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Highlights:

• The chemical composition of the Z. multiflora EO extract obtained by supercritical extraction was
identified by GC-MS.

• DPPH assays demonstrated the antioxidant activity of Z. multiflora EO extract.
• Z. multiflora EO extract was impregnated in PLA films by supercritical impregnation.
• The operational parameters of the supercritical impregnation process were optimized using FFD.
• The impregnated samples were characterized by SEM, FTIR, DSC and XRD.
• Impregnated PLA films showed antibacterial activity against E. coli and S. aureus.

Abstract: In this research, the extraction with supercritical carbon dioxide (SC-CO2) and the subsequent
impregnation of the extracted bioactive compounds from Zataria multiflora Boiss (Z. multiflora) into
polylactic acid (PLA) films was investigated. The effects of temperature (318 and 338 K), pressure
(15 and 25 MPa) and cosolvent presence (0 and 3 mol%) on the extraction yield were studied. The
SC-CO2 assisted impregnation runs were carried out in a discontinuous mode at different pressure
(15 and 25 MPa), temperature (318 and 328 K), and time (2 and 8 h) values, using 0.5 MPa min−1

as a constant value of depressurization rate. ANOVA results confirmed that pressure, temperature,
and time influenced the extraction yield. Moreover, antioxidant activities of extracts of Z. multiflora
were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. In addition,
the antibacterial activities of the extracts were screened against standard strains of Staphylococcus
aureus (S. aureus) and Escherichia coli (E. coli). The results of this investigation indicated that extracts
obtained from the aerial parts of Z. multiflora possessed antioxidant and antibacterial properties. The
impregnated samples presented strong antibacterial activity against the selected microorganisms.

Keywords: supercritical solvent impregnation; polylactic acid; Zataria multiflora Boiss; antibacterial
active packaging
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1. Introduction

Many medicinal plants (herbs) have antibacterial activity due to their high content of
essential oils (EOs). Antibacterial properties of EOs from rosemary, oregano, clove, thyme,
and Zataria multiflora Boiss (Z. multiflora) against bacteria and fungi have been reported
previously [1]. Phenolic compounds, existing in essential oils, have antibacterial activity
and are commonly categorized as Generally Recognized as Safe (GRAS) substances used
to delay the growth of food spoilage microorganisms [2]. Z. multiflora, native to Iran with
the Persian name of Avishane Shirazi appertaining to the family Labiatae, is traditionally
used in food, and as natural medicine due to its antiseptic and antitussive properties. In
addition, the antibacterial and antioxidant properties of Z. multiflora essential oil (EO) have
been reported [3–5].

Over the past three decades, the technologies based on supercritical fluids (SCF) as
clean and green methods, have attracted enormous interest in various industries, con-
sidering food, pharmaceutical, and biochemical fields [6]. Carbon dioxide (CO2), due to
its unique properties such as accessible critical point (Pc = 7.38 MPa and Tc = 304.1 K),
diffusivity similar to the gas phase, and density like the liquid phase is the most used
supercritical solvent. Moreover, CO2 presents low viscosity, is non-toxic, non-flammable
and it can be recycled with high degrees of purity [6–8]. SC-CO2 is used in many food and
pharmaceutical processes, such as extraction from solids (natural materials), supercritical
fluid fractionation, highly selective separations and purification, supercritical reactions
to increase the selectivity and improvement of reaction kinetics and enzymatic reactions,
incorporation of active substances in food grade materials for functional foods, production
of drug particles (micro/nano size) to increase the drug bio-activity and bio-availability,
drug delivery, etc. [9–12].

Supercritical fluid impregnation is a modern technique with many applications at
laboratory and industrial scales [13]. Hence, this method has received much attention from
researchers and many authors around the world have published papers on its applications
and advantages. In the supercritical impregnation process, SC-CO2 acts as a solvent for
the solute (e.g., active nutraceutical compounds, bioactive substances, drugs), as well
as a polymer swelling agent to incorporate the dissolved solute into the solid matrix
(e.g., polymer). Therefore, this method can be called supercritical solvent impregnation (SSI)
process. The excellent mass transport properties of SC-CO2 related to its high diffusivity
and low surface tension are the main factors to select SC-CO2 as impregnation medium.
Comparing SSI to conventional impregnation methods, SSI is done in shorter times, there is
no need for organic solvents and does not produce waste. In the SSI process, a drying step
is not required, energy inputs to develop the process are lower than those of conventional
processes and the excess of active substances can be recycled [13–15].

The SC-CO2 assisted impregnation process consists of three steps; (i) dissolution step,
in which the pure substances or active components dissolve in the supercritical fluid,
(ii) sorption step, at this stage the swelling of the polymer take place by the sorption of
SC-CO2 and the dissolved active substances, and (iii) depressurization step; at this stage, by
a fast decrease of pressure (i.e., decrease of solvent power) inside the high-pressure vessel,
the active substances that have less affinity to the polymer could precipitate in higher
extent on the polymeric matrix increasing the impregnation yield. However, a very fast
decompression may damage the polymeric structure [16–20]. Today, the SC-CO2 assisted
impregnation has replaced conventional techniques for encapsulating active nutraceutical
compounds into food grade substances to protect them against degradation (functional
foods) or to incorporate active substances into polymeric matrices for active food packaging
applications [21–23].

Today, the use of polymers from renewable sources with biodegradable properties has
arisen as a way to decrease the negative effect on the environment of petroleum derived
plastics [24]. Poly (lactic acid) (PLA) is an FDA-approved aliphatic polyester for application
in foods, cosmetics, and pharmaceutical fields. Particularly in the food industry, the use of
PLA has become relevant in packaging and active packaging development [25–27]. Active
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food packaging is an innovative concept that involves the participation of natural active
components with antioxidant and antibacterial properties in the packaging process to
improve the shelf life and safety of food products using a high-tech method with lower
processing costs than conventional methods [28–30]. To express the importance and vari-
ous applications of the SSI technique, the researches and published papers on this subject
in the last few years can be mentioned. Milovanovic et al. [26] used the impregnation
with SC-CO2 (batch and semi-continuous processes) to incorporate thymol (Thy) into poly
(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) films and analyzed the chemical, thermal
and antibacterial properties of the films. Villegas et al. [31] applied the SSI process to
incorporate cinnamaldehyde (Ci) as a natural antibacterial compound into PLA films for
food packaging applications. Franco et al. [32] studied the adsorption of α-tocopherol
(TOC) on monolayer and multilayer polyethylene terephthalate (PET)/polypropylene (PP)
films via SSI at 17 MPa and 40 ◦C. They have shown that the impregnation using SC-CO2
was a successful process for the preparation of active packaging films. Bastante et al. [33]
examined the SSI process to incorporate antioxidants into multilayer PET/PP films and
evaluated the main factors of the process, i.e., time, temperature, depressurization rate,
the type of active material, and the modifier such as ethanol. Goñi et al. [34] used the
SC-CO2 assisted impregnation process to incorporate two insecticidal terpene ketones into
LDPE/sepiolite nanocomposite films. Champeau et al. [16] reviewed the supercritical CO2
assisted impregnation as a solvent free method to load drugs into drug-eluting implants.
Performing SSI at low to medium temperatures for biomedical applications (temperature-
sensitive) and obtaining a final solvent-free matrix were expressed as the advantages of it.
The supercritical impregnation of Thy and Ci in bio nanocomposite films based on PLA
and Cloisite 30B and the analysis of their antibacterial activity was studied by Villegas
et al. [35]. Rojas et al. [20] wrote a review on the CO2-assisted impregnation process in food
applications and examined the effect of the operational variables (temperature, pressure,
depressurization rate and time) on the incorporation of active substances. The authors
showed that the effect of pressure and temperature on the active compound loading can be
predicted mainly through the study of the phase behavior between the active compounds
and SC-CO2. Adenekan and Hutton–Prager [36] studied the impregnation of lkyl ketene
dimer (AKD) in cellulose fibers using CO2 and n-heptane at sub-and supercritical condi-
tions. The optimized solubility of AKD dissolved in heptane and SC-CO2 was determined
between pressures of 10–20 MPa.

Based on our literature review, no study has been performed on the SC-CO2–assisted
impregnation of Z. multiflora EO extracts into PLA to produce antibacterial food packaging
films. A Full factorial design (FFD) has been applied to optimize the operational parameters
(time, pressure, and temperature) on the loading yield. The antibacterial activity of the
films and the antioxidant properties of the Z. multiflora EO extract were investigated.

2. Material and Methods
2.1. Materials

The Z. multiflora (Avishane shirazi) used in this study has been provided from Shiraz,
Iran. The samples were shadow-dried at room temperature to achieve a minimum of
moisture content. PLA, was of commercial grade and purchased from Shiraz (Iran). Carbon
dioxide (99.99% purity) was supplied by Aboghadareh Co. (Shiraz, Iran). Analytical-grade
ethanol (99.9% HPLC grade) and methanol were provided by Merck (Darmstadt, Germany).
2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical, was procured from Sigma-Aldrich Chemie
(Steinheim, German). The food-borne microbial strains, Gram-negative Escherichia coli
(O157:H7) and Gram-positive Staphylococcus aureus (ATCC 25923), were supplied by the
Laboratory of Biotechnology of the University of Kashan of Iran.
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2.2. Method
2.2.1. Experimental Design

Several design of experiments (DOEs) techniques can be applied to evaluate and
optimize experimental parameters. Accordingly, a full factorial design (FFD) has been
applied to optimize the operational parameters of the impregnation of PLA with bioactive
compounds through the SSI process. The effect of all the parameters and their interactions
on the impregnation yield results were investigated in an FFD. In this experimental design,
all the input parameters were set at two levels each one. These levels were termed as
high and low or +1 and −1, respectively. If there are k parameters, each at 2 levels,
a full factorial design will be of 2k runs. Thus, a 23 factorial experimental design was
developed to appraise the effect of three factors; pressure (X1: 15 and 25 MPa), temperature
(X2: 318 and 338 K), and impregnation time (X3: 2 and 8 h) on the impregnation yield. All
the impregnation runs were performed in duplicate. The statistical impact of these three
operational parameters on the impregnation yield of Z. multiflora EO in PLA (responses)
was assessed by analysis of variance (ANOVA) using Design expert (version 12.0.3.0, Stat-
Ease Inc., Minneapolis, MN, USA) software. Furthermore, the effects on the extraction
yield of Z. multiflora EO of the operating temperature (318 and 338 K), pressure (15 and
25 MPa) and cosolvent use (0 and 3 mol%) were studied by FFD.

2.2.2. Supercritical Fluid Extraction Procedure

The extraction of bioactive compounds from the aerial parts of dried Z. multiflora was
done in a SFE pilot plant illustrated in Figure 1. The capacity of the extraction vessel was
10 mL with an internal diameter of 0.01 m and a height of 0.12 m. The system was equipped
with a high-pressure pump and 316 stainless steel fittings and pipes with high-pressure
tolerance. After loading the dried plant (Z. multiflora) with glass beads, used to increase the
contact surface between dried Z. multiflora and SC-CO2 and therefore improve the mass
transfer during extraction, CO2 from a gas cylinder, that has been previously liquefied
by a refrigeration unit, entered into the main extraction column after passing through the
surge tank. The pump creates the pressure required to reach the supercritical condition and
temperature was controlled by placing the extraction column inside an oven. The fixed
time for the process was 120 min. The extracted EO (bioactive compounds) was carefully
collected since it was a small amount and very sensitive. The extraction yield of the
Z. multiflora EO was calculated using the Equation (1):

Yield (%) =
Amount o f extracted oil (g)
Amount o f total sample (g)

× 100 (1)
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Figure 1. Schematic representation of the supercritical CO2 extraction set-up. E-1: CO2 cylinder;
E-2: Needle valve; E-3: Filter; E-4: Refrigerator unit; E-5 Compressor; E-6: High pressure pump;
E-7: Oven; E-8: Surge tank; E-9: Extraction cell; E-10: Back pressure; E-11: Micro metered valve;
E-12: Sampler; E-13: Automation.
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The details of the supercritical extraction apparatus and description of the method are
given in our previous works [37–41].

2.2.3. Supercritical Solvent Impregnation Process

Figure 2 presents the setup used for the SSI process of Z. multiflora EO extract in PLA
films. This setup was consisting of a CO2 cylinder (E-1), needle valve (E-2), a molecular
sieve filter (E-3), a refrigerator unit (E-4), a high-pressure pump (air driven liquid pump,
type-M64, Shineeast Co., Shandong, China) (E-5), an air compressor (E-6), an oven (Memert)
(E-7), a magnetic stirrer (100 rpm, Alfa, D-500 180)) (E-8), a heating coil, a stainless-steel
impregnation cell (E-9), pressure gage (E-10), a back-pressure valve (Xi’an Shelok Instru-
ment Technology Co., Xi’an, China) (E-11), micro metered valve (E-12), and an automation
system (E-13).

Processes 2022, 10, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 2. Schematic representation of the SC-CO2-assisted impregnation apparatus. E-1: CO2 cylin-
der; E-2: Needle valve; E-3: Filter; E-4: Refrigerator unit; E-5 High pressure pump; E-6: Compressor; 
E-7: Oven; E-8: Magnetic stirrer; E-9: Impregnation cell; E-10: Pressure gauge; E-11: Micro metered 
valve; E-12: Back pressure; E-13: Automation. 

Temperature and pressure were measured with an accuracy of ±0.1 K and ±0.1 MPa, 
respectively. In all experiments, the mass ratio of PLA and Z. multiflora EO extract was 
maintained constant at 1:1. For each experiment, 3 mL of Z. multiflora EO extract was de-
posited at the lower part of the impregnation cell and PLA was incorporated at its upper 
side, a metal mesh separated both sides of the cell. After a determined impregnation time, 
the impregnated film was taken out from the cell, softly cleaned and stored in glass flasks 
at 277 K  for their posterior characterization. 

At the first step, CO2 gas was filtered and liquefied using a micro filter and a refrig-
erator unit, respectively. Then, the system was pressurized to the working pressure intro-
ducing more liquefied CO2 using a reciprocating pump. A pressure gauge and a pressure 
transducer were used to control the pressure of the system. In addition, the impregnation 
cell was placed inside an oven to achieve the required temperature. The completely mix-
ing of the Z. multiflora EO with SC-CO2 was guarantee by magnetic stirring at 100 rpm 
allowing the impregnation of PLA with a SC-CO2 phase saturated with the Z. multiflora 
EO extract. During this time, the swelling and impregnation process proceeded. Finally, 
the impregnation cell was depressurized at a controlled rate of 0.5 MPa/min by manually 
regulating a micrometric valve. During the sudden pressure drop in the system, the entire 
pipe and outlet valve were heated to avoid their freezing due to the CO2 expansion (Joule–
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Figure 2. Schematic representation of the SC-CO2-assisted impregnation apparatus. E-1: CO2 cylin-
der; E-2: Needle valve; E-3: Filter; E-4: Refrigerator unit; E-5 High pressure pump; E-6: Compressor;
E-7: Oven; E-8: Magnetic stirrer; E-9: Impregnation cell; E-10: Pressure gauge; E-11: Micro metered
valve; E-12: Back pressure; E-13: Automation.

Temperature and pressure were measured with an accuracy of ±0.1 K and ±0.1 MPa,
respectively. In all experiments, the mass ratio of PLA and Z. multiflora EO extract was
maintained constant at 1:1. For each experiment, 3 mL of Z. multiflora EO extract was
deposited at the lower part of the impregnation cell and PLA was incorporated at its upper
side, a metal mesh separated both sides of the cell. After a determined impregnation time,
the impregnated film was taken out from the cell, softly cleaned and stored in glass flasks
at 277 K for their posterior characterization.

At the first step, CO2 gas was filtered and liquefied using a micro filter and a re-
frigerator unit, respectively. Then, the system was pressurized to the working pressure
introducing more liquefied CO2 using a reciprocating pump. A pressure gauge and a
pressure transducer were used to control the pressure of the system. In addition, the
impregnation cell was placed inside an oven to achieve the required temperature. The
completely mixing of the Z. multiflora EO with SC-CO2 was guarantee by magnetic stirring
at 100 rpm allowing the impregnation of PLA with a SC-CO2 phase saturated with the
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Z. multiflora EO extract. During this time, the swelling and impregnation process proceeded.
Finally, the impregnation cell was depressurized at a controlled rate of 0.5 MPa/min by
manually regulating a micrometric valve. During the sudden pressure drop in the sys-
tem, the entire pipe and outlet valve were heated to avoid their freezing due to the CO2
expansion (Joule–Thomson effect).

The amount of impregnated oil in the film of PLA was gravimetrically measured using
a precision digital balance (±0.0001 g). The impregnation yield (Y%) of the Z. multiflora EO
extract was calculated conforming to Equation (2):

Y% =
m f − mi

mi
× 100 (2)

In this equation mi and m f are the mass of the PLA film before and after the impregna-
tion process, respectively. It is noteworthy that in the initial tests, it was found that CO2
was expelled quickly from the polymer surface due to the low thickness of the used PLA
films, and the amount of bioactive substance on them could be obtained gravimetrically
without interference.

2.2.4. Gas Chromatography-Mass Spectrometry (GC-MS)

The main components of the Z. multiflora EO extract obtained using SC-CO2 at the
optimal processing conditions were determined by GC-MS analysis. For these assays
used an Agilent 7890A chromatograph coupled with an Agilent 5975C mass spectrometer
(Agilent Technologies, Santa Clara, CA, USA) and a HP-5MS capillary column (phenyl
methyl siloxane, 30 × 0.25 mm; 0.25 µm film thickness) (Agilent Technologies, USA) were
used. Ionization energy was set at 70 eV, scans were developed every 0.5 s and the mass
range was between 35–400. The temperature profile inside the oven was between 60 and
240 ◦C with an increase rate of 3 ◦C/min. The temperature in the injector and detector were
240 and 250 ◦C, respectively. The gas carrier was Helium used at 0.9 mL/min with a split
ratio of 1:50. The relative percentages of the determined components of the Z. multiflora EO
extract were obtained from the integrations of the peak areas without using a correction
factor. ChemStation software was used to process the mass spectra and chromatograms.
Know retention times of patter alkanes were used to determine the retention rate of the
components of the Z. multiflora EO extract under the same chromatographic conditions
stablished by Van Den Dool and Kratz [42]. Finally, the components of the Z. multiflora EO
extract were identified by cross-check their mass spectra with the Wiley library or with the
published mass spectra.

2.2.5. Antibacterial Activity of Impregnated Films

In this work, E. coli and S. aureus selected as representative Gram-negative and Gram-
positive bacterium, respectively, were used to evaluate the antibacterial effect of the impreg-
nated samples. In this regard, the standard test method was used to estimate the stabilized
antibacterial activity in dynamic contact conditions [31]

The mean initial concentration of microorganisms and serial dilutions in buffer were
determined at 106 CFU/mL and from 101 to 108, respectively. On agar, which was al-
ready divided into 1/4, nano culture suspensions of microorganisms (10 µL) were plated.
They were then incubated at 37 ◦C for 24 h and after this time, the colonies per quarter
were counted. The results were evaluated as the survival of microorganisms or viability
(CFU/mL), and their ability to multiply in the solid medium and finally the formation
of a colony [43]. According to the following equation, the quantification in CFU/mL
was calculated,

Viability
(

CFU
mL

)
=

Number o f colonies
mL o f seeded microorganisms

· Dilution f actor (3)
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2.2.6. Antioxidant Activity of Z. multiflora EO Extract

The antioxidant properties of the Z. multiflora EO extract was determined through the
DPPH method [44]. Aliquots of 50 µL of different concentrations of Z. multiflora EO extract
were mixed with 5 mL of a methanol solution with 0.004% of DPPH and left in dark at
room temperature during 30 min. Then, the absorption of the different samples was read at
517 nm and the percentage of inhibition (%I) of the free radicals of DPPH was calculated
as follows:

I% = (Ablank − Asample/Ablank) × 100 (4)

Ablank correspond to the absorption of the control sample (containing all the reagents
except the EO extract) and Asample i the absorption of the EO extract sample. The EO extract
concentration providing 50% inhibition (IC50) was calculated from the graph plotting
inhibition percentage against EO extract concentration. All tests were done in triplicate.

2.3. Physical Characterization of Impregnated Samples

The crystalline structures of the neat PLA and PLA samples impregnated with
Z. multiflora EO extract were study by XRD using a Philips X pert Pro MPD diffractometer
(PANalytical, Almelo, The Netherlands). The XRD assays were developed using Cu-Kα
radiation (λ = 0.154 nm) within 2θ range of 10–80◦ at room temperature. On another hand,
the change of the thermal properties of the PLA films due to the impregnation of the
Z. multiflora EO extract was evaluated by DSC assays (DSC 404 F3 Pegasus, Netzsch Co.,
Hanau, Germany). In these assays, samples of 5 mg were placed in hermetically sealed
capsules and heated at a rate of 10 ◦C/min up to 300 ◦C under nitrogen purge. The chemical
structure of the impregnated bioactive compounds and their intermolecular interactions
with PLA were investigated by FTIR spectroscopy analyses in the range of 4000 to 500 cm−1

at room temperature. For these assays, KBr disks prepared by pressing 3 mg of each sample
and 300 mg of spectral-grade potassium bromide (KBr) were used. The morphology of the
impregnated samples was analyzed by FESEM on a VEGA 3 XMU system (TESCAN, Brno,
Czech Republic). For this test, the film samples were sputter-coated with gold-palladium
alloy using an SDC005 coater machine (BAL-TEC-SDC005, Pfäffikon, Switzerland) at
25 ◦C for 90 s.

3. Results and Discussion
3.1. Supercritical Fluid Extraction of EO from Z. multiflora

Figure 3 shows the effect of pressure, temperature, and the use of cosolvent over the
extraction of Z. multiflora EO extract using a fixed Z. multiflora particle size (0.30 mm) and
extraction time (150 min). As presented in Figure 3, pressure and cosolvent had a positive
effect on the extraction yield while temperature had a negative effect on this parameter.
In this case, as seen in Figure 3a, the yield of extraction was increased by increasing
pressure from 15 to 25 MPa. This may be attributed to the increment of the density of
CO2 which consequently caused an increase in the solubility of the Z. multiflora EO extract
in SC-CO2 [45–47].

Figure 3b shows that the yield of extraction of the EO decreased as temperature
increased. This result could be explained by the fact that the increase of temperature not
only improves the diffusion coefficient of SC-CO2, increases vapor pressure and volatility of
the EO in SC-CO2 but also leads to a decrease in the density of SC-CO2, which consequently
decreases the solvent power of SC-CO2. Thus, in this work, the effect of reducing density
on solubility prevailed over the effect of increasing the EO vapor pressure. The analysis
of variance (ANOVA) is presented in Table 1. ANOVA was conducted considering R2,
adjusted R2, predicted R2 and p-values. In addition, ANOVA was applied to analyze the
significance of the experimental model and its suitability. Based on ANOVA results (Table 2),
the effect of temperature on the extraction yield was lower than the other parameters.
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pressure of 15 MPa, on the yield of extraction.

Table 1. Analysis of variance (ANOVA) for the model fitted to the SC-CO2 extraction process.

Sum of Squares df Mean Square F-Value p-Value Source

Model 3.15 3 1.5 555.12 <0.0001 significant
A-P 0.3409 1 0.3409 179.97 0.0002 significant
B-T 0.1768 1 0.1768 93.36 0.0006 significant

C-CO-Solvent 2.64 1 2.64 1392.03 <0.0001 significant
Residual 0.0076 4 0.0019
Cor Total 3.16 7

R2 Adjusted R2 Predicted R2

0.9976 0.9958 0.9904
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Table 2. Chemical composition of Z. multiflora EO extract by GC/MS.

No Compounds Result (%) No. Compounds Result (%)

1 α-Thujene 1.01 14 Spathlenol 0.62
2 α-Pinene 3.37 15 Caryophyllene oxide 0.68

3 β-Pinene 0.74 16 Monoterpene
hydrocarbons 23.91

4 β-Myrcene 1.32 17 Oxygenated
monoterpenes 70.65

5 p-Cymene 0.67 18 Total monoterpenoids 94.56

6 Cis-Ocimene 6.43 19 Sesquiterpene
hydrocarbons 2.83

7 γ-Terpinene 10.37 20 Oxygenated
sesquiterpenes 0.62

8 Linalool 6.02 21 Total sesquiterpenoids 3.45
9 Carvacrol methyl ether 2.19 22 Total 98.02

10 Thymol 39.92
11 Carvacrol 21.37
12 Thymol acetate 0.47
13 Trans-Caryophyllene 2.83

Figure 3c shows the effect of the cosolvent addition on the extraction yield of
Z. multiflora EO extract. Using ethanol as cosolvent at 3% enhanced the extraction yield of
the EO given that it improves the polarity of the extraction fluid. Particularly, the addition
of ethanol to the supercritical solvent seems to provide an enhanced extraction of pigment
and polar compounds. This behavior has been previously reported [48].

In this work, parameters ranged as follows: [P = 15 and 25 MPa], [T = 318
and 338 K], and [co-solvent = 0 and 3%]. The optimized process conditions were de-
termined as: P = 25 MPa, T = 318 K, and co-solvent = 3%. The extraction yield under the
optimized process conditions was 2.56 ± 0.04 wt.%.

Miranda-Villa et al. studied the effect of pressure, temperature and depressuriza-
tion rate in the SC-CO2-assisted impregnation of R-(−)-carvone in PLA films, reporting
the highest carvone impregnation (30 wt.%) at 40 ◦C, 9.8 MPa, and 0.6 MPa/min [49].
Torres et al. [50] reported the impregnation of thymol in PLA films using pressures
ranging between 9 and 12 MPa, 40 ◦C and three different values of depressurization
rate (0.1, 1.0, and 10 MPa/min), obtaining thymol loadings between 13.5 to 20.5 wt.%.
Milovanovic et al. [51] reported the batch impregnation of thymol in PLA/PCL blended
films using SC-CO2 at 10 MPa and 40 ◦C. The maximized thymol loading with different
operating times was 35.8 wt.%. Ivanovic et al. [52] investigated the impregnation of thymol
EO in PCL and PCL-HA films by SSI. The process was done at temperatures of 35–40 ◦C
and pressures of 13–17.

3.2. Gas Chromatography Results

The chemical compositions of the Z. multiflora EO extract obtained by SC-CO2 ex-
traction at the optimal conditions is presented in Table 2. 15 compounds were identi-
fied that made up 98.02% of the Z. multiflora EO. As shown in Table 2, the main compo-
nents were oxygenated monoterpenes compounds such as thymol (39.2 wt.%), carvacrol
(21.37 wt.%) and γ-terpinene (10.37 wt.%). Other compounds with high well-known an-
tibacterial activity such as cis-ocimene (6.43 wt.%), linalool (6.02 wt.%), α-pinene (3.37 wt.%),
trans-caryophyllene (2.83 wt.%), and β-Myrcene (1.32 wt.%) were found in the extract. In
this way, the Z. multiflora EO extract obtained by SC-CO2 extraction was mainly com-
posed of three compounds with well-known antibacterial properties: thymol, carvacrol
and γ-terpinene [3–5]. This result agrees with the chemical composition of Z. multiflora EO
extracts reported in other studies. Saei–Dehkordi et al. reported the chemical composition,
antioxidant and antibacterial properties of the EO extracted from Z. multiflora collected
from five different regions of Iran. Particularly, thymol and carvacrol were identified as the
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main components of the EO of Z. multiflora collected from Hajiabad (47.46 and 9.64 wt.%),
Farashband (46.61 and 17.26 wt.%), Yazd (64.87 and 22.39 wt.%), Najaabad (40.49 and
4.65 wt.%), and Pldokhtar (27.05 and 2.7 wt.%) [53]. Abbasi et al. extracted the EO of
Z. multiflora collected from the Zanjan region in Iran by a hydro-distillation method and de-
termined as its major constituents to carvacrol (36.62%), thymol (17.86 wt.%), and p-cymene
(11.35 wt.%) [54]. Thymol and carvacrol have also been found as the main components
of Z. multiflora EO extracts obtained by other methods of extraction. The steam-distilled
method was used to extract the EO from Z. multiflora, the results indicated that the highest
quantitative component was thymol [55–57]. Sadeghi et al. [58] reported the same trend for
a Z. multiflora sample from Neyriz in Iran. In other cases, carvacrol has the highest amount
in the oil composition [59–62].

3.3. Supercritical Solvent Impregnation of PLA Films

The results of impregnation yield of Z. multiflora EO extract into PLA films at different
operating conditions, including the three independent variables which are pressure, tem-
perature, and impregnation time are reported in Table 3. The SSI process allowed to obtain
PLA films with impregnation yields ranging between 6.67 ± 0.76 and 23.76 ± 1.18 wt.%.
The graph of the experimental results of Z. multiflora EO extract impregnation against the
theoretical values predicted by the model, are shown in Figure 4. The experimental data
and the values predicted by the model were confirmed together, which means that there
was a good distribution of the data points near the straight line and can be evaluated by
the coefficient of determination (R2). The obtained values of R2, Adjusted R2, Predicted
R2 and Adeq Precision by FFD were 0.9982, 0.9969, 0.9929, and 70.4160, respectively. The
predicted R2 of 0.9929 was in reasonable agreement with the Adjusted R2 of 0.9969; i.e., the
difference was less than 0.2. Adeq Precision (AP) compares the range of predicted values at
design points to the average prediction error and measures the signal-to-noise ratio (S/N).
A ratio greater than 4 is desirable. The ratio of 70.416 indicates an adequate signal.

Table 3. Actual variables used in the FFD and impregnation yields of EO in PLA films.

Run Pressure (P),
X1 (MPa)

Temperature
(T), X2 (K)

Impregnation
Time, X3 (min)

Actual
Impregnation
Yield (wt.%)

Predicted
Impregnation
Yield (wt.%)

1 15 338 8 17.34 17.08
2 25 338 2 10.21 10.40
3 15 338 2 6.67 6.52
4 25 338 8 20.76 20.96
5 15 318 2 8.98 9.35
6 25 318 2 13.65 13.22
7 15 318 8 19.89 19.91
8 25 318 8 23.76 23.78

The statistical analysis of variance (ANOVA), based on the FFD was applied to in-
vestigate the significance and determinate the effects of the independent variables on the
response. The ANOVA results are reported in Table 4. Small p-values (less than 0.05)
showed that pressure, temperature and impregnation time have significant effects on the
EO impregnation yield.
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Table 4. Analysis of variance (ANOVA) for the model fitted to the SC-CO2 impregnation process.

Source Sum of Squares df (Degree
of Freedom) Mean Square F-Value p-Value

Model 269.02 3 89.67 746.27 <0.0001
A-P 30.03 1 30.03 249.92 <0.0001
B-T 15.96 1 15.96 132.83 0.0003

C-Time 223.03 1 223.03 1856.05 <0.0001
Residual 0.4806 4 0.1202
Cor Total 269.50 7

After full design, the coded equation was presented to provide the optimal parameters
and indicate which parameters were significant as follows:

y = 15.16 + 1.94X1 − 1.4X2 + 5.28X3 (5)

where y, X1, X2 and X3 are Impregnation yield, pressure, temperature and impregnated
time, respectively.

3.4. Effect of Operational Conditions on the Impregnation of EO in PLA Films

In this study, pressure was one of the operational parameters in the SSI process. As
shown in Figure 5a, with pressure increasing from 15 to 25 MPa at the constant temperature
of 338 K, the EO impregnation yield increased from 6.67 to 10.21 wt.%. The increase in the
impregnation yield as pressure increased, could be related to the increase of the SC-CO2
density, which improves the solubility of the EO extract in the dense CO2. Furthermore,
the swelling and plasticizing effect of CO2 on the polymer increased with pressure, which
could provide more spaces for the diffusion of the supercritical mixture into the polymeric
matrix improving the impregnation yield [63].



Processes 2022, 10, 1787 12 of 21

Processes 2022, 10, x FOR PEER REVIEW 13 of 23 
 

 

CO2 density, which improves the solubility of the EO extract in the dense CO2. Further-
more, the swelling and plasticizing effect of CO2 on the polymer increased with pressure, 
which could provide more spaces for the diffusion of the supercritical mixture into the 
polymeric matrix improving the impregnation yield [63]. 

 
Figure 5. One factor plot to represent the effect of (a) pressure at a constant temperature of 338 K 
and impregnation time of 2 h (b) temperature at a constant pressure of 25 MPa and time of 2 h, and 
(c) time at a constant temperature of 338 K and pressure of 25 MPa, on the loading of EO in PLA 
films. 

Some authors in literature reported an increase in impregnation yield with increasing 
pressure. Li and Han [64] reported the greatest impregnation of styrene in LDPE films 
when pressure was raised to 13 MPa (at 35 °C). Meanwhile, Torres et al. [65] indicated an 
increase in the impregnation of thymol when pressure was raised from 7 to 12 MPa at 40 °C. 
Shen et al. [18] reported the same behavior for the impregnation of vanillin in cellulose 
acetate fibers. 

The effect of temperature on the impregnation yield of Z. multiflora EO extract in PLA 
films at constant pressure and time can be seen in Figure 5b. As shown in Figure 5b, in-
creasing temperature from 318 to 338 K, at constant pressure (25 MPa) and impregnation 
time (2 h), decreased the EO impregnation yield from 13.65 to 10.21 wt.%, which indicates 
a negative effect of temperature on the impregnation of Z. multiflora EO in PLA. The same 

Figure 5. One factor plot to represent the effect of (a) pressure at a constant temperature of 338 K
and impregnation time of 2 h (b) temperature at a constant pressure of 25 MPa and time of 2 h, and
(c) time at a constant temperature of 338 K and pressure of 25 MPa, on the loading of EO in PLA films.

Some authors in literature reported an increase in impregnation yield with increasing
pressure. Li and Han [64] reported the greatest impregnation of styrene in LDPE films
when pressure was raised to 13 MPa (at 35 ◦C). Meanwhile, Torres et al. [65] indicated
an increase in the impregnation of thymol when pressure was raised from 7 to 12 MPa at
40 ◦C. Shen et al. [18] reported the same behavior for the impregnation of vanillin in
cellulose acetate fibers.

The effect of temperature on the impregnation yield of Z. multiflora EO extract in
PLA films at constant pressure and time can be seen in Figure 5b. As shown in Figure 5b,
increasing temperature from 318 to 338 K, at constant pressure (25 MPa) and impregna-
tion time (2 h), decreased the EO impregnation yield from 13.65 to 10.21 wt.%, which
indicates a negative effect of temperature on the impregnation of Z. multiflora EO in PLA.
The same trend was obtained for 15 MPa and both impregnation times (Figure 6a,b). The
effect of temperature over an active compound loading can be explained according to the
interactions between the components of the system (EO extract, SC-CO2 and PLA) and
the changes in the physical properties of the polymers induced by temperature. Partic-
ularly, increasing temperature at constant pressure decreases the density of CO2 which
increases the diffusion coefficient of CO2 in a polymer structure allowing to increase the
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amount of CO2 adsorbed in the polymer, negatively impacting on the interaction between
the solute to be impregnated and the polymer [20]. This sorption phenomenon could be
improved due to the increase of the movement of PLA chains as temperature increases.
Moreover, the solubility of an active solute decreases as temperature increases at constant
pressure due to the decrease in CO2 density which establishes a lower gradient of concen-
tration for the mass transfer process of the active compound from the dense CO2-phase
to the polymer. These facts explained the negative effect of increasing temperature from
35 to 55 ◦C on the caffein loading in PET/PP films using pressure values between 10 and
40 MPa [33]. Finally, the degree of impregnation of the substance in the polymeric matrix
depends on the temperature tolerance of the bioactive and the polymers. The obtained
results are consistent with the findings of other researchers [66–69].
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The influence of increasing the impregnation time from 2 to 8 h, at constant tem-
perature and pressure, on the impregnation yield of Z. multiflora EO extract is shown
in Figure 5c. The necessary time to reach the equilibrium condition is one of the main
factors in the SSI process appertaining to the type of the bioactive component, the physical
properties of the polymer and the operational process conditions pressure and temperature.
According to Table 4, with increasing the impregnation time from 2 h to 8 h, at a constant
pressure of 25 MPa and temperature of 338 K, the loading of Z. multiflora EO extract in
PLA increased from 10.40 to 20.96 wt.%. Particularly, a prolongation of the impregnation
process leads to an increased swelling and flexibility of the polymer and thus increases
the adsorption of SC-CO2 into the polymer. Therefore, with more swelling of the polymer,
the diffusion of bioactive molecules and the amount of transferred bioactive compounds
from the SC-CO2 to the polymer increases. In fact, the swelling and plasticization of the
polymer and diffusion of the bioactive molecules into the polymeric structure are time-
dependent phenomena during the SSI [70]. The positive effect of the impregnation time on
the quantity of the loaded material in the polymeric matrix has been also reported by other
researchers [67,71–73].
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3.5. Characterization of the PLA-Z. multiflora System
3.5.1. Fourier Transform Infrared (FTIR) Spectroscopy

Fourier transform infrared spectroscopy (FTIR) analyses were carried out for
Z. multiflora EO extract that are presented in Figure 7. In additional, the FTIR analy-
ses were done to determine the bioactive compounds-polymer interactions. In this regard,
FTIR spectra of the neat PLA and a PLA sample impregnated with the Z. multiflora EO are
also illustrated in Figure 7.
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mum conditions.

Neat PLA films presented peaks at 2994 and 2944 cm−1 related to the characteristic
symmetric and asymmetric stretching of C-H vibrations in PLA. FTIR peaks at 1747, 1450,
1381 and 1360 cm−1 have been ascribed to the stretching of C=O group, bending of CH3
and bond of C-H symmetric and asymmetric vibrations of CH2, respectively. Peaks at
1180 and 1127 cm−1 are attributed to stretching vibrations of -C-O-C- and the peak at
1079 cm−1 corresponded to stretching vibrations of -C-O-C- and -C-O- bonds. Eventually,
the peak at 867 cm−1 is assigned to amorphous PLA and the peak at 754 cm−1 is assigned
to the crystalline phase of PLA [74–76].

On the other hand, the incorporation of the Z. multiflora EO extract in the films of PLA
was confirmed through the apparition of a new band at 815 cm−1 associated to the ring
vibration of thymol, the major constituent of the Z. multiflora EO extract [76,77].

3.5.2. Thermal Properties

DSC analyses were performed to study the thermal properties of the different samples.
The DSC thermograms for the neat PLA film and PLA films impregnated with Z. multiflora
EO extract are reported in Figure 8. By analyzing the PLA film after processing with
SC-CO2, it was found that the process had no effect on the glass transition temperature
(Tg) of the polymer, but a reduction in crystallinity and melting temperature (Tm) from
168.3 to 167.8 ◦C was obtained due to the reported plasticizing effect of some of the
phenolic compounds presented in the EO extract on PLA, such as thymol. These results are
in agreement with those reported by Torres et al. [50].
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3.5.3. X-ray Diffraction

The XRD spectra of the neat PLA film and the impregnated PLA film at the optimum
conditions are presented in Figure 9a,b, respectively. The XRD pattern of the neat PLA film
was crystalline with the characteristic peaks at 9.603◦, 17.647◦, and 29.278◦, in agreement
with the report of Mihai et al. [78]. The comparisons between neat PLA and impregnated
PLA indicated that the bioactive components of the Z. multiflora EO extract were dispersed
in PLA in an amorphous state, which agrees with DSC findings. In addition, the differences
between the samples illustrated that the impregnated PLA film had a lower crystallinity
degree than the neat PLA film. This Phenomenon could be attached to two reasons; (i) the
reported plasticizing effect of SC-CO2 on PLA and (ii) the reported plasticizing effect of
some of the components of the Z. multiflora EO extract on the PLA structure [79].
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3.5.4. Film Surface Morphology (SEM)

Scanning electronic microscopy (SEM) was used to analyze the morphology of PLA
before and after the impregnation with Z. multiflora EO extract. Figure 10a,b show the
surface images of the neat, and impregnated sample, respectively. It was possible to observe
a homogeneous surface morphology on the impregnated sample. However, the initial
average thickness of the PLA film was increasing after the impregnation process. This
phenomenon may be due to the swelling of PLA after the supercritical process, which leads
to a more amorphous polymeric film [80].

1 
 

 
Figure 10. The surface images of (a) neat PLA, and (b) PLA impregnated at the optimum conditions.

3.6. Antibacterial Activity of Impregnated Films and Antioxidant Capacity of the Z. multiflora
EO Extract

Table 5 shows the antibacterial effect of the PLA films impregnated with Z. multiflora
EO extract against E. coli and S. aureus. The impregnation conditions for the obtention
of the PLA films loaded with Z. multiflora EO extract were listed in Table 3. These re-
sults show viability for both bacteria strains in the control sample (media), neat PLA
(bacteria + phosphate buffer + blank PLA), and some impregnated samples. As indicated in
Table 5, the viability values for both bacteria strains were very similar for the control PLA
and the neat PLA with values ranging between 7.755–7.771 log CFU/mL for E. coli and
between 7.361–7.398 log CFU/mL for S. aureus. The GC Mass Analysis (Table 1) showed
that the concentrations of thymol, carvacrol, γ-terpinene, and linalool in the Z. multiflora EO
extract obtained by SFE at the optimal conditions were 39.92, 21.37, 10.37, and 6.02 wt.%,
respectively. These four compounds have been identified as the main components of
Z. multiflora EO in many researches [53,56–58,81] and the main responsible of the great
antibacterial activity of the Z. multiflora EO [81]. Saei–Dehkordi et al. reported the an-
tibacterial effect of Z. multiflora EO extracts obtained from five different places of Iran. EO
extracts obtained from Z. multiflora from Najafabad had the highest antibacterial activity
due to its higher content of thymol and carvacrol (69.52 wt.%) [53]. High antibacterial
properties of other natural extracts have also been attributed to their high content of thy-
mol and carvacrol [82]. In this context, the higher inhibition of the growth of E. coli and
S. aureus (Table 5) using the impregnated samples for the runs 1, 4, 6, 7, and 8, where
viability was not detected (N.D) for both bacteria, than the inhibitions obtained using the
impregnated samples for the runs 2, 3 and 5, where viabilities ranged between 6.954 and
7.079 log CFU/mL, could be explained by the values of impregnation yields of Z. multiflora
EO extract obtained for the first impregnation runs group (13.65 to 20.76 wt.%), which are
higher than the impregnation yields obtained for the second group (6.67 to 10.21 wt.%).
Thus, the initial content of Z. multiflora EO extract in the samples 1, 4, 6, 7 and 8 allowed to
maintain a Minimal Inhibitory Concentration (MIC) along the tested time in contrast with
the samples 2, 3 and 5. The reported minimum inhibitory concentrations (MIC) of thymol,
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carvacrol, and linalool have been reported at 250, 125, 256 µg/mL against both E. coli and
S. aureus [83].

Table 5. Antibacterial activity of Z. multiflora EO extract against E. coli and S. aureus.

Viability (Log CFU/mL)

Samples E. coli S. aureus
Control 7.755 ± 7.114 b 7.361 ± 6.633 b

PLA 7.771 ± 7.079 b 7.398 ± 6.716 b

Run 1 N.D a N.D a

Run 2 6.954 ± 6.114 b N.D a

Run 3 7.079 ± 6.23 b 6.491 ± 5.716 b

Run 4 N.D a N.D a

Run 5 7.041 ± 6.204 b 6.415 ± 5.633 b

Run 6 N.D a N.D a

Run 7 N.D a N.D a

Run 8 N.D a N.D a

a N.D: Not Detected; b mean ±standard deviation.

The antioxidant potential of an active substance is defined by its reducing power, radi-
cal scavenging ability and singlet oxygen quenching ability. The antioxidant capacity of the
Z. multiflora EO extract obtained at the optimal extraction conditions was determined by the
2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay. The IC50, concentration
to scavenge 50% of DPPH radicals, for the EO sample extracted from Z. multiflora using
SC-CO2 was 19.9 ± 0.7 µg/mL. This result agrees with the values reported by other authors
for Z. multiflora extract [53]. The findings suggested that Z. multiflora can provide a good
source of antioxidants to be used for food and medicinal purposes.

4. Conclusions

This work aimed to study the supercritical extraction of EO from Z. multiflora and
its incorporation in PLA films by supercritical impregnation. Thymol, carvacrol and
γ-terpinene were determined as the main constituents of the Z. multiflora EO extract using
GC Mass spectroscopy. The optimized conditions for the EO extraction process were
determined as: P = 25 MPa, T = 318 K, and co-solvent = 3%. The extraction yield under
this condition was 2.560 ± 0.04 wt.%. The antioxidant potential of the extracted EO was
determined by its reducing power and radical scavenging ability through a DPPH assay.
The impregnation yield of Z. multiflora EO extract in PLA films ranged between 6.67 ± 0.86
and 23.76 ± 1.18 wt.%. The presence of the components of the Z. multiflora EO extract in
PLA was confirmed by FTIR analysis. The full factorial method (FFD) was used to study
the effect of pressure, temperature and time over the impregnation yield of Z. multiflora EO
extract in PLA. In addition, the impregnated sample with the highest impregnation yield
was analyzed via FTIR, DSC, SEM, and XRD tests. Impregnated PLA samples presented a
decrease in the melting temperature which confirmed the incorporation of the Z. multiflora
EO extract. The molecular dispersion of the constituents of the Z. multiflora EO extract
impregnated in PLA by SII was confirmed by the DSC results. Furthermore, the antibacterial
properties of this sample against two bacteria, Gram (+) and Gram (−) were studied.
The results for antibacterial activity of impregnated PLA films with different contents of
Z. multiflora EO extract against E. coli and S. aureus indicated no viability for both bacteria.
The obtained results showed that supercritical extraction (SFE) and impregnation (SSI) are
feasible techniques for the development of antibacterial food packaging materials.
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