emerging technologies that sought to accelerate the treatment with a subsequent resource
recovery from the process. Hence, this review focuses on the recent emerging tools that can be used
to accelerate cyanide biodegradation. These tools include, amongst others, electro-bioremediation,
anaerobic biodegradation and the use of microbial fuel cell technology. These processes were demon-
strated to have the possibility of producing value-added products, such as biogas, co-factors of
neurotransmitters and electricity from the treatment process.

Keywords: anaerobic biodegradation; cyanide; electro-bioremediation; microbial fuel cell technology; omics

1. Introduction

The contamination of soil, water sources and air with toxic chemicals, such as cyanide,
recently became one of the largest global concerns for scientists and the general public [1].
Cyanide is a triatomic linear molecule and is widely known as a toxic chemical that
has extreme toxicity to different living organisms, due to its natural characteristic of
inactivating the respiration system by firmly attaching to the cytochrome C oxidase, which
is a key enzyme in the electron transport chain [2]. There are several cyanide compounds,
which amongst others include sodium cyanide (NaCN) and potassium cyanide (KCN),
metal-cyanide complexes, thiocyanates and nitriles; all of these compounds are toxic
and this toxicity is dependent on the chemical stability of each compound [3]. Their
absorption in the respiratory system, digestive system or skin occurs easily and rapidly.
There are three chief inhibition mechanisms of cyanides: (1) cyanide reaction with keto-
compounds for cyanohydrin derivative formation; (2) cyanide reaction with Schiff-base
intermediates for nitrile derivatives formation; (3) di- and trivalent metal ion chelating in
metalloenzymes [3,4].

Cyanide is synthesized naturally through the utilization of cyanogenic microorgan-
isms and plants [5]. However, the presence of the cyanide compounds in the environment
emanates from anthropogenic sources, such as pesticides and plastics manufacturing, elec-
troplating, metal and gold mining, amongst others [2,6–8]. The presence of the cyanide
compounds in the environment has demonstrated ecological harm and direct threat to the
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lives that feed from these water sources [9]. Therefore, it is prudent that the wastewaters
that contain these compounds are treated before being discharged into the environment
to mitigate against the ecological damage they pose [10]. There are processes which were
developed to remediate these compounds and these include physical, chemical and bio-
logical remediation [11,12]. The physical and chemical methods have lost their popularity,
due to the additional contaminants that these processes produce after remediating the
cyanide compounds. Therefore, biological methods were explored and were observed to be
environmentally benign, cheaper to operate and robust. This process uses organisms such
as bacteria, fungi and algae, amongst others, where these organisms utilize a variety of
enzymatic pathways to detoxify the cyanide compounds and these include: (1) hydrolytic;
(2) oxidative; (3) reductive; (4) substitution/transfer and (5) synthesis pathway. The cyanide
degradation pathway is influenced by the initial concentration of cyanide, pH, temperature,
availability of oxygen, and the energy source for cell maintenance and growth, ammonia
and various metals ions [6]. Although this process is characterized by high efficiencies
and robustness, it is associated with microbial sludge formation which necessitates further
processing, thus adding to the costs associated with the process. However, recent research
has demonstrated that this sludge can be used to synthesize nanomaterials, which can
be utilized in the process of polishing the wastewater for recycling to upstream units
and/or disposal.

One of the major determinants of the performance of the biodegradation process is
the type of the reactor system that is utilized. Numerous bioreactor configurations were
explored, which include the use of a rotating biological contactor (RBC) [13], moving bed
bioreactor system [13], stirred tank bioreactor system [14] and packed-bed bioreactors [15],
to name a few. These reactor configurations result in satisfactory effluents after a par-
ticular period of operation, but are unable to recover value-added products from the
processes. Therefore, newer, emerging and rapid technologies that can recover value-added
products while treating the wastewaters need to be established [16]. Therefore, this re-
view covers the techniques which can be utilized to recover value-added products from
cyanide biodegradation and the application of genetic engineering or omics in accelerating
cyanide biodegradation.

2. Emerging Cyanide Bioremediation Methods
2.1. Electro-Biodegradation of Cyanide Compounds

The numerous in situ and ex situ chemical, physical, biological and combinative
techniques, such as adsorption, oxidation, electrolysis, simultaneous adsorption and
biodegradation (SAB) and sequencing batch reactor (SBR), electro chemical oxidation,
electro-coagulation (EC), electro-biodegradation and photo electrochemical degradation
were recently assessed and also in the past for cyanide degradation [17–21]. These technolo-
gies are classified into two groups, in situ and ex situ techniques. The in situ technologies
occur in the original site and they typically display a lower impact and economic cost [22].
In recent years, there has been increasing interest in the usage of electro-bioremediation,
a hybrid and novel technique of bioremediation and electrokinetics to increase pollutant
mobility, thereby maximizing the interaction among the microorganisms and pollutants in
the contaminated soil and wastewater for improved remediation efficiency [23–28]. This
technique relies on the application of a direct electric current to the contaminated habitat for
pollutant degradation with the microorganisms that are responsible for the treatment of the
contaminants, such as hydrocarbons, aromatic organics, inorganic substances (including ni-
trate, sulfate) and toxic metals [29–31]. The electro-bioremediation (EK–Bio) is a promising
technique, especially for organic-contaminated habitats [32], and this technique is usually
used for the in situ treatment of soils with low or low–medium permeability with low
hydraulic conductivity values, such as clayey soil [22,30,33,34]. One of the most important
advantages of in situ soil biological remediation is its independence for the removal of the
polluted soil from its original site [26]. However, this technique is associated with high
power inputs, which add to the costs of the system, since the electrical current needs to
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be applied on the system. In addition, the electrodes which are normally utilized in this
process are expensive and would need to be constantly replaced for long term experimental
studies, thus adding to the cost of the process [35]. In the electro-bioremediation technique,
the treatment of polluted soils occurs through the application of low intensity direct electric
current (DC) (approximately 0.2–2 V- cm−1) between electrodes placed directly into the
contaminated soil. The migration of charged ions and many transport mechanisms occurs,
such as electro-osmosis, electromigration and electrophoresis that could help the biological
processes by collocating the charged species contained in the soil, such as contaminants,
nutrients and microorganisms (Figure 1) [22,30,36,37]. During electro-bioremediation, the
pollutants, nutrients, electron acceptors and soil microorganisms can move using various
mechanisms in the soil and would allow biodegradation to occur [33,38]. The low-level
alternating currents (AC) and DC electric fields stimulate the metabolic processes through
the increasing activity of the microorganisms and increasing the possibility of interactions
between the microorganisms and the pollutant. It also enhances the bioavailability of the
contaminants or directly stimulates the microorganisms and finally increases the remedia-
tion rate [30,32,36]. The electrokinetic process in the electro-bioremediation technique and
the well-known water electrolysis reactions (Equations (1) and (2)) occur at the electrodes.
The hydrogen ions and the oxygen gas are produced on the surface of the anode, in an
oxidation reaction, and the protons are transported towards the cathode (the negatively
charged electrode), forming the so-called acid front. On the other hand, the hydroxyl ions
and the hydrogen gas are produced on the surface of the cathode by reduction reactions at
the cathode and they are transported towards the anode (the positively charged electrode),
forming the basic front [23,39–43].

H2O→ 2H+ + 0.5O2 + 2e− (Anode-oxidation) (1)

2H2O + 2e− → 2OH− + H2(g) (Cathode-reduction) (2)
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The DC fields and electroosmotic water will cause the microbes’ movement towards
the anode (as microbes are generally negatively charged) and the bacterial migration to the
cathode, respectively [36]. In fact, the success of using electric fields depends on the specific
conditions encountered in the field, such as the type and amount of the contaminant present,
soil type, pH and organic content [36], including the viability of the microorganisms [40].

The EK-bioremediation can be affected by two main factors: Microorganism- and elec-
trokinetic process-related factors. The microorganism-related factors include the capability
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of surviving persistent changes in the soil pH, osmotic stress, temperature (cold or hot
weather), UV exposure, dissolved oxygen (DO) and other geochemical conditions [23,44].
The water electrolysis reactions lead to the changes in the soil pH in EK remediation and the
soil pH near the anode is in the range of 2–3.5 (organic degradation) and near the cathode,
between 8–11 [24]. These changes of the soil pH near the anode and the cathode play a
very important role in the outcome of the contaminants’ electro-bioremediation. Most of
the bacteria are viable at the optimum pH between 6 and 8, and the abrupt change in the
pH gradient across the cell membrane has an adverse effect on the growth and metabolism
of bacteria [40–43]. Several conventional and innovative techniques can be applied to
control the pH during electrokinetic remediation, such as using an ion selective membrane
which prevents the ions transport to the soil [45], adding chemical conditioning agents
such as ethylene diamine tetra-acetic (EDTA), acetic acid and nitric acid [46–49], the con-
stant changing/removing of the electrode compartments’ solution [50], stepwise moving
anode [51,52], polarity exchange [42,53], circulation of an electrolyte (anolyte and catholyte)
solutions in the electrode compartments [54–56], the two anodes’ technique (TAT) and
the implementation of the circulation of the electrolyte solution [57]. The new technique
is used to neutralize the hydroxyl ions and protons produced at the cathode and anode
and water is formed with an anode and a cathode at the same water compartment [23]. In
addition, an increase in the temperature between 5 and 20 ◦C, with the maximum increase
in the soil near the anode during electrokinetic processes, was reported and the optimum
temperature for the microorganism degradation was between 25 ◦C and 40 ◦C [37,58]. The
increase in the temperature in EK-bioremediation may have a positive impact on microbial
activities, but the high temperatures that result from high applied voltages for a prolonged
duration have a detrimental effect on the viability of microorganisms [59].

It was found that the electric current had a detrimental effect on low initial cell densi-
ties, however, high cell densities survived despite the applied electric field intensities [60].
When the high electric field intensities are applied to low cell concentration setups, an
overwhelming concentration of the cells is reduced, due to the applied current. This is
explained by the delayed formation of the extracellular polymeric substances, which form
a protective layer especially in high cell densities.

Another study showed that using the optimum electric field in electrokinetic bioreme-
diation not only removed the pollutants but also retained most of the microorganisms [61].
Sub-lethal injuries, irreversible dielectric cell membrane breakdown or changes in the
physicochemical surface properties can be observed in the EK bioremediation when DC is
applied to living microbial cells; depending on the cell type and environmental characteris-
tics, the treatment time is often maximized [27,62,63]. In addition, the migration of large
volumes of charged ions to the oppositely charged electrodes and their accumulation in
that location can affect the microbial activity and biodegradation efficiency [32]. In this
technique, the production of toxic compounds (that is, those induced by the application
of an electric field) led researchers to use bacteria that have the ability to tolerate stress
environments [30]. Despite these changes in the environment of the process, some of the
microorganisms protect themselves from external stresses by forming biofilms or producing
spores [64].

The electrokinetic processes are affected by the following factors: electrolysis reac-
tions; electric current and power for electrokinetics; the availability of power lines near
the contamination sites; the cost of electricity; and the change in temperature [23]. The
most important challenge for EK bioremediation is its high cost due to the high energy
consumption. A renewable energy source, such as solar energy, to supply the electricity to
the process can be a cost-effective and eco-friendly option and this source of energy has
some benefits, which can enhance the remediation process [63,65–68].

Cyanide destruction using electrochemical oxidation was studied elsewhere, where
the authors used the Ti/SnO2-Sb-Ce anode under varying physicochemical conditions and
observed a degradation efficiency of >98% in 4 h under alkaline conditions. However, it is
worth noting that this process was not a biological process but rather an electrochemical
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process [69]. To the authors’ knowledge, there was only a single study that utilized a
bacterium during an electro-biodegradation of cyanide, using Bacillus pumilus ATCC 7061,
where the maximum cyanide concentration of 500 mg/L was degraded over a period of
301 h, with a degradation efficiency of 99.7% [70]. This demonstrated the robustness of this
technique in the degradation of cyanide and therefore, more studies need to be undertaken
to assess its efficacy. As such, the research needs to be conducted where the energy
source to the system is renewable energy in comparison to the currently utilized energy
sources, such that future studies can employ a more sustainable approach in conducting
electro-bioremediation.

2.2. Microbial Fuel Cells in Cyanide Treatment

It was discovered that extracting energy from organic or inorganic matters by bacteria
can provide an efficient method of solving the energy and environmental problems and
produce electricity from the waste and renewable biomass [71–78]. The Microbial Fuel Cell
(MFC) technology became one of the most attractive technologies for renewable energy
production and simultaneous wastewater treatment. This bio-electrochemical transducer is
capable of converting the chemical energy of organic or inorganic compounds originating
from agricultural, dairy, municipal, food, industrial wastewater and many other sources
into electric current, using microorganisms as the biocatalysts [79–82]. An MFC is a galvanic
cell that generates electricity as a result of oxidation-reduction reactions and utilizing
wastewater as a substrate (electron donor) [83,84]. A conventional two chambered MFC
consists of two (anode and cathode) chambers which are separated by a proton or cation
exchange membrane (PEM) and the protons produced at the anode pass through PEM to
the cathode (Figure 2). The electrodes of both of the compartments are interconnected by
an electrical circuit having an external resistor or load connected.
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At the anodic compartment, the microorganisms can catalyze the oxidative conversions
and electrons, and protons and carbon dioxide are produced. After the electrons are
produced from the microbial metabolic activity, they are transferred to the anode surface by
redox-active proteins or cytochromes, and then passed to the cathode through the external
circuit [85,86]. The cathode chamber is aerobic/anaerobic and contains an electrode, an
electron acceptor (that is called a terminal electron acceptor (TEA), such as oxygen or
ferricyanide, and a catalyst. The reduction in the electrons takes place at the cathode. Finally,
the combination of electrons, protons and oxygen occurs in the cathode compartment and
water is formed [83,87–91].
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The MFC technology has several unique advantages including energy, environmental
and operational benefits and it can utilize low-grade biomass or even wastewater to pro-
duce bioelectricity. This technology recovers much higher energy via electricity production
from various substrates [74,92,93] and the transmission and utilization of electricity are con-
venient [94]. The MFCs are environmentally friendly technologies and the clean electricity
is directly produced from the organic or inorganic matter in wastewater; additionally, some
of the additional processes such as separation, purification and conversion of the energy
products are not necessary. In comparison, methane and hydrogen can be produced from
the anaerobic digestion process which requires separation and purification prior to their use.
The power generation of MFCs varies depending on some of the factors that are categorized
into two main factors including bacterial-related factors (bacterial metabolism, bacterial
electron transfer, operating temperature, the nature of carbon source used, flow rate, sludge
age and nature of inoculum used in the anode chamber) and MFCs system-related factors
(performance of proton exchange membranes, internal resistance of electrolyte, efficiency
of oxygen supply in cathodes, fuel cell configuration, dimensions and volume, nature and
type of electrode, mediators present in the cathode chamber, electrolytes used, external
resistance and the nature of the proton exchange membrane) [78,95].

The most important characteristics of the electrode material are the surface area, bio-
compatibility, conductivity, stability and non-corrosiveness [96,97]. A large number of
substrates, such as various artificial and real wastewaters and lignocellulosic biomass, are
considered as feed for the MFCs [74]. The anodic chamber is anaerobic and contains an
electrode, microorganisms and an anolyte. [98]. The carbon-based materials of the anodes
are carbon paper, cloth, felt or foam; reticulated vitreous carbon (RVC); graphite sheets,
rods and granules; and graphite fiber brushes [99]. The electrons that are produced in the
anodic chamber are sometimes transferred to the cathode by electron shuttles or media-
tors, such as methylene blue, neutral red, thionine, quinone, methyl viologen or humic
acid [98,100–103]. The mediators become reduced inside the bacteria during microbial
metabolism and the reduced mediator diffuses out of the cell and moves to the anode
where it can be oxidized [104]. The electrons are absorbed by the anode and transferred to
the cathode where they can reduce the electron acceptor [83,98]. The use of mediators in
MFC adds to the cost of the process and they are also toxic compounds.

On the other hand, some of the microorganisms, such as Shewanella and Geobacter,
have endogenous mediators or nanowires, c-type membrane proteins and pilli that can
transfer the electrons from substrate to anode. In fact, using electrogenic bacteria is more
beneficial [105,106]. In MFC technology, two kinds of microorganisms were used: microor-
ganisms that need a mediator, such as Saccharomyces cerevisiae and E. coli, [101,103,107,108];
and the mediator-less ones, such as Shewanella putrefaciens and Geobacter species [72,107,109].
Pure or mixed cultures of microorganisms can be used in MFC, however microbial com-
munities are preferred, due to their nutrient adaptability and stress resistance [110]. In
addition, enzymes can also be used in this technology [105]. The oxygen reduction on the
cathode is a very slow reaction and the catalysts existing in the cathode compartment is
necessary. However, this does not improve the performance of the process since the anode
compartment is responsible for performance. It is mainly meant to accelerate the oxygen
reduction reaction at the cathode compartment. For improving MFC performance, anode
surface modifications with nanomaterials and bacterial gene modifications are the most
prevalent approaches [111–114]. For example, the bare electrodes with the low surface area
can be easily modified with conductive nanomaterials of a higher surface area, such as
graphene [115] and a catalyst such as platinum can be employed to the cathode electrode
to increase the rate of oxygen reduction [81]. The best, most frequently used PEMs are
Nafion and Ultrex CMI-7000 [81,98,116–120]. Various substrates, including simple and
pure matters to a complex mixture of organic and inorganic compounds, can be applied
in MFCs. On the other hand, the substrate concentration is one of the most important
factors which affects MFC performance. Acetate, lactate, glucose, butyrate, proteins, urine,
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cellulose, cysteine, glycine and glycerol, ammonia, metal and lignocellulosic materials are
several examples of a simple substrate [90,121].

The different types of wastewater including agricultural, industrial, food, chemical
and municipal wastewater are some examples of complex mixture of organic and inorganic
compounds. Sulfide, nitrate, ammonium nitroaromatic compounds, chloroethane, pyri-
dine, alkanes, indole, phenol, cellulose, chitin, landfill leachates, pentachlorophenol and
hydrocarbon-contaminated wastewater can be used as the substrate in MFC [90,105,121].
The MFCs can also be used for the electricity generation of carbohydrates, such as monosac-
charides (hexoses, pentoses) and sugar derivatives (galacturonic acid, glucuronic acid,
gluconic acid), polyalcohols, protein-rich wastewater, acetic and butyric acids and volatile
fatty acids (VFAs) [76,122]. The different configurations of MFCs are double-chamber
MFCs, single-chamber MFCs (SCMFC) that have one side in the anodic solution and the
other side is exposed to air and the air-cathode MFC, continuous flow MFCs or up-flow
MFCs, integrated MFC systems (continuous flow MFC with multiple electrodes) or stacked
MFCs [76,81,97,105]. Some of the recent developments of MFCs include the integration of
the MFCs with existing beneficial processes from domestic levels (decentralized systems) to
a community level (centralized and industrial systems) [123,124], the advanced treatment
of toxic and micro-pollutants such as radioactive compounds and pharmaceutical prod-
ucts, overflow-type wetted-wall MFC (WWMFC), rotatable bio-electrochemical contactor
(RBEC), self-stacked submersible MFCs (SSMFC), biocathode MFCs (usage of aerobic or
anaerobic biofilms on cathodes for catalysis) [105,125], an air-cathode microbial fuel cell
(AC-MFC) that has the capacity to directly use oxygen in the atmosphere as the terminal
electron acceptor [126] and MFC system integration [74,127–129]. The basic parameters
for the MFC operation are temperature, pH, pressure, salinity, organic loading, feed rate
and shear stress [81]. The MFC operation has to occur in mild reaction conditions, such
as ambient temperature, normal pressure and neutral pH [84]. The optimum pH for the
growth of bacteria should be about neutral pH, but, in the anodic and cathodic compart-
ment, pH will fluctuate between acidity and alkalinity during the course of the process and
this affects the performance of the MFC [130]. In addition, power production is increased
in high salinity through increasing conductivity [105].

Few studies were conducted on cyanide bioremediation using MFC technology to
produce electric energy. A strain of Klebsiella sp. was isolated from a microbial fuel cell
and designated as MC-1 where the organism was capable of generating electricity from
degrading cyanide and exhibiting high electrochemical activity. This strain can use glucose–
cyanide mixtures for electricity production in a microbial fuel cell (MFC). The maximum
voltage and cyanide degradation efficiency was 412 mV and 99.51%, respectively [82].
In another study, sodium acetate and cyanide were used as the mixed substrates for
cyanide degradation and electricity production using strain MC-1 in MFC technology. The
cyanide degradation efficiency and the maximum output voltage of MFC were significantly
increased. It was revealed that the growth cycle of the microorganism and the trend of
electricity production were related to each other in an MFC [16]. In addition, the Haldane
model was discovered to describe the degradation kinetics well while the SKIP model
described the growth kinetics. A voltage stabilization at 0.55 V was established when the
minimal concentrations of cyanide (1.64–20 mg/L sodium cyanide) were utilized, while
higher concentrations produced lower voltages. It was proved that the cyanide treatment
and electricity generation were feasible and cost-effective using the MFC technology. Due
to large amounts of natural cyanoglycosides found in cassava, this results in the cassava
mill wastewaters having high cyanide concentrations. The maximum power density of
1771 mW m−2 was achieved during the treatment of the cassava mill wastewater (16000
mg-COD/L, 86 mg/L cyanide) using MFC [95]. These studies demonstrate the possibility
of utilizing this technique for the production of electricity.

This technology was also shown to be applied at a commercial or pilot-scale, where
Tota-Maharaj and Paul (2015) showed a power density of 96 mW/m2 was achieved from
the treatment of domestic wastewater with a 30 to 70% removal efficiency of chemical
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oxygen demand [131]. The authors used sea water as their electrolyte in the cathode, while
in the anode the domestic wastewater was treated using indigenous microbial communities
within the wastewater. In addition, a 200 L MFC system treating municipal wastewater was
used to produce 0.8–2.4 V where an energy harvesting device was attached to the system to
convert the produced voltage to 5 V, such that ultra-capacitators and other components
were charged using the energy produced from the system (Ge et al., 2015) [132]. In another
study, Walter et al. (2018) assessed the capability of treating urine from a music festival
using 12 MFC modules and it was observed that a cascade of four modules was producing
150 mW continuously for the treatment of the urine [133]. These studies, although only a
few are mentioned herein, demonstrate the commercial viability of using MFC.

2.3. Anaerobic Cyanide Biodegradation

The anaerobic biological degradation of wastewaters has gained in popularity, where
the microorganisms break down the biodegradable material under anaerobic environments
for the treatment of wastewater [134]. This attractive technology has some benefits, which
include biogas production, reduced biological oxygen demand (BOD) and these technolo-
gies are more cost-effective and energy-saving than aerobic processes. The anaerobiosis
can also be a feasible and efficient removal technology for cyanide treatment [135,136].
This technology is used as a renewable energy source since it is able to produce methane
(Figure 3) [134,137]. In addition, the digestate from the treatment process can serve as
a fertilizer in the agricultural sector [137], thus ensuring a zero-carbon footprint from
the process [138–143]. Different bacteria are involved in the breakdown of contaminants
in wastewater and these organisms include acidogenic, fermentative and methanogenic
bacteria [144,145].
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For an optimal anaerobic degradation process, hydrogenotrophic and acetotrophic
methanogenesis are important and various processes were developed, such as the up-flow
anaerobic sludge blanket (UASB) [146], the anaerobic fluidized bed reactor (AFBR) [147]
and the anaerobic attached-film expanded-bed reactor (AAFEB) [137,148]. Several studies
-focused on the importance of anaerobic biodegradation of cyanide compounds using
anaerobic reactors or a combination of both aerobic and anaerobic processes [12,149–153].
The first attempt for cyanide anaerobic biodegradation was carried out by Fedorak and
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Hrudey (1989) in methanogenic semicontinuous batch cultures. Novak et al. (2013) and
Gupta et al. (2016) reported the ability of Firmicutes with the archaeal genus Methanosarcina
and anaerobic microorganisms in anaerobic cyanide degradation [151,153–155]. Because
of the presence of many relevant metalloproteins in anaerobic microorganisms, especially
methanogens, these microorganisms are even more sensitive to cyanide than aerobic
microorganisms, and the cyanide toxicity threshold for some of the anaerobes is 2 ppm
whereas it is about 200 ppm for most of the aerobic microorganisms [136,149,156–158].

Cyanide biodegradation in aerobic systems is more rapid than in anaerobic systems [141].
Thus, due to the slower growth rate and higher sensitivity to toxic compounds in anaerobic
treatment, the aerobic degradation has been studied extensively compared to anaerobic
treatment [155,159]. In a study for improving the cyanide biodegradation rate, the ac-
climatization of anaerobic microbes and identification of microorganisms that can produce
methane in the presence of cyanide were carried out [155]. In another study, anaerobic
sludge was well acclimatized to cyanide in the digester and the cyanide was successfully
decomposed from cassava pulp. In fact, the cyanide anaerobic co-digestion in cassava pulp
with pig manure as the co-substrate was successful without any inhibitory effect of the
cyanide present in cassava pulp. The removal efficiency and methane yield was 82% and
0.38 m3/kg−1VSS−1, respectively [160]. In addition, the successful cyanide removal, effi-
cient COD removal and possible acclimatization of the biomass in the cyanide-contaminated
waters was demonstrated in another study [149]. Among the five pathways for cyanide
degradation in microorganisms, only the reductive or hydrolytic pathways are possible
under anaerobic conditions [159]. The nitrogenase enzyme is involved in the reductive
pathway that is required for biological nitrogen fixation and converts HCN into methane
and ammonia as the end products [151]. This oxygen-sensitive enzyme is rarely found in
living organisms, and thus, the cyanide degradation using this pathway is believed to be
minimal [8,161,162]. Five different enzymes: (i) cyanide hydratase; (ii) nitrile hydratase;
(iii) thiocyanate hydrolase; (iv) nitrilase and (v) cyanidase are involved in the hydrolytic
pathway, which is the most commonly occurring pathway [8]. Table 1 summarizes the
performances of the mentioned methods.

Table 1. The performance of the emerging methods for biodegradation of cyanide and
related compounds.

Method Performance Parameters

Reactor Type Contaminant
Removal
Efficiency

(%)
Microbial Source Anode Cathode pH Temperature

(◦C) Reference

EK-BIO
EBC Free cyanide 99.7 Bacillus pumilus

ATCC 7061 Aluminum Aluminum NM 30 [163]
MFC

sMFC Free cyanide 100 Klebsiella sp. (MC-1) Disc graphite felt Disc graphite felt
with Pt - 25 [16]

dMFC COD
Cyanide

88.34
99.51 Klebsiella sp. - - - 25 [82]

dMFC Thiocyanate 100 Thiobacillus sp. Graphite felt Graphite felt 7 8 [164]
sMFC Phenol 88.9% NM Carbon felt Carbon cloth

with Pt 7 25 [165]
sMFC Ammonium 96.8% WWTP sludge Carbon cloth Carbon Cloth - 30 [166]

ACMFC COD
Ammonium

91%
99%

Aerobic denitrifying
sludge Carbon fiber felts Carbon fiber felts 8.0 - [167]

AB

Serum bottles Tetracyano
nickelate 100 Klebsiella oxytoca

NSYSU-011 - - 7.0 30 [168]

UASB Free cyanide 100 UASB biomass - - - - [151]
Stirred conical

reactor Free cyanide 90-93% UASB biomass - - 7.2–7.8 31 [160]

Conical flasks Free cyanide
Nitrate

100
≤ 40

Heap leach residue
and water - - 8.5–9.5 22 [169]

ABR
Potassium

tetrahydroxy
zinc(II)

100 Cow dung and
wastewater sludge - - 6.8–8 37 [155]

Bottle Potassium
cyanide 100 Klebsiella oxytoca - - 7.0 30 [170]

SGR
Phenol

Cyanide
Thiocyanate

100
96

100
Sewage - - 8.0 27 [150]

dMFC—Double Chamber Microbial Fuel cell; sMFC—Single Chamber microbial fuel cell; ACMFC Air-cathode
microbial fuel cell; UFTMFC—Up-Flow Tubular Microbial Fuel Cell; UASB—Up-flow Anaerobic sludge blanket;
ABR—Anaerobic batch reactor; SGR—Suspended Growth Reactor; EBC—Electro-Biodegradation Cell; NM—Not
mentioned; COD—Chemical Oxygen Demand.
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Pterin Production

Various compounds can be produced from the anaerobic remediation of cyanide and
amongst these, is pterin. Pterins are ubiquitous compounds that are known as pteridines
and they are heterocyclic nitrogen-containing compound made of fused pyrimidine and
pyrazine rings [171,172]. Pteridines have the same nucleus of 2-amino-4-hydroxypteridine
(pterin) which is a widely conserved biomolecule [173,174]. The pterins were identified
as yellow pigments in butterflies and insects before their structures and functions were
discovered. These compounds can be colored or colorless and there are three main classes
of pteridines: lumazines; isoalloxazine and pterins [171]. Pterins can be classified into
two major classes on the basis of the complexity of their side chains, conjugated (such as
folic acid and methanopterin) and unconjugated (such as pterin, biopterin, molybdopterin,
neopterin and pterin-containing glycosides) [175]. The pterins play essential roles in dif-
ferent organisms including eukaryotic and prokaryotic systems as enzymatic cofactors
associated with growth and differentiation processes and antiviral, anticancer, antibac-
terial and diuretic drugs [174,176]. These compounds have key roles in immune system
modulation, cellular signaling, coloration and metabolism regulation and in forming the
backbone of several fundamental molecules, such as folic acid. They also mediate protec-
tion from UV damage [177]. Pterin has been proposed recently as a drug in neurological
disorders and neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases,
depression, infantile autism and schizophrenia [175]. These compounds are the cofactor of
cyanide monooxygenase (an enzyme involved in the oxygenolytic conversion of cyanide
to carbon dioxide and ammonia) which allows bacteria to utilize alternate carbon and
nitrogen sources, and the redox potential of pterins indicates that they may have an impor-
tant role in cellular electron transport [172]. The cyanide oxidative degradation pathway
depends on the presence of NADPH (nicotinamide adenine dinucleotide phosphate) and
oxygen (O2) and cyanide is converted into ammonia (NH3) and carbon dioxide (CO2) [138].
The immobilized cells of P. putida can degrade cyanide compounds (cyanides, cyanates,
thiocyanates) and produce ammonia and carbon dioxide effectively using the oxidative
pathway [21]. In addition, the strong oxidative enzymes of fungi have key roles in the
treatment of xenobiotic chemicals [141].

The presence of cyanide-containing wastewater induces the production of cyanide-
degrading enzymes and their necessary cofactors and enhancers in the cyanide-degrading
microorganisms for utilizing cyanide as the carbon and nitrogen sources [175]. It was re-
cently shown that cyanide oxygenase (CNO) is a pterin-dependent hydroxylase [176]. The
pteridines are present in the prokaryotic system, green-sulfur bacteria and cyanobacteria
species, including Anacystis, Anabaena, Nostoc, Oscillatoria, Spirulina platensis and Synechococ-
cus. In addition, some of the anaerobic photosynthetic bacteria (Chlorobium tepidum and
C.limicola) and a chemoautotrophic archaebacterium (Sulfolobus solfataricus) were involved
in pteridine production [175]. In a study, it was demonstrated that the main structure
of pterins as a cofactor can be prebiotically formed from cyanide polymerizations [171].
The adjustment of the poisonous waste cyanide degradation, that is exploited in some of
the industrial activities with the production of useful and therapeutic compounds in the
microbial system, is a proven example of wealth from waste which is a promising and
eco-friendly technology [175]. The natural production of pterin can be induced with its con-
secutive expression of cyanide monooxygenase enzyme during the bacterial degradation
of cyanide. In a study, it was shown that Bacillus pumilus SVD06 is able to utilize cyanide
and toxic metals for the efficient production of the pterin compound. The antioxidant
properties and antimicrobial activities (against Escherichia coli and Pseudomonas aeruginosa)
of the purified pterin compound were also shown and it was proved that the pterins inhibit
the formation of biofilm [174]. Cyanide oxygenase is a cytoplasmic enzyme of P. fluorescens
that needs a pterin cofactor in addition to oxygen and NADH for optimal activity [178].
Another study was completed for isolating the cyanate- and cyanide-utilizing bacteria,
including actinomycetes, from the soil and water samples and their pteridine compounds
were extracted [179].



Processes 2022, 10, 1724 11 of 19

A number of the cyanide-degrading bacteria isolated from an industrial area were
screened for the presence of pterins in another work. The extraction and purification
of pterins were carried out by an HPLC technique and the characterization of the puri-
fied compound was studied using ultraviolet/visible absorption spectrometry, infrared
spectroscopy, excitation/emission properties, electrospray ionization mass spectrometry
(ESI-MS) and nuclear magnetic resonance spectroscopy (NMR) [172]. The partial purifica-
tion of CNO was carried out from Pseudomonas fluorescens NCIMB 11,764 and it was shown
that the cyanide utilization and ammonia/formate production was a pterin-dependent con-
version. In addition, it was revealed that there are several reduced pterin species capable
of acting as natural cofactors for the enzyme, which were identified in the P. fluorescens
NCIMB 11,764 cell extracts [180].

2.4. Application of Omics in Cyanide Bioremediation

Cyan-omics are a new generation of omics which develop our knowledge in cyanide
biodegradation through applied genomics, transcriptomics and proteomics in bacterial
cyanide detoxification. In Cyan-omics, there are three cyanide degrading bacteria which
were studied extensively: Pseudomonas pseudoalcaligenes CECT5344; Pseudomonas fluorescens
NCIMB 11,764 and Azotobacter chroococcum NCBIMB 8003. The genomes of these or-
ganisms were sequenced [143]. The transcriptomic analysis of the whole genome was
carried out in P. pseudoalcaligenes CECT 5344 and Nitrosomonas europaea, using the DNA
microarrays from the cells grown in different media, to identify the genes in the cyanide
stress response [181,182]. At the proteomic level, some of the methods, such as the two-
dimensional electrophoresis, have assisted in the identification of Klebsiella oxytoca responses
to the presence of cyanide [183,184]. Nitrilase is one of the cyanide-degrading enzymes
which can be used for cyanide bioremediation and new organisms containing nitrilase can
be identified, using function-driven metagenomic analysis [185,186].

Genetic Engineering

The enhancement of enzyme production that is involved in bioremediation is through
the genetic engineering approach, such as isolating the coding genes and the overexpres-
sion of enzymes by another expression host, and was successfully accomplished. This
biotechnological technique is economic and the stability and activity of the enzymes are
increased. The recombinant enzyme purification is easier than in the native strain [187,188].
The half-life, substrate specificity, pH and temperature stability of enzymes is increased by
the genetic engineering approach [189]. REMI (restriction enzyme-mediated integration) is
a new technique that is used for constructing mutant strains which can degrade cyanide
faster than wild type and was recently applied for generating mutants of Trichoderma
koningii T30, T. atroviride and T. harzianum and improve their cyanide biodegradability. The
cyanide hydratase activity in the mutant strains of T.koningii and T. harzianum increased and
the rhodanese activity in the mutant strains of T. koningii and T. atroviride increased [187]. A
single copy of the cyanide hydratase gene is present in the Leptosphaeri maculans genome,
although this gene poses as a promoter and contains four putative target sites for molecules
such as GATA transcription factors, proteins that regulate nitrogen metabolism and other
processes. Potassium cyanide induces the transcription of the cyanide hydratase in an
aggressive L. maculans isolate [189]. A significant homology is detectable in comparison
of the cyanide hydratase gene from F. solani and the corresponding gene from Gloeocer-
cospora sorghi, F. lateritium and Leptosphaeria maculans. The expression and utilization of the
cyanide hydratase (chy) gene could provide an important tool for cyanide biodegradation
in activities that generate cyanide wastes [138].

3. Conclusions

The biological degradation of cyanide compounds was deemed as the most effective,
robust and environmentally friendly technique for the remediation of these compounds.
The recent research was aimed at accelerating the biodegradation process and to recover
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resources that can be utilized in the energy and health professions through the treatment
process. These techniques include electro-biodegradation and Microbial Fuel Cell technolo-
gies, including anaerobic biodegradation systems. These technologies are associated with
the following:

• Accelerated cyanide biodegradation through electro-biodegradation;
• Electricity generation through the use of MFC technology;
• Methane production through anaerobic biodegradation systems;
• Production of bioactive compounds, such as pterins.

These techniques proved that cyanide biodegradation can be accelerated while other
processes demonstrated the production of value-added products from cyanide treatment.
The application of Cyan-omics has also increased our knowledge in cyanide degrading mi-
croorganisms through the use of genomics, transcriptomics and proteomics of the cyanide
biodegrading strains. These processes demonstrate the economic value that can be attained
from these new emerging processes that can be utilized. However, there have been no
studies that have conducted a cost analysis of these processes; this needs to be considered
for future studies.
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