Supercritical Fluid Extraction from Zataria multiflora Boiss and Impregnation of Bioactive Compounds in PLA for the Development of Materials with Antibacterial Properties
Abstract
:Highlights
- The chemical composition of the Z. multiflora EO extract obtained by supercritical extraction was identified by GC-MS.
- DPPH assays demonstrated the antioxidant activity of Z. multiflora EO extract.
- Z. multiflora EO extract was impregnated in PLA films by supercritical impregnation.
- The operational parameters of the supercritical impregnation process were optimized using FFD.
- The impregnated samples were characterized by SEM, FTIR, DSC and XRD.
- Impregnated PLA films showed antibacterial activity against E. coli and S. aureus.
Abstract
1. Introduction
2. Material and Methods
2.1. Materials
2.2. Method
2.2.1. Experimental Design
2.2.2. Supercritical Fluid Extraction Procedure
2.2.3. Supercritical Solvent Impregnation Process
2.2.4. Gas Chromatography-Mass Spectrometry (GC-MS)
2.2.5. Antibacterial Activity of Impregnated Films
2.2.6. Antioxidant Activity of Z. multiflora EO Extract
2.3. Physical Characterization of Impregnated Samples
3. Results and Discussion
3.1. Supercritical Fluid Extraction of EO from Z. multiflora
3.2. Gas Chromatography Results
3.3. Supercritical Solvent Impregnation of PLA Films
3.4. Effect of Operational Conditions on the Impregnation of EO in PLA Films
3.5. Characterization of the PLA-Z. multiflora System
3.5.1. Fourier Transform Infrared (FTIR) Spectroscopy
3.5.2. Thermal Properties
3.5.3. X-ray Diffraction
3.5.4. Film Surface Morphology (SEM)
3.6. Antibacterial Activity of Impregnated Films and Antioxidant Capacity of the Z. multiflora EO Extract
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nychas, G. Natural antimicrobials from plants. In New Methods of Food Preservation; Springer: New York, NY, USA, 1995; pp. 58–89. [Google Scholar]
- Singh, A. Use of plant essential oils as antimicrobial agents against Listeria monocytogenes in hotdogs. In Proceedings of the 2001 IFT Annual Meeting, New Orleans, LA, USA, 23–27 June 2001. [Google Scholar]
- Sharififar, F.; Moshafi, M.H.; Mansouri, S.H.; Khodashenas, M.; Khoshnoodi, M. In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food Control 2007, 18, 800–805. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Ramezani, M.; Salmani, G.-A. Antinociceptive, anti-inflammatory and acute toxicity effects of Zataria multiflora Boiss extracts in mice and rats. J. Ethnopharmacol. 2000, 73, 379–385. [Google Scholar] [CrossRef]
- Rasouli, A.; Rezaei, M. Comparison of antimicrobial activity of the essential oil of Zataria multiflora and ampicillin. Hakim 2001, 4, 219–224. [Google Scholar]
- Sodeifian, G.; Sajadian, S.A. Utilization of ultrasonic-assisted RESOLV (US-RESOLV) with polymeric stabilizers for production of amiodarone hydrochloride nanoparticles: Optimization of the process parameters. Chem. Eng. Res. Des. 2019, 142, 268–284. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, X.; Pan, J.; Zhang, W.; Yin, W. Gas antisolvent precipitation of Ginkgo ginkgolides with supercritical CO2. Powder Technol. 2005, 152, 127–132. [Google Scholar] [CrossRef]
- Esfandiari, N. Production of micro and nano particles of pharmaceutical by supercritical carbon dioxide. J. Supercrit. Fluids 2015, 100, 129–141. [Google Scholar] [CrossRef]
- Sekhon, B.S. Supercritical fluid technology: An overview of pharmaceutical applications. Int. J. PharmTech Res. 2010, 2, 810–826. [Google Scholar]
- Amani, M.; Ardestani, N.S.; Yeganeh Majda, N. Utilization of supercritical CO2 gas antisolvent (GAS) for production of Capecitabine nanoparticles as anti-cancer drug: Analysis and optimization of the process conditions. J. CO2 Util. 2021, 46, 101465. [Google Scholar] [CrossRef]
- Sodeifian, G.; Sajadian, S.A.; Derakhsheshpour, R. CO2 utilization as a supercritical solvent and supercritical antisolvent in production of sertraline hydrochloride nanoparticles. J. CO2 Util. 2022, 55, 101799. [Google Scholar] [CrossRef]
- Najafi, M.; Esfandiari, N.; Honarvar, B.; Arab Aboosadi, Z. Production of Rosuvastatin Calcium Nanoparticles Using Gas Antisolvent Technique: Experimental and Optimization. Period. Polytech. Chem. Eng. 2021, 65, 442–453. [Google Scholar] [CrossRef]
- Zizovic, I. Potential of Supercritical Solvent Impregnation for Development of Materials with Antibacterial Properties. Int. Arch. Med. Microbiol. 2017, 1, 1–6. [Google Scholar]
- Cabezas, L.; Fernández, V.; Mazarro, R.; Gracia, I.; de Lucas, A.; Rodŕiguez, J.F. Production of biodegradable porous scaffolds impregnated with indomethacin in supercritical CO2. J. Supercrit. Fluids 2012, 63, 155–160. [Google Scholar] [CrossRef]
- Cabezas, L.; Gracia, I.; Gracía, M.; de Lucas, A.; Rodŕiguez, J.F. Production of biodegradable porous scaffolds impregnated with 5-fluorouracil in supercritical CO2. J. Supercrit. Fluids 2013, 80, 1–8. [Google Scholar] [CrossRef]
- Champeau, M.; Thomassin, J.-M.; Tassaing, T.; Jérôme, C. Drug loading of polymer implants by supercritical CO2 assisted impregnation: A review. J. Control. Release 2015, 209, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, C.; Manabe, S.; Nakayama, S.; Nakayama, Y.; Shiono, T. Impregnation of poly (L-lactide.ran-δ-valerolactone) with essential bark oil using supercritical carbon dioxide. Sci. Rep. 2019, 9, 16326. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Huvard, G.S.; Warriner, C.S.; Mc Hugh, M.; Banyasz, J.L.; Mishra, M.K. CO2-assisted fiber impregnation. Polymer 2008, 49, 1579–1586. [Google Scholar] [CrossRef]
- Di Maio, E.; Kiran, E. Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges. J. Supercrit. Fluids 2018, 134, 157–166. [Google Scholar] [CrossRef]
- Rojas, A.; Torres, A.; Galotto, M.J.; Guarda, A.; Julio, R. Supercritical impregnation for food applications: A review of the effect of the operational variables on the active compound loading. Crit. Rev. Food Sci. Nutr. 2020, 60, 1290–1301. [Google Scholar] [CrossRef]
- Pantić, M.; Knez, Ž.; Novak, Z. Supercritical impregnation as a feasible technique for entrapment of fat-soluble vitamins into alginate aerogels. J. Non-Cryst. Solids 2016, 432, 519–526. [Google Scholar] [CrossRef]
- Smirnova, I.; Suttiruengwong, S.; Arlt, W. Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J. Non-Cryst. Solids 2004, 350, 54–60. [Google Scholar] [CrossRef]
- Michelino, F.; Zambon, A.; Vizzotto, M.T.; Cozzi, S.; Spilimbergo, S. High power ultrasound combined with supercritical carbon dioxide for the drying and microbial inactivation of coriander. J. CO2 Util. 2018, 24, 516–521. [Google Scholar] [CrossRef]
- Queiroz, A.U.; Collares-Queiroz, F.P. Innovation and industrial trends in bioplastics. J. Macromol. Sci. Part C Polym. Rev. 2009, 49, 65–78. [Google Scholar] [CrossRef]
- Inkinen, S.; Hakkarainen, M.; Albertsson, A.-C.; Södergård, A. From lactic acid to poly (lactic acid)(PLA): Characterization and analysis of PLA and its precursors. Biomacromolecules 2011, 12, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Anuar, H.; Izzati, A.B.N.F.; Inani, S.N.; E’zzati, M.A.S.N.; Salimah, A.B.S.M.; Ali, F.; Manshor, M.R. Impregnation of Cinnamon Essential Oil into Plasticized Polylactic Acid Biocomposite Film for Active Food Packaging. J. Package Technol. Res. 2017, 1, 149–156. [Google Scholar] [CrossRef]
- Stoleru, E.; Vasile, C.; Irimia, A.; Brebu, M. Towards a Bioactive Food Packaging: Poly(Lactic Acid) Surface Functionalized by Chitosan Coating Embedding Clove and Argan Oils. Molecules 2021, 26, 4500. [Google Scholar] [CrossRef] [PubMed]
- Al-Naamani, L.; Dobretsov, S.; Dutta, J. Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov. Food Sci. Emerg. Technol. 2016, 38, 231–237. [Google Scholar] [CrossRef]
- López de Dicastillo, C.; Bustos, F.; Guarda, A.; Galotto, M.J. Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocoll. 2016, 60, 335–344. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, D.; Wu, Y.; Yuan, M.; Li, L.; Yang, J. Effect of PLA/PCL/cinnamaldehyde antimicrobial packaging on physicochemical and microbial quality of button mushroom (Agaricus bisporus). Postharvest Biol. Technol. 2015, 99, 73–79. [Google Scholar] [CrossRef]
- Villegas, C.; Torres, A.; Rios, M.; Rojas, A.; Romero, J.; de Dicastillo, C.L.; Valenzuela, X.; Galotto, M.J.; Guarda, A. Supercritical impregnation of cinnamaldehyde into polylactic acid as a route to develop antibacterial food packaging materials. Food Res. Int. 2017, 99, 650–659. [Google Scholar] [CrossRef]
- Franco, P.; Incarnato, L.; De Marco, I. Supercritical CO2 impregnation of α-tocopherol into PET/PP films for active packaging applications. J. CO2 Util. 2019, 34, 266–273. [Google Scholar] [CrossRef]
- Bastante, C.C.; Casas, C.L.; Serrano, M.C.; Martinez de la Ossa, E.J. Supercritical impregnation of food packaging films to provide antioxidant properties. J. Supercrit. Fluids 2017, 128, 200–207. [Google Scholar] [CrossRef]
- Goñi, M.L.; Ganan, N.A.; Martini, R.E.; Andreatta, A.E. Supercritical CO2-assisted impregnation of LDPE/sepiolite nanocomposite films with insecticidal terpene ketones: Impregnation yield, crystallinity and mechanical properties assessment. J. Supercrit. Fluids 2017, 130, 337–346. [Google Scholar] [CrossRef]
- Villegas, C.; Arrieta, M.P.; Rojas, A.; Torres, A.; Faba, S.; Toledo, M.J.; Gutierrez, M.A.; Zavalla, E.; Romero, J.; Galotto, M.J.; et al. PLA/organoclay bionanocomposites impregnated with thymol and cinnamaldehyde by supercritical impregnation for active and sustainable food packaging. Compos. Part B Eng. 2019, 176, 107336. [Google Scholar] [CrossRef]
- Adenekan, K.; Hutton-Prager, B. Sticky hydrophobic behavior of cellulose substrates impregnated with alkyl ketene dimer (AKD) via sub-and supercritical carbon dioxide. Colloids Surf. A Physicochem. Eng. Asp. 2019, 560, 154–163. [Google Scholar] [CrossRef]
- Sodeifian, G.; Sajadian, S.A.; Ardestani, N.S. Extraction of Dracocephalum kotschyi Boiss using supercritical carbon dioxide: Experimental and optimization. J. Supercrit. Fluids 2016, 107, 137–144. [Google Scholar] [CrossRef]
- Esfandiari, N.; Sajadian, S.A. Experimental and Modeling Investigation of Glibenclamide Solubility in Supercritical Carbon dioxide. Fluid Phase Equilibria 2022, 556, 113408. [Google Scholar] [CrossRef]
- Sajadian, S.A.; Ardestani, N.S.; Esfandiari, N.; Askarizadeh, M.; Jouyban, A. Solubility of favipiravir (as an anti-COVID-19) in supercritical carbon dioxide: An experimental analysis and thermodynamic modeling. J. Supercrit. Fluids 2022, 183, 105539. [Google Scholar] [CrossRef]
- Sodeifian, G.; Sajadian, S.A.; Ardestani, N.S. Supercritical fluid extraction of omega-3 from Dracocephalum kotschyi seed oil: Process optimization and oil properties. J. Supercrit. Fluids 2017, 119, 139–149. [Google Scholar] [CrossRef]
- Sodeifian, G.; Sajadian, S.A.; Honarvar, B. Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide. Nat. Prod. Res. 2018, 32, 795–803. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Rollins, D.; Colwell, R. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 1986, 52, 531–538. [Google Scholar] [CrossRef]
- Burits, M.; Bucar, F. Antioxidant activity of Nigella sativa essential oil. Phytother. Res. 2000, 14, 323–328. [Google Scholar] [CrossRef]
- Mouahid, A.; Bouanga, H.; Crampon, C.; Badens, E. Supercritical CO2 extraction of oil from Jatropha curcas: An experimental and modelling study. J. Supercrit. Fluids 2018, 141, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Sodeifian, G.; Sajadian, S.A.; Ardestani, N.S. Optimization of essential oil extraction from Launaea acanthodes Boiss: Utilization of supercritical carbon dioxide and cosolvent. J. Supercrit. Fluids 2016, 116, 46–56. [Google Scholar] [CrossRef]
- Sodeifian, G.; Ghorbandoost, S.; Sajadian, S.A.; Ardestani, N.S. Extraction of oil from Pistacia khinjuk using supercritical carbon dioxide: Experimental and modeling. J. Supercrit. Fluids 2016, 110, 265–274. [Google Scholar] [CrossRef]
- Ebrahimzadeh, H.; Yamini, Y.; Sefidkon, F.; Chaloosi, M.; Pourmortazavi, S.M. Chemical composition of the essential oil and supercritical CO2 extracts of Zataria multiflora Boiss. Food Chem. 2003, 83, 357–361. [Google Scholar] [CrossRef]
- Miranda-Villa, P.P.; Gañán, N.A.; Martini, R.E.; Goñi, M.L. Supercritical CO2-assisted impregnation of polylactic acid films with R-carvone: Effect of processing on loading, mass transfer kinetics, and final properties. J. CO2 Util. 2022, 61, 102029. [Google Scholar] [CrossRef]
- Milovanovic, S.; Markovic, D.; Mrakovic, A.; Kuska, R.; Zizovic, I.; Frerich, S.; Ivanovic, J. Supercritical CO2- assisted production of PLA and PLGA foams for controlled thymol release. Mater. Sci. Eng. C Mater. Biol. App. 2019, 99, 394–404. [Google Scholar] [CrossRef]
- Milovanovic, S.; Hollermann, G.; Errenst, C.; Pajnik, J.; Frerich, S.; Kroll, S.; Rezwan, K.; Ivanovic, J. Supercritical CO2 impregnation of PLA/PCL films with natural substances for bacterial growth control in food packaging. Food Res. Int. 2018, 107, 486–495. [Google Scholar] [CrossRef]
- Ivanovic, J.; Knauer, S.; Fanovich, A.; Milanovic, S.; Stamenic, M.; Jaeger, P.; Zizovic, I.; Eggers, R. Supercritical CO2 sorption kinetics and thymol impregnation of PCL and PCL-HA. J. Supercit. Fluids 2016, 107, 486–498. [Google Scholar] [CrossRef]
- Saei-Dehkordi, S.S.; Tajik, H.; Moradi, M.; Khalighi-Sigaroodi, F. Chemical composition of essential oils in Zataria multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food Chem. Toxicol. 2010, 48, 1562–1567. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, Z.; Aminzare, M.; Azar, H.H.; Rostamizadeh, K. Effect of corn starch coating incorporated with nanoemulsion of Zataria multiflora essential oil fortified with cinnamaldehyde on microbial quality of fresh chicken meat and fate of inoculated Listeria monocytogenes. J. Food Sci. Technol. 2021, 58, 2677–2687. [Google Scholar] [CrossRef] [PubMed]
- Misaghi, A.; Basti, A.A. Effects of Zataria multiflora Boiss. essential oil and nisin on Bacillus cereus ATCC 11778. Food Control 2007, 18, 1043–1049. [Google Scholar] [CrossRef]
- Pilevar, Z.; Hosseini, H.; Abdollahzadeh, E.; Shojaee-Aliabadi, S.; Tajedin, E.; Yousefi, M.; Bahrami, A.; Khosroshahif, N.K. Effect of Zataria multiflora Boiss. Essential oil, time, and temperature on the expression of Listeria monocytogenes virulence genes in broth and minced rainbow trout. Food Control 2020, 109, 106863. [Google Scholar] [CrossRef]
- Khajenoori, M.; Asi, A.H.; Hormozi, F.; Eikani, M.H.; Nouri-Bidgoli, H. Subcritical water extraction of essential oils from Zataria multiflora Boiss. J. Food Process Eng. 2009, 32, 804–816. [Google Scholar] [CrossRef]
- Sadeghi, H.; Robati, Z.; Saharkhiz, M.J. Variability in Zataria multiflora Bioss. essential oil of twelve populations from Fars province, Iran. Ind. Crops Prod. 2015, 67, 221–226. [Google Scholar] [CrossRef]
- Keykhosravy, K.; Khanzadi, S.; Hashemi, M.; Azizzadeh, M. Chitosan-loaded nanoemulsion containing Zataria multiflora Boiss and Bunium persicum Boiss essential oils as edible coatings: Its impact on microbial quality of turkey meat and fate of inoculated pathogens. Int. J. Biol. Macromol. 2020, 150, 904–913. [Google Scholar] [CrossRef]
- Bazargani-Gilani, B.; Aliakbarlu, J.; Tajik, H. Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2015, 29, 280–287. [Google Scholar] [CrossRef]
- Hashemi Gahruie, H.; Ziaee, E.; Eskandari, M.H.; Hosseini, S.M.H. Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr. Polym. 2017, 166, 93–103. [Google Scholar] [CrossRef]
- Mahammadi Purfard, A.; Kavoosi, G.R. Chemical Composition, Radical Scavenging, Antibacterial and Antifungal Activities of Zataria multiflora Bioss Essential Oil and Aqueous Extract. J. Food Saf. 2012, 32, 326–332. [Google Scholar] [CrossRef]
- Guney, O.; Akgerman, A. Synthesis of controlled-release products in supercritical medium. AIChE J. 2002, 48, 856–866. [Google Scholar] [CrossRef]
- Li, D.; Han, B. Impregnation of polyethylene (PE) with styrene using supercritical CO2 as the swelling agent and preparation of PE/polystyrene composites. Ind. Eng. Chem. Res. 2000, 39, 4506–4509. [Google Scholar] [CrossRef]
- Torres, A.; Romero, J.; Macan, A.; Guara, A.; Galotto, M.J. Near critical and supercritical impregnation and kinetic release of thymol in LLDPE films used for food packaging. J. Supercrit. Fluids 2014, 85, 41–48. [Google Scholar] [CrossRef]
- Varona, S.; Rodriguez-Rojo, S.; Martin, A.; Cocero, M.J.; Duarte, C.M.M. Supercritical impregnation of lavandin (Lavandula hybrida) essential oil in modified starch. J. Supercrit. Fluids 2011, 58, 313–319. [Google Scholar] [CrossRef]
- Belizón, M.; Fernandez-Ponce, M.T.; Casas, L.; Ossa-Fernandez, E.J.D.M.L. Supercritical impregnation of antioxidant mango polyphenols into a multilayer PET/PP food-grade film. J. CO2 Util. 2018, 25, 56–67. [Google Scholar] [CrossRef]
- Medeiros, G.R.; Ferreira, S.R.S.; Carciofi, B.A.M. High pressure carbon dioxide for impregnation of clove essential oil in LLDPE films. Innov. Food Sci. Emerg. Technol. 2017, 41, 206–215. [Google Scholar] [CrossRef]
- Almeida, A.P.; Rodríguez-Rojo, S.; Serra, A.T.; Vila-Real, H.; Simplico, A.L.; Delgadilho, I.; Beirão da Costa, S.; Beirão da Costa, L.; Nogueira, I.D.; Durate, C.M.M. Microencapsulation of oregano essential oil in starch-based materials using supercritical fluid technology. Innov. Food Sci. Emerg. Technol. 2013, 20, 140–145. [Google Scholar] [CrossRef]
- Obaidat, R.M.; Tashtoush, B.M.; Awad, A.A.; Bustami, R.T.A. Using Supercritical Fluid Technology (SFT) in Preparation of Tacrolimus Solid Dispersions. AAPS PharmSciTech 2017, 18, 481–493. [Google Scholar] [CrossRef]
- Milovanovic, S.; Markovic, D.; Aksentijevic, K.; Stojanovic, D.B.; Ivanovic, J.; Zizovic, I. Application of cellulose acetate for controlled release of thymol. Carbohydr. Polym. 2016, 147, 344–353. [Google Scholar] [CrossRef]
- Braga, M.E.M.; Costa, V.P.; Pereira, M.J.T.; Fiadeiro, P.T.; Gomes, A.P.A.R.; Duarte, C.M.M.; de Sousa, C.H. Effects of operational conditions on the supercritical solvent impregnation of acetazolamide in Balafilcon A commercial contact lenses. Int. J. Pharm. 2011, 420, 231–243. [Google Scholar] [CrossRef]
- Banchero, M.; Mohamed, S.S.Y.; Leone, F.; Lopez, F.; Ronchetti, S.; Manna, L.; Onida, B. Supercritical Solvent Impregnation of Different Drugs in Mesoporous Nanostructured ZnO. Pharmaceutics 2019, 11, 340. [Google Scholar] [CrossRef] [PubMed]
- Molinaro, S.; Romero, M.C.; Boaro, M.; Sensidona, A.; Logazio, C.; Morris, M.; Kerry, J. Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. J. Food Eng. 2013, 117, 113–123. [Google Scholar] [CrossRef]
- Siracusa, V.; Blanco, I.; Romani, S.; Tylewicz, U.; Rocculi, P.; Rosa, M.D. Poly (lactic acid)-modified films for food packaging application: Physical, mechanical, and barrier behavior. J. Appl. Polym. Sci. 2012, 125, E390–E401. [Google Scholar] [CrossRef]
- Torres, A.; Ilabaca, E.; Rojas, A.; Rodriguez, F.; Galotto, M.J.; Guarda, A.; Villegas, C.; Romero, J. Effect of processing conditions on the physical, chemical and transport properties of polylactic acid films containing thymol incorporated by supercritical impregnation. Eur. Polym. J. 2017, 89, 195–210. [Google Scholar] [CrossRef]
- Sanchez-Garcia, M.D.; Lopez-Rubio, A.; Lagaron, J.M. Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci. Technol. 2010, 21, 528–536. [Google Scholar] [CrossRef]
- Mihai, M.; Huneault, M.A.; Favis, B.D. Crystallinity development in cellular poly (lactic acid) in the presence of supercritical carbon dioxide. J. Appl. Polym. Sci. 2009, 113, 2920–2932. [Google Scholar] [CrossRef]
- Yu, J.-P.; Guan, Y.-X.; Yao, S.-J.; Zhu, Z.-Q. Preparation of roxithromycin-loaded poly (l-lactic acid) films with supercritical solution impregnation. Ind. Eng. Chem. Res. 2011, 50, 13813–13818. [Google Scholar] [CrossRef]
- Piorkowska, E.; Kulinski, Z.; Galeski, A.; Maisrek, R. Plasticization of semicrystalline poly (L-lactide) with poly (propylene glycol). Polymer 2006, 47, 7178–7188. [Google Scholar] [CrossRef]
- Sajed, H.; Sahebkar, S.; Iranshahi, M. Zataria multiflora Boiss. (Shirazi thyme)—An ancient condiment with modern pharmaceutical uses. J. Ethnopharmacol. 2013, 145, 686–698. [Google Scholar] [CrossRef]
- Yamazaki, K.; Yamamoto, T.; Kawai, Y.; Inoue, N. Enhancement of antilisterial activity of essential oil constituents by nisin and diglycerol fatty acid ester. Food Microbiol. 2004, 21, 283–289. [Google Scholar] [CrossRef]
- Hamoud, R.; Zimmermann, S.; Reichling, J.; Wink, M. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine 2014, 21, 443–447. [Google Scholar] [CrossRef] [PubMed]
Sum of Squares | df | Mean Square | F-Value | p-Value | Source | |
---|---|---|---|---|---|---|
Model | 3.15 | 3 | 1.5 | 555.12 | <0.0001 | significant |
A-P | 0.3409 | 1 | 0.3409 | 179.97 | 0.0002 | significant |
B-T | 0.1768 | 1 | 0.1768 | 93.36 | 0.0006 | significant |
C-CO-Solvent | 2.64 | 1 | 2.64 | 1392.03 | <0.0001 | significant |
Residual | 0.0076 | 4 | 0.0019 | |||
Cor Total | 3.16 | 7 | ||||
R2 | Adjusted R2 | Predicted R2 | ||||
0.9976 | 0.9958 | 0.9904 |
No | Compounds | Result (%) | No. | Compounds | Result (%) |
---|---|---|---|---|---|
1 | α-Thujene | 1.01 | 14 | Spathlenol | 0.62 |
2 | α-Pinene | 3.37 | 15 | Caryophyllene oxide | 0.68 |
3 | β-Pinene | 0.74 | 16 | Monoterpene hydrocarbons | 23.91 |
4 | β-Myrcene | 1.32 | 17 | Oxygenated monoterpenes | 70.65 |
5 | p-Cymene | 0.67 | 18 | Total monoterpenoids | 94.56 |
6 | Cis-Ocimene | 6.43 | 19 | Sesquiterpene hydrocarbons | 2.83 |
7 | γ-Terpinene | 10.37 | 20 | Oxygenated sesquiterpenes | 0.62 |
8 | Linalool | 6.02 | 21 | Total sesquiterpenoids | 3.45 |
9 | Carvacrol methyl ether | 2.19 | 22 | Total | 98.02 |
10 | Thymol | 39.92 | |||
11 | Carvacrol | 21.37 | |||
12 | Thymol acetate | 0.47 | |||
13 | Trans-Caryophyllene | 2.83 |
Run | Pressure (P), X1 (MPa) | Temperature (T), X2 (K) | Impregnation Time, X3 (min) | Actual Impregnation Yield (wt.%) | Predicted Impregnation Yield (wt.%) |
---|---|---|---|---|---|
1 | 15 | 338 | 8 | 17.34 | 17.08 |
2 | 25 | 338 | 2 | 10.21 | 10.40 |
3 | 15 | 338 | 2 | 6.67 | 6.52 |
4 | 25 | 338 | 8 | 20.76 | 20.96 |
5 | 15 | 318 | 2 | 8.98 | 9.35 |
6 | 25 | 318 | 2 | 13.65 | 13.22 |
7 | 15 | 318 | 8 | 19.89 | 19.91 |
8 | 25 | 318 | 8 | 23.76 | 23.78 |
Source | Sum of Squares | df (Degree of Freedom) | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 269.02 | 3 | 89.67 | 746.27 | <0.0001 |
A-P | 30.03 | 1 | 30.03 | 249.92 | <0.0001 |
B-T | 15.96 | 1 | 15.96 | 132.83 | 0.0003 |
C-Time | 223.03 | 1 | 223.03 | 1856.05 | <0.0001 |
Residual | 0.4806 | 4 | 0.1202 | ||
Cor Total | 269.50 | 7 |
Viability (Log CFU/mL) | ||
---|---|---|
Samples | E. coli | S. aureus |
Control | 7.755 ± 7.114 b | 7.361 ± 6.633 b |
PLA | 7.771 ± 7.079 b | 7.398 ± 6.716 b |
Run 1 | N.D a | N.D a |
Run 2 | 6.954 ± 6.114 b | N.D a |
Run 3 | 7.079 ± 6.23 b | 6.491 ± 5.716 b |
Run 4 | N.D a | N.D a |
Run 5 | 7.041 ± 6.204 b | 6.415 ± 5.633 b |
Run 6 | N.D a | N.D a |
Run 7 | N.D a | N.D a |
Run 8 | N.D a | N.D a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadati Ardestani, N.; Rojas, A.; Esfandiari, N.; Galotto, M.J.; Babhadiashar, A.; Sajadian, S.A. Supercritical Fluid Extraction from Zataria multiflora Boiss and Impregnation of Bioactive Compounds in PLA for the Development of Materials with Antibacterial Properties. Processes 2022, 10, 1787. https://doi.org/10.3390/pr10091787
Saadati Ardestani N, Rojas A, Esfandiari N, Galotto MJ, Babhadiashar A, Sajadian SA. Supercritical Fluid Extraction from Zataria multiflora Boiss and Impregnation of Bioactive Compounds in PLA for the Development of Materials with Antibacterial Properties. Processes. 2022; 10(9):1787. https://doi.org/10.3390/pr10091787
Chicago/Turabian StyleSaadati Ardestani, Nedasadat, Adrián Rojas, Nadia Esfandiari, María José Galotto, Arman Babhadiashar, and Seyed Ali Sajadian. 2022. "Supercritical Fluid Extraction from Zataria multiflora Boiss and Impregnation of Bioactive Compounds in PLA for the Development of Materials with Antibacterial Properties" Processes 10, no. 9: 1787. https://doi.org/10.3390/pr10091787
APA StyleSaadati Ardestani, N., Rojas, A., Esfandiari, N., Galotto, M. J., Babhadiashar, A., & Sajadian, S. A. (2022). Supercritical Fluid Extraction from Zataria multiflora Boiss and Impregnation of Bioactive Compounds in PLA for the Development of Materials with Antibacterial Properties. Processes, 10(9), 1787. https://doi.org/10.3390/pr10091787