Green Extraction Process of Food Grade C-phycocyanin: Biological Effects and Metabolic Study in Mice
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Spirulina Biomass Selection
2.3. Solid-Liquid Watery Extraction (SLWE) of C-PC
2.4. C-phycocyanin Purification by Fractional Precipitation with Ammonium Sulfate
2.5. Proximate Composition of Spirulina Biomass (SB), Remaining Biomass (RB), and Partial Purified C-Phycocyanin (C-PC)
2.6. Antioxidant Activity of C-PC
2.7. Design and Animals’ Experimental Procedures
2.8. Statistical Analysis
3. Results
3.1. Comparison between Conventional and Organic Spirulina Biomass Using SLWE
3.2. Proximate Composition and Antioxidant Activity Effects of SB, RB, and Partial Purified C-Phycocyanin (C-PC)
3.3. Biological Effects of SB, C-PC, or RB in Swiss Mice Fed with HFD
3.4. Repercussions of SB, C-PC, or RB on Glucose Metabolism of Swiss Mice HFD Fed
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Amarante, M.C.A.; Braga, A.R.C.; Sala, L.; Moraes, C.C.; Kalil, S.J. Design strategies for C-phycocyanin purification: Process influence on purity grade. Sep. Purif. Technol. 2020, 252, 117453. [Google Scholar] [CrossRef]
- Ruiz-Domínguez, M.C.; Jáuregui, M.; Medina, E.; Jaime, C.; Cerezal, P. Rapid green extractions of C-phycocyanin from arthrospira maxima for functional applications. Appl. Sci. 2019, 9, 1987. [Google Scholar] [CrossRef]
- Hashemi, B.; Shiri, F.; Švec, F.; Nováková, L. Green solvents and approaches recently applied for extraction of natural bioactive compounds. TrAC Trends Anal. Chem. 2022, 157, 116732. [Google Scholar] [CrossRef]
- Gorgich, M.; Passos, M.L.C.C.; Mata, T.M.; Martins, A.A.; Saraiva, M.L.M.F.S.F.S.; Caetano, N.S. Enhancing extraction and purification of phycocyanin from Arthrospira sp. with lower energy consumption. Energy Rep. 2020, 6, 312–318. [Google Scholar] [CrossRef]
- Moraes, C.C.; Burkert, J.F.d.M.; Kalil, S.J.; de Medeiros Burkert, J.F.; Kalil, S.J. C-phycocyanin extraction process for large-scale use. J. Food Biochem. 2010, 34, 133–148. [Google Scholar] [CrossRef]
- Rito-Palomares, M.; Nuñez, L.; Amador, D. Practical application of aqueous two-phase systems for the development of a prototype process for C-phycocyanin recovery from Spirulina maxima. J. Chem. Technol. Biotechnol. 2001, 76, 1273–1280. [Google Scholar] [CrossRef]
- Lauceri, R.; Chini Zittelli, G.; Torzillo, G. A Simple method for rapid purification of phycobiliproteins from Arthrospira platensis and Porphyridium cruentum biomass. Algal. Res. 2019, 44, 101685. [Google Scholar] [CrossRef]
- Zhao, B.; Cui, Y.; Fan, X.; Qi, P.; Liu, C.; Zhou, X.; Zhang, X. Anti-obesity effects of Spirulina platensis protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PLoS ONE 2019, 14, e0218543. [Google Scholar] [CrossRef]
- Gad, A.S.; Khadrawy, Y.A.; El-Nekeety, A.A.; Mohamed, S.R.; Hassan, N.S.; Abdel-Wahhab, M.A. Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats. Nutrition 2011, 27, 582–589. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Arch. Toxicol. 2016, 90, 1817–1840. [Google Scholar] [CrossRef]
- Choi, W.; Lee, H. Enhancement of Neuroprotective Effects of Spirulina Platensis Extract from a High-Pressure Homogenization Process. Appl. Sci. 2018, 8, 634. [Google Scholar] [CrossRef]
- Prabakaran, G.; Sampathkumar, P.; Kavisri, M.; Moovendhan, M. Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. Int. J. Biol. Macromol. 2020, 153, 256–263. [Google Scholar] [CrossRef]
- Braune, S.; Krüger-Genge, A.; Kammerer, S.; Jung, F.; Küpper, J.-H. Phycocyanin from Arthrospira platensis as potential anti-cancer drug: Review of in vitro and in vivo studies. Life 2021, 11, 91. [Google Scholar] [CrossRef]
- Fratelli, C.; Burck, M.; Amarante, M.C.A.; Braga, A.R.C. Antioxidant potential of nature’s “something blue”: Something new in the marriage of biological activity and extraction methods applied to C-phycocyanin. Trends Food Sci. Technol. 2021, 107, 309–323. [Google Scholar] [CrossRef]
- Watanabe, M.; Risi, R.; Masi, D.; Caputi, A.; Balena, A.; Rossini, G.; Tuccinardi, D.; Mariani, S.; Basciani, S.; Manfrini, S.; et al. Current evidence to propose different food supplements for weight loss: A comprehensive review. Nutrients 2020, 12, 2873. [Google Scholar] [CrossRef]
- Jaeschke, D.P.; Mercali, G.D.; Marczak, L.D.F.; Müller, G.; Frey, W.; Gusbeth, C. Extraction of valuable compounds from Arthrospira platensis using pulsed electric field treatment. Bioresour. Technol. 2019, 283, 207–212. [Google Scholar] [CrossRef]
- Pleonsil, P.; Soogarun, S.; Suwanwong, Y. Anti-oxidant activity of Holo- and Apo-c-phycocyanin and their protective effects on human erythrocytes. Int. J. Biol. Macromol. 2013, 60, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Bansal, S.; Chopra, K. Evaluation of the in Vitro and in Vivo Antioxidant Potentials of Food Grade Phycocyanin. J. Food Sci. Technol. 2021, 58, 4382–4390. [Google Scholar] [CrossRef]
- Bermejo-Bescós, P.; Piñero-Estrada, E.; Villar del Fresno, Á.M. Neuroprotection by Spirulina platensis protean extract and phycocyanin against iron-induced toxicity in SH-SY5 Y neuroblastoma cells. Toxicol. Vitr. 2008, 22, 1496–1502. [Google Scholar] [CrossRef]
- Abdelkhalek, N.K.M.; Ghazy, E.W.; Abdel-Daim, M.M. Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: Impact on lipid peroxidation and Oxidative Stress. Environ. Sci. Pollut. Res. 2015, 22, 3023–3031. [Google Scholar] [CrossRef]
- Grover, P.; Bhatnagar, A.; Kumari, N.; Narayan Bhatt, A.; Kumar Nishad, D.; Purkayastha, J. C-phycocyanin-a novel protein from Spirulina platensis- in vivo toxicity, antioxidant and immunomodulatory studiesitalic. Saudi J. Biol. Sci. 2021, 28, 1853–1859. [Google Scholar] [CrossRef]
- Yousefi, R.; Saidpour, A.; Mottaghi, A. The effects of Spirulina supplementation on metabolic syndrome components, its liver manifestation and related inflammatory markers: A systematic review. Complement. Ther. Med. 2019, 42, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.A.; Kuhn, K.R.; Moraes, C.C.; Burkert, C.A.V.; Kalil, S.J. Experimental design as a tool for optimization of C-phycocyanin purification by precipitation from Spirulina platensis. J. Braz. Chem. Soc. 2009, 20, 5–12. [Google Scholar] [CrossRef]
- Figueira, F.d.S.; Moraes, C.C.; Kalil, S.J. C-phycocyanin purification: Multiple processes for different applications. Braz. J. Chem. Eng. 2018, 35, 1117–1128. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- de Amarante, M.C.A.; Cavalcante Braga, A.R.; Sala, L.; Juliano Kalil, S. Colour stability and antioxidant activity of C-phycocyanin-added ice creams after in vitro digestion. Food Res. Int. 2020, 137, 109602. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.; Mariutti, L.R.B.; Faria, A.F.; Mercadante, A.Z. Microcapsules containing antioxidant molecules as scavengers of reactive oxygen and nitrogen species. Food Chem. 2012, 134, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Larrauri, J.A.; Rupérez, P.; Saura-Calixto, F. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem. 1997, 45, 1390–1393. [Google Scholar] [CrossRef]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition Ad Hoc writing committee on the reformulation of the AIN-76 A rodent diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyama, L.M.; Silva, F.P.; Carnier, J.; de Miranda, D.A.; Santamarina, A.R.C.B.; Ribeiro, E.B.; Oller do Nascimento, C.M.; de Rosso, V.V. Jucąra pulp supplementation improves glucose tolerance in mice. Diabetol. Metab. Syndr. 2016, 8, 8. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Paciulli, M.; Abbaspourrad, A. Extraction of phycocyanin—A natural blue colorant from dried Spirulina biomass: Influence of processing parameters and extraction techniques. J. Food Sci. 2020, 85, 727–735. [Google Scholar] [CrossRef]
- Life Science Products and Manufacturing | Pharma, Diagnostics | Biosynth Carbosynth. Available online: https://www.carbosynth.com/?gclid=Cj0KCQjwuaiXBhCCARIsAKZLt3mSMc9t2KBwY4sCmaj8CM4WaoI2Slo9ZsImcClofaA5UXiBMFhHNG8aAjc_EALw_wcB (accessed on 2 August 2022).
- C-Phycocyanin Lyophilized Powder 11016-15-2. Available online: https://www.sigmaaldrich.com/BR/pt/product/sigma/p2172 (accessed on 2 August 2022).
- Abalde, J.; Betancourpb, L.; Torres, E.; Cid, A.; Barwell’, C. Purification and characterization of phycocyanin from marine cyanobacterium Synechococcus sp. 109201. Plant Sci. 1998, 136, 109–120. [Google Scholar] [CrossRef]
- Home—Delhi Nutraceuticals—Supplements Contract Manufacturing. Available online: https://delhinutra.com/ (accessed on 2 August 2022).
- Nagy, C.; Einwallner, E. Study of in vivo glucose metabolism in high-fat diet-fed mice using oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). J. Vis. Exp. 2018, 2018, e56672. [Google Scholar] [CrossRef] [PubMed]
- Ventura, S.P.M.; e Silva, F.A.; Quental, M.V.; Mondal, D.; Freire, M.G.; Coutinho, J.A.P. Ionic-liquid-mediated extraction and separation processes for bioactive compounds: Past, present, and future trends. Chem. Rev. 2017, 117, 6984–7052. [Google Scholar] [CrossRef]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents—Solvents for the 21st century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; de la Guardia, M. The role of green extraction techniques in green analytical chemistry. TrAC Trends Anal. Chem. 2015, 71, 2–8. [Google Scholar] [CrossRef]
- Velazquez-Martinez, V.; Valles-Rosales, D.; Rodriguez-Uribe, L.; Holguin, O.; Quintero-Quiroz, J.; Reyes-Jaquez, D.; Rodriguez-Borbon, M.I.; Yazmin, L.; Delgado, E. Antimicrobial, shelf-life stability, and effect of maltodextrin and gum Arabic on the encapsulation efficiency of sugarcane bagasse bioactive compounds. Foods 2021, 10, 116. [Google Scholar] [CrossRef] [PubMed]
- İlter, I.; Akyıl, S.; Demirel, Z.; Koç, M.; Conk-Dalay, M.; Kaymak-Ertekin, F. Optimization of phycocyanin extraction from Spirulina platensis using different techniques. J. Food Compos. Anal. 2018, 70, 78–88. [Google Scholar] [CrossRef]
- Moylan, J.S.; Reid, M.B. Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 2007, 35, 411–429. [Google Scholar] [CrossRef] [PubMed]
- Lafarga, T.; Fernández-Sevilla, J.M.; González-López, C.; Acién-Fernández, F.G. Spirulina for the food and functional food industries. Food Res. Int. 2020, 137, 109356. [Google Scholar] [CrossRef] [PubMed]
- Ashaolu, T.J.; Samborska, K.; Lee, C.C.; Tomas, M.; Capanoglu, E.; Tarhan, Ö.; Taze, B.; Jafari, S.M. Phycocyanin, a super functional ingredient from algae; Properties, purification characterization, and applications. Int. J. Biol. Macromol. 2021, 193, 2320–2331. [Google Scholar] [CrossRef] [PubMed]
- Qiao, B.-W.; Liu, X.-T.; Wang, C.-X.; Song, S.; Ai, C.-Q.; Fu, Y.-H. Preparation, characterization, and antioxidant properties of phycocyanin complexes based on sodium alginate and lysozyme. Front. Nutr. 2022, 9, 890942. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cho, S.; Dadmohammadi, Y.; Li, Y.; Abbaspourrad, A. Improvement of the storage stability of C-phycocyanin in beverages by high-pressure processing. Food Hydrocoll. 2021, 110, 106055. [Google Scholar] [CrossRef]
- Bohórquez-Medina, S.L.; Bohórquez-Medina, A.L.; Benites Zapata, V.A.; Ignacio-Cconchoy, F.L.; Toro-Huamanchumo, C.J.; Bendezu-Quispe, G.; Pacheco-Mendoza, J.; Hernandez, A.V. Impact of Spirulina supplementation on obesity-related metabolic disorders: A systematic review and meta-analysis of randomized controlled trials. NFS J. 2021, 25, 21–30. [Google Scholar] [CrossRef]
- Zhou, Z.-P.; Liu, L.-N.; Chen, X.-L.; Wang, J.-X.; Chen, M.; Zhang, Y.-Z.; Zhou, B.-C. Factors that effect antioxidant activity of C-phycocyanins from Spirulina platensis. J. Food Biochem. 2005, 29, 313–322. [Google Scholar] [CrossRef]
Ingredients | CD [32] | HFD Adapted from [31,32] |
---|---|---|
Cornstarch (g) | 72.07 | 45.00 |
Sucrose (g) | --- | 15.00 |
Casein (g) | 14.00 | 18.00 |
Soybean oil (g) | 4.00 | 4.00 |
Lard (g) | --- | 18.00 |
Cellulose (g) | 5.00 | --- |
Vitamin Mix (g) | 1.00 | 1.00 |
Mineral Mix (g) | 3.50 | 3.50 |
L-cystine (g) | 0.18 | 0.18 |
Choline bitartrate (g) | 0.25 | 0.25 |
BHT (preservative and antioxidant agent) (g) | 0.0008 | 0.0008 |
Total energy (Kcal) | 380.28 | 510.00 |
SBV | SFT | SNG | |
---|---|---|---|
Concentration (mg/mL) | 5.34 a ± 0.56 | 2.83 b ± 0.69 | 0.60 c ± 0.27 |
Purity | 0.35 a ± 0.02 | 0.22 b ± 0.01 | 0.06 c ± 0.02 |
Yield (mg/g) | 33.39 a ± 3.49 | 17.69 b ± 4.30 | 3.73 c ± 1.71 |
C-PC SM | C-PC NF | C-PC Purified | |
---|---|---|---|
Concentration (mg/mL) | 5.63 a ± 0.52 | 5.10 a ± 0.46 | 4.50 a ± 0.73 |
Purity | 0.38 b ± 0.06 | 0.27 b ± 0.03 | 0.81 a ± 0.11 |
Yield (mg/g) | 35.33 a ± 3.43 | 31.86 a ± 2.90 | * |
SB | RB | SB FTL (2) | |
---|---|---|---|
Moisture | 80.00 (1) | 82.22 ± 0.40 | 80.00 (1) |
Ash | 0.16 ± 0.00 | 0.57 ± 0.01 | 0.30 |
Total fat | 0.28 ± 0.01 | 0.47 ± 0.18 | 1.33 |
Protein | 10.41 ± 0.04 | 10.87 ± 0.62 | 10.67 |
Carbohydrate | 9.15 ± 0.04 | 5.83 ± 0.41 | 7.70 |
Antioxidant Method | C-PC | SB | RB |
---|---|---|---|
ORAC (µM TE/g) | 371.8 a ± 54.2 | 359.2 a ± 39.3 | 132.5 b ± 41.0 |
ABTS (µM TE/g) | 10.06 a ± 1.12 | 9.54 a ± 2.70 | 5.14 b ± 1.70 |
DPPH (EC50 g/g) | 501.8 a ± 51.1 | 478.5 a ± 31.5 | 191.4 b ± 2.6 |
Groups | Weeks of Treatment | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
CD (g) | 55.7 a ± 2.2 | 59.8 a ± 0.6 | 58.1 a ± 5.1 | 44.6 a ± 1.8 | 68.1 a ± 7.4 | 59.2 a ± 5.7 | 69.7 a ± 8.5 | 51.3 a ± 10.9 | 73.5 a ± 7.5 | 80.0 a ± 1.0 | 87.4 a ± 9.1 | 55.5 a ± 0.2 |
HFD (g) | 36.6 bc ± 0.9 | 39.8 c ± 4.2 | 20.6 b ± 2.1 | 27.0 bc ± 1.4 | 28.3 b ± 1.3 | 27.6 b ± 1.4 | 26.8 b ± 0.3 | 23.5 b ± 1.3 | 35.7 b ± 4.5 | 35.0 c ± 5.8 | 20.2 c ± 8.5 | 23.6 b ± 0.9 |
HFDS (g) | 36.5 bc ± 2.5 | 40.6 b ± 0.3 | 17.5 b ± 0.3 | 29.1 bc ± 1.0 | 29.8 b ± 1.7 | 29.4 b ± 1.8 | 29.2 b ± 1.2 | 26.5 b ± 2.2 | 28.7 b ± 3.2 | 48.8 b ± 0.6 | 28.3 bc ± 3.1 | 25.2 b± 2.8 |
HFDC (g) | 34.7 bc ± 2.4 | 44.8 bc± 0.4 | 18.5 b ± 2.8 | 26.5 c ± 0.7 | 28.0 b ± 0.2 | 25.3 b ± 0.6 | 28.3 b ± 0.1 | 25.3 b ± 0.3 | 30.0 b ± 0.3 | 46.6 b ± 0.4 | 28.7 b ± 0.3 | 25.3 b ± 0.5 |
HFDR (g) | 41.5 b ± 2.1 | 50.4 b ± 2.8 | 23.2 b ± 2.6 | 32.7 b ± 4.3 | 36.0 b ± 2.8 | 41.7 b ± 12.8 | 36.2 b ± 6.0 | 29.7 b ± 5.5 | 40.8 b ± 8.4 | 49.4 b ± 5.1 | 41.1 b ± 11.6 | 33.0 b ± 8.3 |
Groups | Initial Weight 1 | Final Weight after Treatment 2 | ∆ Weight 3 |
---|---|---|---|
CD | 27.8 a ± 4.0 | 49.1 b ± 5.0 | 14.2 b ± 5.0 |
HFD | 23.8 ab ± 1.5 | 52.8 ab ± 2.9 | 14.8 b ± 5.2 |
HFDS | 23.0 b ± 2.3 | 59.6 a ± 3.7 | 24.1 a ± 3.2 |
HFDC | 24.4 ab ± 2.2 | 48.3 b ± 3.4 | 12.7 b ± 3.4 |
HFDR | 24.3 ab ± 1.0 | 57.3 a ± 3.6 | 19.0 ab ± 4.2 |
Groups | Epididymal (EPI) | Mesenteric (MES) | Inguinal (ING) | Retroperitoneal (RET) | Liver (LIV) |
---|---|---|---|---|---|
CD | 2.0 a ± 0.8 | 1.1 a ± 0.5 | 1.0 b ± 0.5 | 0.4 a ± 0.1 | 1.9 b ± 0.2 |
HFD | 2.1 a ± 0.7 | 1.3 a ± 0.2 | 1.6 ab ± 0.4 | 0.5 a ± 0.1 | 2.3 ab ± 0.5 |
HFDS | 2.2 a ± 0.5 | 1.5 a ± 0.3 | 2.2 a ± 0.7 | 0.6 a ± 0.2 | 2.9 ab ± 0.6 |
HFDC | 1.6 a ± 0.4 | 0.9 a ± 0.5 | 1.1 b ± 0.5 | 0.4 a ± 0.1 | 1.9 b ± 0.1 |
HFDR | 1.8 a ± 0.5 | 1.4 a ± 0.3 | 1.8 a ± 0.5 | 0.4 a ± 0.1 | 3.5 a ± 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fratelli, C.; Bürck, M.; Silva-Neto, A.F.; Oyama, L.M.; De Rosso, V.V.; Braga, A.R.C. Green Extraction Process of Food Grade C-phycocyanin: Biological Effects and Metabolic Study in Mice. Processes 2022, 10, 1793. https://doi.org/10.3390/pr10091793
Fratelli C, Bürck M, Silva-Neto AF, Oyama LM, De Rosso VV, Braga ARC. Green Extraction Process of Food Grade C-phycocyanin: Biological Effects and Metabolic Study in Mice. Processes. 2022; 10(9):1793. https://doi.org/10.3390/pr10091793
Chicago/Turabian StyleFratelli, Camilly, Monize Bürck, Artur Francisco Silva-Neto, Lila Missae Oyama, Veridiana Vera De Rosso, and Anna Rafaela Cavalcante Braga. 2022. "Green Extraction Process of Food Grade C-phycocyanin: Biological Effects and Metabolic Study in Mice" Processes 10, no. 9: 1793. https://doi.org/10.3390/pr10091793
APA StyleFratelli, C., Bürck, M., Silva-Neto, A. F., Oyama, L. M., De Rosso, V. V., & Braga, A. R. C. (2022). Green Extraction Process of Food Grade C-phycocyanin: Biological Effects and Metabolic Study in Mice. Processes, 10(9), 1793. https://doi.org/10.3390/pr10091793