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Abstract: Although constructing a dam can bring significant economic and social benefits to a region,
it can be catastrophic for the population living downstream when it breaks. Given the dynamic
and nonlinear characteristics of dam deformation, the traditional dam prediction model has been
unable to meet the actual engineering demands. Consequently, this paper advocates for a novel
method to solve this issue. The proposed method is based on the optimization of improved chicken
swarm (ICSO) and support vector machine (SVM). To begin with, the mean square error is used
as the objective function, and then, we apply the improved chicken swarm algorithm to iterate
continuously, and finally, the optimal SVM parameters are obtained. Through the modeling and
simulation experiments of a nonlinear system, the validity of the improved chicken swarm algorithm
to optimize an SVM model has been verified. Based on the horizontal displacement monitoring data
of FengMan Dam, this paper analyzed the influencing factors of horizontal displacement. According
to the results, three prediction models have been established, respectively: the SVM prediction model
optimized by the improved chicken swarm algorithm, the SVM prediction model optimized by the
basic chicken swarm algorithm and the BP neural network prediction model optimized by the genetic
algorithm. The obtained results from the experiment authenticate the validity and superiority of the
proposed method.

Keywords: dam deformation; predictive performance; horizontal displacement; combined model;
parameter optimization

1. Introduction

So far, China has built about 86,000 dams, which have played a significant role in
China’s livelihood industries such as navigation, tourism, and power generation [1]. Since
people do not fully understand the natural conditions of dam operation, it increases
the difficulties of dam construction and even causes accidents. Therefore, in terms of
dam hydraulic engineering, great attention should be paid to the safety prevention and
monitoring of dams in order to reduce the occurrence of accidents [2–4].

The Dam Safety Monitoring System is a complex detection system, which is affected by
many factors, so the prediction of it is very difficult. Nowadays, the commonly used data
processing methods for dam monitoring are the wavelet analysis method, Kalman filtering
model, spectrum analysis method, and so on [5–7]. With the collapse or accidents of dams
in some countries, dam safety monitoring is receiving more and more attention from the
world, and the research on dam safety monitoring and prediction models has also been
increasing. For instance, Rocha et al. presented a statistical regression method based on
the dam deformation observation data [8]. Tonini et al. summed up the influencing factors
of dam displacement as water pressure, temperature, and time, which were expressed by
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mathematical polynomials [9]. Many scholars and engineers have also conducted some
research on the prediction of dam safety and constantly improved and enriched the math-
ematical models and analysis method of dam safety monitoring and prediction. In 2007,
Xuyuan Qin et al. [10] presented an EMD-PSO-BP model based on the unique character-
istics of dam deformation: non-stationary and nonlinear. The obtained results from the
experiment authenticate the validity and superiority of the proposed model. Likewise, in
the same year, Liting Zhang et al. [11] used the genetic algorithm to optimize the dam de-
formation prediction method of multi-kernel correlation vector machine. The experimental
results demonstrate that the optimized multi-kernel correlation vector machine model has a
high prediction accuracy. In addition, given the strong nonlinear dynamic characteristics of
dam deformation, Huaizhi Su et al. [12] combined support vector machine (SVM) with the
phase space reconstruction, wavelet analysis, and particle swarm optimization to establish
a dam deformation prediction model. The results authenticate that the modeling efficiency
and prediction accuracy can be improved.

Although the three aforementioned papers have made remarkable contributions, they
also have some limitations. For instance, in statistical models, deterministic models or
hybrid models, traditional dam prediction models have some unavoidable defects [13].
Because the emerging BP neural network model is very sensitive to the initial network
weight, initializing the network with different weights tends to converge to a different local
minima. Different from the statistical models, machine learning models are primarily used
to achieve the most accurate predictions, and therefore, they are more popular for prog-
nostics. For these aforementioned reasons, the SVM method has become the mainstream
in the field of dam deformation prognostics [14–16]. Support vector machine (SVM), as a
hot algorithm in machine learning [12,14–16], has been widely used in dam deformation
monitoring because of its unique advantages in small sample size and nonlinearity. In
view of the defect that the parameters of the basic support vector machine are hard to
determine, this paper will study a novel swarm intelligence algorithm to optimize the
parameters of SVM and verify it on the example data. This paper’s principal contributions
are in three aspects:

(1) A novel swarm intelligence optimization algorithm—the chicken swarm algorithm is
proposed. In view of the defects of the basic chicken swarm algorithm, such as easy to
fall into local optimization and slow convergence speed, an improved chicken swarm
algorithm with adaptive inertia weight is proposed.

(2) A prediction model of SVM optimized by an improved chicken swarm algorithm is
proposed. Due to SVM being sensitive to selection of the penalty factor parameters
and kernel function parameters, choosing inappropriate parameters has a great impact
on the prediction results. Therefore, this paper proposes to use the improved chicken
swarm algorithm to optimize the parameters of SVM.

(3) Based on the horizontal displacement monitoring data of FengMan Dam, the influenc-
ing factors of horizontal displacement are analyzed, and the SVM prediction model
optimized by the improved chicken swarm algorithm, the SVM prediction model op-
timized by the basic chicken swarm algorithm and the BP neural network prediction
model optimized by the genetic algorithm are established, respectively.

2. Prediction Method
2.1. Support Vector Machine Prediction Model Based on Chicken Swarm Optimization

Chicken swarm optimization (CSO) was proposed by Meng et al. [17] in 2014, which
is an optimization algorithm that simulates the strict hierarchy and foraging of chickens.
According to the fitness value of each individual in the flock, there are three groups:
chicks, hens and roosters, of which the number of hens is the largest. Roosters, hens and
chicks have their own search methods, and the optimization for practical problems can be
described as the process of flocks searching for food in a feature space of a given dimension.

Inspired by the foraging behavior of chickens, combined with practical problems in
reality, the mathematical model of the CSO algorithm can be established. As with most
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swarm intelligence algorithms, the optimization process of the CSO algorithm also includes
a global search stage and a local search stage. The global search needs to search for all
possible optimal solutions, and the local search helps to quickly lock the optimal solution.

In order to find the appropriate penalty factor C and kernel function parameters γ,
many scholars proposed to apply a heuristic optimization algorithm to the search of SVM
parameters. By applying the basic chicken swarm optimization to the search of SVM
parameters, a CSO-SVM dam horizontal displacement prediction model can be established.

2.2. Prediction of Dam Horizontal Displacement Based on Genetic Neural Network

Artificial neural network is a traditional deformation prediction model. When moni-
toring and analyzing the deformation of the dam, the relationship between the deformation
of the dam and influence factors is nonlinear and uncertain. However, the artificial neural
network has a disadvantage—easily falling into the local optimum. As a typical random
search algorithm for solving the optimal solution [18–20], a genetic algorithm combines a
genetic algorithm with a neural network algorithm based on error back propagation (BP) to
form a new genetic neural network algorithm, which can establish a genetic neural network
model for practical engineering prediction [21]. Optimizing a BP neural network with a
genetic algorithm involves encoding the connection weights of the neural network, forming
an initial population, and using a function with fitness to guide the random search direction
of the algorithm. With the help of crossover, replication, mutation, and other methods,
iterative calculation is continuously performed to generate the global optimal solution and
then decode the weights of the BP neural network with optimized properties [22].

3. Dam Deformation Modeling and Prediction
3.1. Support Vector Machine Prediction Model Based on Improved Chicken Swarm Algorithm

In order to find the appropriate penalty factor C and kernel function parameters γ,
this paper uses the improved chicken swarm algorithm (Improved CSO, ICSO) to search
for SVM parameters, and it builds the ICSO-SVM dam horizontal displacement prediction
model. Then, the question turns into finding the minimum value of the objective function.
The specific implementation steps of the ICSO-SVM algorithm are as follows:

Step 1: Randomly generates the initial chicken swarm particles, and the penalty factor
C and kernel function parameters γ constitute the position of each chicken swarm particle;

Step 2: According to the C and γ value of each particle, the SVM learns the training
set, and it uses the mean square error function as the target fitness function;

Step 3: This step uses the ICSO algorithm to update the particle position of each
chicken group in the population. When the iterative process ends, it outputs the optimal
particle position, namely C and γ values;

Step 4: The output C and γ were used to establish an SVM regression model.
The flow chart shows the process of how the ICSO algorithm optimizes SVM parame-

ters in Figure 1.

3.2. Modeling of Nonlinear Systems

In order to verify the effectiveness of the improved chicken swarm algorithm to
optimize the SVM model, a nonlinear system is used for simulation experiments, see
Equation (1), and the nonlinear system has been used in several articles [23–25] to verify
the prediction model performance.

y(t + 1) =
y(t)y(t− 1)[y(t) + 2.5]

1 + y2(t) + y2(t− 1)
+ u(t) (1)

where 1 ≤ t ≤ 1000, y(0) = 0, y(1) = 0, u(t) = sin(2πt/25), and 800 samples (from t = 1
to t = 800) are selected for training, and samples (from t = 801 to t = 1000) are selected for
testing; then, the model can be described by the following Equation (2):

y(t + 1) = f (y(t), y(t− 1), u(t)) (2)
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Figure 1. Flow chart of ICSO algorithm optimizing SVM parameters.

It can be seen from Equation (2) that the ICSO-SVM model has three inputs y(t),
y(t− 1), u(t), and an output y(t + 1). As shown in Figures 2 and 3, the output y(t + 1) can
be inferred based on the historical experience y(t) and y(t− 1); however, future trends are
not all evolved according to the historical experience, and they are also affected by external
factors. u(t) can be regarded as another important influencing factor of the actual output,
and adding the u(t) value to the input can reflect the actual situation more objectively.
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In the simulation experiment, 800 training samples are used to train the ICSO-SVM
model, and then, 200 unknown testing samples are used to input the trained model for pre-
diction. The predicted value and prediction error are shown in Figures 4 and 5, respectively.

It can be seen from Figure 4 that the nonlinear system model which is established
by ICSO-SVM is effective, and the predicted curve can effectively follow the actual value
curve. It can be seen from Figure 5 that the prediction error of the ICSO-SVM model floats
in the interval between [−0.25, 0.25], indicating that the ICSO-SVM model has a high
prediction accuracy.

3.3. Evaluation Indicators

In order to evaluate the advantages and disadvantages of the established model, the
average mean absolute error (MAE), root mean square error (RMSE) and determination
coefficient R2 are used as evaluation indicators to analyze the prediction results. The
formula is as follows:

MSE =
1
N

N

∑
i=1

(yi − oi)
2 (3)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − oi)
2 (4)

R2 = 1−

N
∑

i=1
(yi − oi)

2

N
∑

i=1
(yi − yi)

2
(5)

where yi and oi are the measured value and the measured average value, respectively;
yi is the predicted value; and N is the number of observation samples. Among them,
the MAE and the RMSE reflect the error between the predicted value and the measured
value, and the determination coefficient R2 reflects the fitting degree of the model and the
influencing factors.
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4. Case Study
4.1. Engineering Experiment

Dams can be mainly divided into two types: concrete dams and earth-rock dams.
At present, concrete dams are the mainstream, and among them, concrete gravity dams
are the most common. Similar to FengMan Dam, a lot of dam hydraulic engineering
utilizes concrete gravity. The monitoring data in this paper come from the FengMan Dam
in Jilin Province. Since FengMan Dam is the earliest gravity dam built in China, it is
representative and time-honored. Therefore, this paper selected its monitoring date for
study. The FengMan Dam, a gravity dam built in 1937, is 80.5 m high, as shown in Figure 6.
The total concrete volume of it is 1.94 million cubic meters. FengMan Dam is a cohesive
soil homogeneous dam, and its underlying strata from bottom to top mainly are: triassic
shale, which has no direct connection with the dam body; tertiary clay fine sand, with
a permeability coefficient of 0.01 mm/s and thickness of 5–11 m; the quaternary sand
and gravel layer, which is the main leakage channel of the dam and has a permeability
coefficient of 0.1–0.3 mm/s and thickness of 5–22 m; the thickness of quaternary clay layer,
which is 4–22 m and has the characteristic of low liquid limit and weak water permeability.
The deformation observation of FengMan Dam began in the early 1970s, and the method of
tension wire alignment was initially used. In order to know the operation status of the dam
accurately, it is necessary to monitor the deformation of the dam. The monitoring contents
mainly include changes in settlement, inclination, and cracks. The monitoring frequency
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is twice a year: one is in May before the flood season and another in November after the
flood season. There is a 19# settlement monitoring point at 0 + 333 m of the dam, and its
monitoring data are relatively complete. The monitoring results are shown in Table 1.
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Table 1. Monitoring data of horizontal displacement value.

Number of
Observation Periods Observation Date Horizontal

Displacement (mm)
Upstream Water Level

H (m) Temperature T (°C)

1 4/01/1985 −1.30 251.20 −15.40
2 11/01/1985 −1.86 250.27 −17.20
3 18/01/1985 −2.69 249.47 −12.60
4 28/01/1985 −3.01 248.68 −25.30
5 8/02/1985 −4.45 248.22 −3.50
6 15/02/1985 −3.97 247.75 −10.10
7 26/02/1985 −4.20 247.12 −12.80
8 6/03/1985 −4.17 246.65 −8.50
9 13/03/1985 −4.64 246.14 −6.50
10 22/03/1985 −4.69 245.84 0.20
. . . . . . . . .
196 17/06/1988 −1.83 252.66 15.6
197 22/06/1988 −2.34 252.68 24.30
198 2/07/1988 −3.54 252.52 20.50
199 8/07/1988 −3.32 252.52 22.70
200 13/07/1988 −3.91 252.81 25.90

Up to now, according to the incomplete statistics, instruments such as sliding microm-
eter, multi-point displacement gauges, bedrock displacement gauges, bolt stress gauges,
biaxial rock stress gauges, etc. have been embedded in the dam. The installation of special
monitoring instruments for cracks has also been completed, and a large number of the
monitoring instruments have been connected to the automatic monitoring system, so that
the continuity, timeliness, synchronization, and reliability of monitoring data have been
greatly improved. The amount of data information has also increased significantly

For the dam, after the reservoir is impounded, the dam bears a very large water
load, which will inevitably produce the horizontal and vertical displacement, which is an
important indicator for evaluating the safety of the dam. For a concrete dam, there are
many factors that affect its deformation, but there are mainly three parts: water pressure,
temperature, and time [26–28]. The model can be described as:

δ = δH + δT + δθ (6)

where δ is the displacement value of a certain point of the dam; δH , δT , δθ are the water
pressure, temperature, and time components of the dam displacement, respectively.

Taking FengMan Dam as an example, the SVM optimized by the improved chicken
swarm algorithm (ICSO) is used to model and forecast the horizontal displacement of the
dam crest in real time. Dam horizontal displacement monitoring data and the monitoring
data of water pressure, temperature and time for 200 periods from 4 January 1985 to 13
July 1988 were selected for analysis. Among them, the data of 1–160 periods are used as
training samples, and the data of 161–200 periods are used as test samples. The values for
the 200 periods of dam horizontal displacement and deformation are shown in Figure 7.

4.2. Causes of Deformation

During the operation of a dam, deformation often occurs. Once the deformation
reaches a certain degree, it will affect the normal operation of the dam and even cause acci-
dents. Therefore, during the process of dam construction and operation, the deformation
observation shall be performed well to ensure its safety. During dam monitoring, the main
causes of dam deformation were found, which are as follows:

(1) Natural causes: One of the primary factors leading to the dam deformation is natural
factors, especially under natural conditions such as complex soil physical properties,
unclear engineering properties, and abnormal temperature fluctuations; dams are
easily deformed [29]. For example, when the basic geological conditions of a dam are
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unstable, uneven subsidence may occur; when a dam is built on a soil foundation,
the subsidence occurs due to the plastic deformation of the soil foundation; when
the temperature and groundwater level in the area where the dam is located vary
seasonally, regular changes in deformation will occur [30].

(2) Causes of the dam itself: Another important factor leading to the dam deformation
is the dam itself [31]. The structure design, its own weight, type, and the load of the
dam are all directly related to the deformation. In addition, during the construction
and operation process, because of the improper design, field survey, operation and
management, it will also lead to some additional deformation of the dam. In this
regard, in the overall design of the dam structure, the selection of the type frame, and
the load and pressure experiments, it is necessary to combine the site, demonstrate
scientifically, and follow the design requirements strictly [32]. Meanwhile, in the
process of field survey, construction, management and maintenance, it is necessary to
master the key points that may cause subsidence and strive to solve them by the most
optimized method [33].
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4.3. Data Preprocessing

The input of the ICSO-SVM model for dam deformation monitoring is determined by
the number of factors that affect the amount of deformation observed. According to the
introduction in Section 2, there are three types of factors that affect the horizontal displace-
ment of concrete gravity dams: namely, water pressure, temperature and time. Among
them, there are three water pressure factors H(H1, H1

2, H1
3). The temperature factor T0

takes four sine and cosine harmonic factors (sin(2πt/365), cos(2πt/365), sin(4πt/365),
and cos(4πt/365)). The time factor takes two items θ and ln(θ), where θ = 0.01t, t is the
cumulative number of days from the initial observation to the current observation. Refer-
ence [23] used the method of mean influence value (MIV) combined with BP neural network
to deeply analyze the influence factors, considering that selecting H1, T0, sin(2πt/365),
sin(4πt/365), θ and ln(θ) can achieve a better prediction effect. Therefore, this paper selects
these six influencing factors as the input of the model, and the output is the horizontal
displacement value of the dam. The statistical results are shown in Table 2.



Processes 2022, 10, 1842 10 of 19

Table 2. Input and output of prediction model.

Sample
Input Output

H1/m T0/◦C sin(2πt/365) sin(4πt/365) θ ln(θ) Horizontal
Displacement Value/mm

1 251.200 −15.400 0 0 0 0 −1.300
2 250.270 −17.200 0.120 0.238 0.070 −2.659 −1.860
3 249.470 −12.600 0.239 0.464 0.140 −1.966 −2.690
4 248.680 −25.300 0.402 0.735 0.240 −1.427 −3.010
5 248.220 −3.500 0.567 0.934 0.350 −1.050 −4.450
6 247.750 −10.100 0.662 0.992 0.420 −0.868 −3.970
7 247.120 −12.800 0.791 0.968 0.530 −0.635 −4.200
8 246.650 −8.500 0.868 0.863 0.610 −0.494 −4.170
9 246.140 −6.500 0.921 0.718 0.680 −0.386 −4.640
10 245.840 0.200 0.970 0.471 0.770 −0.261 −4.690
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
199 252.520 22.700 −0.060 0.120 12.810 2.550 −3.320
200 258.810 25.900 −0.146 0.289 12.860 2.554 −3.910

There are large differences in the numerical magnitudes of the dimensions in the
sample feature vector. If the model training is performed directly, the smaller dimension
level data will be ignored, which cannot reflect its function, and it can even cause the
model to fail to converge. After many simulation experiments, it is shown that the model is
sensitive to the data between [−1, 1]. In order to resolve the difference between dimension
levels, it is generally necessary to normalize the initial sample data. The normalized data
have a positive effect on network learning, so after collecting the original data, this paper
performs some preprocessing. There are many normalization methods [34–36]. In order
to avoid the interference of extreme data on network training, this paper normalizes the
experimental data to [−1, l] by Equation (7).

y =
2(x− xmin)

xmax − xmin
− 1 (7)

where y represents the normalized data; x denotes the original data; xmax and xmin represent
the maximum and minimum values in the original data, respectively.

4.4. Dam Deformation Prediction

The basic chicken swarm algorithm and the improved chicken swarm algorithm are
used to optimize the penalty factor and kernel function parameters of the SVM, and the
mean square error is used as the fitness function to iterate. In the basic chicken swarm
algorithm, the population size is 30, the maximum number of iterations is 200, the rooster
size accounts for 15% of the total population, while the hens account for 70%. Among the
individual hens, the hens with chicks account for 50%. The update interval is 10 generations.
In the improved chicken swarm algorithm, the parameters are a0 = 0.3, a1 = 0.7, a2 = 1.0
and FL ∈ [0.4, 1]. After the first 50 iterations, the optimal fitness curves of the basic chicken
swarm algorithm and the improved chicken swarm algorithm are shown in Figure 8.

It can be seen from Figure 8 that the optimal fitness value obtained by the improved
chicken swarm algorithm at the initial stage is not ideal, but as the iteration progresses,
the optimal fitness value drops rapidly and becomes lower than the basic chicken swarm
algorithm. It shows that the improved chicken swarm algorithm adaptively adjusts the
inertia weights as the environment around the population changes, thus balancing the local
search and global search of the algorithm, and it finally searches for more superior SVM
parameters with faster convergence. Finally, the optimal SVM parameters are obtained.
Using SVM parameters, 180 training samples were learned, and an ICSO-SVM model was
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established for prediction. Among them, the fitting of the ICSO-SVM model to the training
samples is shown in Figure 9.
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It can be seen from Figure 10 that the fitting curve of the horizontal displacement of
the dam for 180 periods follows the actual value curve well, indicating that the ICSO-SVM
model has trained the dam training samples adequately, and it can be used for testing
unknown samples.

4.5. Results Analysis and Comparison

The trained CSO-SVM and ICSO-SVM models are used to test 181–200 unknown
samples, respectively. The prediction results for the last 20 periods of the horizontal
displacement of the dam are shown in Figure 10. See Table 3 for the results of quantitative
statistics in Figure 10.
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Table 3. Comparison of horizontal displacement prediction results between ICSO-SVM and CSO-
SVM models.

Number of
Periods

Measured
Displacement

Value/mm

ICSO-SVM CSO-SVM

Predictive
Value/mm

Prediction
Error/mm

Predictive
Value/mm

Prediction
Error/mm

161 4.930 5.344 0.414 5.128 0.198
162 5.370 5.616 0.246 5.281 −0.089
163 5.770 5.768 −0.002 5.187 −0.583
164 5.450 5.910 0.460 5.166 −0.284
165 6.050 6.151 0.101 5.147 −0.903
166 6.130 5.682 −0.448 4.751 −1.379
167 6.120 6.086 −0.034 4.833 −1.287
168 5.690 5.907 0.217 4.578 −1.112
169 4.150 5.580 1.430 4.385 0.235
170 3.330 5.065 1.735 4.270 0.940
171 3.820 4.470 0.650 3.643 −0.177
172 2.750 3.197 0.447 2.846 0.096
173 2.320 2.114 −0.206 1.742 −0.578
174 1.650 0.789 −0.861 0.578 −1.072
175 1.240 0.335 −0.905 0.166 −1.074
176 0.910 −0.246 −1.156 −0.311 −1.221
177 −0.080 −0.427 −0.347 −0.423 −0.343
178 −0.350 −0.684 −0.334 −0.639 −0.289
179 −1.020 −0.923 0.097 −0.838 0.182
180 −1.910 −1.353 0.557 −1.216 0.694
181 −2.610 −1.963 0.647 −1.770 0.840
182 −2.880 −2.192 0.688 −1.979 0.901
183 −3.400 −2.298 1.102 −2.075 1.325
184 −3.560 −2.877 0.683 −2.657 0.903
185 −3.640 −3.203 0.437 −2.941 0.699
186 −3.150 −2.537 0.613 −2.294 0.856
187 −3.180 −2.566 0.614 −2.288 0.892
188 −1.400 −1.282 0.118 −1.126 0.274
189 −0.100 −0.840 −0.740 −0.700 −0.600
190 0.750 0.069 −0.681 0.028 −0.722
191 0.400 −0.084 −0.484 −0.035 −0.435
192 −0.320 0.045 0.365 0.067 0.387
193 −0.400 0.098 0.498 0.107 0.507
194 −0.810 −0.076 0.734 −0.025 0.785
195 −1.860 −0.516 1.344 −0.348 1.512
196 −1.830 −0.791 1.039 −0.626 1.204
197 −2.340 −1.264 1.076 −0.994 1.346
198 −3.540 −1.644 1.896 −1.394 2.146
199 −3.320 −1.868 1.452 −1.599 1.721
200 −3.910 −1.944 1.966 −1.662 2.248

In the genetic neural network, the population size is set to 30, the maximum number
of iterations is set to 200, the training target is 0.01, the learning rate is 0.1, and the crossover
probability is 0.9. After 200 generations of genetic calculation, the optimal fitness value
optimization process is obtained, as shown in Figure 11.
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Figure 11. Optimization process of GA optimal fitness value.

As can be seen from Figure 10, the optimization curve of the optimal fitness value
of GA presents a step-up shape, indicating that the algorithm is constantly searching for
better initial parameters of the neural network.

The trained genetic neural network model was used to test 181–200 unknown samples,
respectively. Figure 12 shows the predicted results of the dam horizontal displacement in
the last 20 periods. See Table 4 for the results of quantitative statistics in Figure 12.
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Table 4. Comparison of horizontal displacement prediction results between the ICSO-SVM and
GA-BP models.

Number of
Periods

Measured
Displacement

Value/mm

ICSO-SVM GA-BP

Predictive
Value/mm

Prediction
Error/mm

Predictive
Value/mm

Prediction
Error/mm

161 4.930 5.344 0.414 4.979 0.049
162 5.370 5.616 0.246 5.362 −0.008
163 5.770 5.768 −0.002 5.921 0.151
164 5.450 5.910 0.460 6.111 0.661
165 6.050 6.151 0.101 6.316 0.266
166 6.130 5.682 −0.448 6.734 0.604
167 6.120 6.086 −0.034 6.693 0.573
168 5.690 5.907 0.217 6.309 0.619
169 4.150 5.580 1.430 5.865 1.715
170 3.330 5.065 1.735 5.608 2.278
171 3.820 4.470 0.650 4.444 0.624
172 2.750 3.197 0.447 3.401 0.651
173 2.320 2.114 −0.206 2.494 0.174
174 1.650 0.789 −0.861 1.332 −0.318
175 1.240 0.335 −0.905 1.584 0.344
176 0.910 −0.246 −1.156 1.467 0.557
177 −0.080 −0.427 −0.347 1.623 1.703
178 −0.350 −0.684 −0.334 1.280 1.630
179 −1.020 −0.923 0.097 0.857 1.877
180 −1.910 −1.353 0.557 −0.063 1.847
181 −2.610 −1.963 0.647 −1.306 1.304
182 −2.880 −2.192 0.688 −1.741 1.139
183 −3.400 −2.298 1.102 −2.022 1.378
184 −3.560 −2.877 0.683 −3.260 0.300
185 −3.640 −3.203 0.437 −4.027 −0.387
186 −3.150 −2.537 0.613 −3.712 −0.562
187 −3.180 −2.566 0.614 −3.561 −0.381
188 −1.400 −1.282 0.118 −2.253 −0.853
189 −0.100 −0.840 −0.740 −0.926 −0.826
190 0.750 0.069 −0.681 0.546 −0.204
191 0.400 −0.084 −0.484 0.325 −0.075
192 −0.320 0.045 0.365 0.479 0.799
193 −0.400 0.098 0.498 0.532 0.932
194 −0.810 −0.076 0.734 0.174 0.984
195 −1.860 −0.516 1.344 −0.647 1.213
196 −1.830 −0.791 1.039 −1.176 0.654
197 −2.340 −1.264 1.076 −1.802 0.538
198 −3.540 −1.644 1.896 −2.287 1.253
199 −3.320 −1.868 1.452 −2.352 0.968
200 −3.910 −1.944 1.966 −2.184 1.726

In order to illustrate the superiority of the ICSO-SVM model for the prediction of
the horizontal displacement of the dam, the CSO-SVM and the Genetic Neural Network
(GA-BP) model were used for comparison. The three models (ICSO-SVM, CSO-SVM and
GA-BP) first learn from 1–180 training samples, and then, they use the trained models to
test 181–200 unknown samples, respectively. In order to visually compare the prediction
results of the three models, Figure 13 presents a unified representation of the three models.
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As can be seen from Figure 14, the prediction curve of the ICSO-SVM model follows 
the measured value curve best. Compared with the CSO-SVM model, the prediction ac-
curacy of the ICSO-SVM model is significantly higher than that of the CSO-SVM model 
in the period 161–175, and then, the prediction accuracy of the two models is comparable 
in the period 176–200. Compared with the GA-BP model, the prediction of the GA-BP 
model is more volatile, while the prediction of the ICSO-SVM model is more stable. The 
prediction error curves of the three dam horizontal displacement prediction models are 
shown in Figure 14. 

Figure 13. Horizontal displacement prediction curves of three model dam test samples.

As can be seen from Figure 14, the prediction curve of the ICSO-SVM model follows
the measured value curve best. Compared with the CSO-SVM model, the prediction
accuracy of the ICSO-SVM model is significantly higher than that of the CSO-SVM model
in the period 161–175, and then, the prediction accuracy of the two models is comparable
in the period 176–200. Compared with the GA-BP model, the prediction of the GA-BP
model is more volatile, while the prediction of the ICSO-SVM model is more stable. The
prediction error curves of the three dam horizontal displacement prediction models are
shown in Figure 14.
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Figure 14. Prediction error curve of horizontal displacement of dam test samples. 

It can be seen from Figure 14 that the prediction error fluctuation range of the ICSO-
SVM model is [−1.156, 1.966], and the length of the error fluctuation interval is 3.122 mm. 
The prediction error fluctuation range of the CSO-SVM model is [−1.379, 2.248], and the 
length of the error fluctuation interval is 3.627 mm. The prediction error fluctuation range 
of the GA-BP model is [−0.853, 2.278], and the length of the error fluctuation interval is 
3.131 mm. Compared with the CSO-SVM and GA-BP models, the error fluctuation range 
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It can be seen from Figure 14 that the prediction error fluctuation range of the ICSO-
SVM model is [−1.156, 1.966], and the length of the error fluctuation interval is 3.122 mm.
The prediction error fluctuation range of the CSO-SVM model is [−1.379, 2.248], and the
length of the error fluctuation interval is 3.627 mm. The prediction error fluctuation range
of the GA-BP model is [−0.853, 2.278], and the length of the error fluctuation interval is
3.131 mm. Compared with the CSO-SVM and GA-BP models, the error fluctuation range of
the ICSO-SVM model is the smallest, indicating that the prediction error of the ICSO-SVM
model has a smaller fluctuation range around 0 mm.

The following is a quantitative analysis of the prediction accuracy. From Table 3, it can
be found that the minimum absolute error predicted by the ICSO-SVM model is 0.002 mm
in the 163rd period, and the maximum absolute error is 1.966 mm in the 200th period.
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The minimum absolute error predicted by the CSO-SVM model is 0.089 mm in the 162nd
period, and the maximum absolute error is 2.248 mm in the 200th period, which indicates
that the error fluctuation range predicted by the ICSO-SVM model is smaller than that
of the CSO-SVM model. It can be found from Table 5 that the minimum absolute error
predicted by the ICSO-SVM model is 0.002 mm in the 163rd period, and the maximum
absolute error is 1.966 mm in the 200th period. The minimum absolute error predicted by
the GA-BP model is 0.008 mm in the 162nd period, and the maximum absolute error is
2.278 mm in the 170th period, which indicates that the error fluctuation range predicted by
the ICSO-SVM model is smaller than that of the GA-BP model. The MAE and the RMSE of
the ICSO-SVM, CSO-SVM and GA-BP models are calculated based on the prediction of the
dam horizontal displacement values in Tables 3 and 4, as shown in Table 5.

Table 5. Mean absolute error and root mean square error of different dam horizontal displacement
prediction models.

Model MAE/mm RMSE/mm R2/mm

ICSO-SVM 0.696 0.854 0.9558
CSO-SVM 0.826 0.979 0.9556

GA-BP 0.828 1.010 0.9457

It can be seen from Table 4 that the MAE of the ICSO-SVM model is 0.696 mm, which
is smaller than 0.826 mm for the CSO-SVM model and 0.828 mm for the GA-BP model.
The RMSE of the ICSO-SVM model is 0.854 mm, which is smaller than 0.979 mm for the
CSO-SVM model and 1.010 mm for the GA-BP model. Among them, the values of the
three model determination coefficients are 0.9558, 0.9556, and 0.9457, respectively. The
determination coefficient represents the extent to which the variation of the independent
variable accounts for the variation of the dependent variable. The larger the determination
coefficient is, the higher the proportion of variation caused by independent variables in the
dependent variables are, and the better the generalization performance of the model.

To sum up, it shows that the ICSO-SVM dam horizontal displacement prediction
model is effective, and the prediction accuracy is better than the CSO-SVM and GA-BP
dam horizontal displacement prediction models.

5. Discussion

The occurrence of safety problems in dams will cause very serious consequences, so it
is necessary to monitor the dams’ deformation. The prediction and analysis based on the
deformation monitoring data are important means to ensure the safe operation of dams.
On the basis of sorting out and summarizing the previous research results, this paper
also made some meaningful explorations and attempts in the field of dam deformation
prediction, and it obtained some useful conclusions and achievements. However, due
to time constraints, limited academic level and knowledge structure, there are still many
issues that need further research, including the following aspects:

(1) There are many methods for predicting dam deformation, mainly including a time se-
ries model, regression analysis model, neural network model, gray prediction model,
Kalman filter, etc. All of these models can predict the dam deformation, but the accu-
racy of them is different. Some models have high accuracy, and the prediction effect
can meet the needs, while others have low accuracy, and the prediction effect is not sat-
isfactory. Therefore, many scholars began to combine a single model into a combined
model. By choosing suitable sub-models and combining methods, the advantages of
each model can be exploited to effectively improve the prediction accuracy. However,
if the sub-model or combination method is selected improperly, instead of improving
the prediction accuracy, it rather affects the prediction effect, which requires scholars
to conduct sufficient and reliable research on their prediction models.
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(2) This paper studies the prediction model, which is verified by an example through the
horizontal displacement monitoring data of the dam. However, the dam safety moni-
toring model is not only the monitoring and forecasting of the horizontal displacement
but also the vertical displacement and land subsidence. It is of great engineering
application value to carry out modeling prediction and comprehensively evaluate the
safe operation status of dams.

(3) With the development of surveying and mapping science and technology, the methods
and means of dam deformation monitoring are becoming more and more advanced.
The degree of automatic dam deformation monitoring becomes higher, and research,
analysis and prediction of real-time dynamic monitoring data is a hot field today.

(4) Dam deformation monitoring is a multi-disciplinary and multi-field work. Experts
and scholars need to continue to improve it by introducing the latest research results
of other emerging disciplines.

6. Conclusions

Dams have the functions of flood control, drought resistance, power generation, ship-
ping, irrigation, aquaculture, tourism, etc. They play a vital role in our country’s national
economic construction. However, once a safety problem occurs in the dam, it will bring
huge loss of life and properties to the surrounding people. Dams deformation monitoring
is necessary, and the prediction and analysis based on the deformation monitoring data
are important means to ensure the safety of the dam. Dam deformation is affected by
various factors such as water pressure, temperature, and geological conditions, and it is
also limited by management costs and levels. Therefore, using historical dam deforma-
tion monitoring data to predict is an economical and effective method. Since the dam
deformation monitoring data have the characteristics of nonlinearity, trending, periodicity
and randomness, a combined model ICSO-SVM is constructed in this paper. At the same
time, the experiment was carried out using 200 sets of dam horizontal displacement data
measured from 4 January 1985 to 13 July 1988 at the FengMan Dam. After preprocessing
the data, the prediction results of the combined model ICSO-SVM, classical combination
models CSO-SVM model and GA-BP model are compared and analyzed. The main research
contents and conclusions of the paper are as follows:

(1) The CSO algorithm has been improved. Since the CSO algorithm easily falls into the
local optimum and the convergence speed is slow in the evolution process, this paper
integrates the inertia weight, which is determined by the foraging speed, and the
aggregation degree into the optimization process of the CSO algorithm to increase
the optimization time of the CSO regarding the population diversity and improve the
ability of individual chickens to break through the local optimum. The simulation
experiment is carried out through the test function, and the experimental results show
that the optimization accuracy of the ICSO algorithm is better than that of the basic
CSO algorithm, and the prediction accuracy has been improved several times.

(2) A dam deformation prediction model based on the ICSO algorithm to optimize SVM
is established. Compared with the traditional CSO algorithm, the ICSO algorithm
optimizes the SVM model with a higher prediction accuracy and stronger model gen-
eralization ability. The ICSO algorithm performs better than the CSO algorithm in the
parameters optimization process, and the model prediction accuracy has been further
improved. The dam deformation prediction model based on the ICSO algorithm
optimizing SVM has good prediction ability of dam deformation. By selecting the
appropriate network structure and assigning the optimal parameters obtained by the
ICSO algorithm to the SVM network, the dam deformation prediction value with high
accuracy can be calculated.

(3) The model is applied to an engineering example. Through the prediction and analysis
of settlement data of the FengMan Dam monitoring point, the deformation predic-
tion results for FengMan Dam by the combined model ICSO-SVM as well as other
combined models CSO-SVM and GA-BP are compared and analyzed. The prediction
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accuracy of each model is ranked as ICSO-SVM model, CSO-SVM model and GA-BP
model sequentially. The RMSE and MAE values of the ICSO-SVM model with the
best prediction performance are the minimum values, while R2 exceeds 0.9, and the
prediction accuracy can meet the actual needs of the project.
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