Optimizing the Gamma Ray-Based Detection System to Measure the Scale Thickness in Three-Phase Flow through Oil and Petrochemical Pipelines in View of Stratified Regime
Abstract
:1. Introduction
- Extracting signal features by the use of statistical formulas.
- Utilizing a single detector reduces expenses and the complexity of the detection system’s structure.
- Improving scale thickness determination accuracy by the extraction of valuable properties from received signals
- Determining scale thickness using the GMDH neural network as a self-organizing network.
2. MCNP Simulation Setup
3. Time-Domain Feature Extraction
- Sample mean:
- Sample of summation of square root (SSR):
- Sample skewness:
- Sample kurtosis:
4. GMDH Neural Network
- 1.
- All neural network inputs (extracted characteristics) two at the time and for each admixture are fitted to the quadratic polynomial given in Equation (7). The purpose of this step is to calculate the C coefficients that are obtained with the least squares algorithm. The output of each quadratic polynomial predicts the desired output value. The task of calculating these polynomials is assigned to the neurons of the neural network.
- 2.
- The neurons with the most error in predicting the desired output are removed.
- 3.
- The neurons selected in the previous step are considered quadratic polynomial inputs described in step one. In this step, polynomials are produced from polynomials, producing a polynomial with a higher order.
- 4.
- The second step is repeated, and neurons with high errors are removed. This repetition of the steps and generation of polynomials from polynomials are repeated until the desired error value is obtained.
- 5.
- Checking network performance with test data. In the design of neural networks, the major of the data (about 70%) are used for training the neural network, and the rest of the data are used for the final test of the network. The correct performance of the neural network against these data sets ensures that the designed network can show acceptable performance in operational conditions. In order to identify various characteristics in many scientific domains, several studies have employed intelligent computer systems [16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37].
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roshani, G.H.; Karami, A.; Nazemi, E.; Shama, F. Volume fraction determination of the annular three-phase flow of gas-oil-water using adaptive neuro-fuzzy inference system. Comput. Appl. Math. 2018, 37, 4321–4341. [Google Scholar] [CrossRef]
- Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E. Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows. Measurement 2021, 168, 108427. [Google Scholar] [CrossRef]
- Roshani, G.H.; Karami, A.; Nazemi, E. An intelligent integrated approach of Jaya optimization algorithm and neuro-fuzzy network to model the stratified three-phase flow of gas–oil–water. Comput. Appl. Math. 2019, 38, 1–26. [Google Scholar] [CrossRef]
- Hosseini, S.; Taylan, O.; Abusurrah, M.; Akilan, T.; Nazemi, E.; Eftekhari-Zadeh, E.; Roshani, G.H. Application of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries. Polymers 2021, 13, 3647. [Google Scholar] [CrossRef]
- Sattari, M.A.; Korani, N.; Hanus, R.; Roshani, G.H.; Nazemi, E. Improving the performance of gamma radiation based two phase flow meters using optimal time characteristics of the detector output signal extraction. J. Nucl. Sci. Technol. 2020, 41, 42–54. [Google Scholar]
- Nazemi, E.; Roshani, G.H.; Feghhi, S.A.H.; Setayeshi, S.; Zadeh, E.E.; Fatehi, A. Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrog. Energy 2016, 41, 7438–7444. [Google Scholar] [CrossRef]
- Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [Google Scholar] [CrossRef]
- Roshani, M.; Sattari, M.A.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Application of GMDH neural network technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter. Flow Meas. Instrum. 2020, 75, 101804. [Google Scholar] [CrossRef]
- Sattari, M.A.; Roshani, G.H.; Hanus, R. Improving the structure of two-phase flow meter using feature extraction and GMDH neural network. Radiat. Phys. Chem. 2020, 171, 108725. [Google Scholar] [CrossRef]
- Alamoudi, M.; Sattari, M.A.; Balubaid, M.; Eftekhari-Zadeh, E.; Nazemi, E.; Taylan, O.; Kalmoun, E.M. Application of Gamma Attenuation Technique and Artificial Intelligence to Detect Scale Thickness in Pipelines in Which Two-Phase Flows with Different Flow Regimes and Void Fractions Exist. Symmetry 2021, 13, 1198. [Google Scholar] [CrossRef]
- Basahel, A.; Sattari, M.A.; Taylan, O.; Nazemi, E. Application of Feature Extraction and Artificial Intelligence Techniques for Increasing the Accuracy of X-ray Radiation Based Two Phase Flow Meter. Mathematics 2021, 9, 1227. [Google Scholar] [CrossRef]
- Taylan, O.; Sattari, M.A.; Essoussi, I.E.; Nazemi, E. Frequency Domain Feature Extraction Investigation to Increase the Accuracy of an Intelligent Nondestructive System for Volume Fraction and Regime Determination of Gas–Water–Oil Three-Phase Flows. Mathematics 2021, 9, 2091. [Google Scholar] [CrossRef]
- Roshani, G.H.; Ali, P.J.M.; Mohammed, S.; Hanus, R.; Abdulkareem, L.; Alanezi, A.A.; Kalmoun, E.M. Simulation Study of Utilizing X-ray Tube in Monitoring Systems of Liquid Petroleum Products. Processes 2021, 9, 828. [Google Scholar] [CrossRef]
- Balubaid, M.; Sattari, M.A.; Taylan, O.; Bakhsh, A.A.; Nazemi, E. Applications of discrete wavelet transform for feature extraction to increase the accuracy of monitoring systems of liquid petroleum products. Mathematics 2021, 9, 3215. [Google Scholar] [CrossRef]
- Ivakhnenko, A.G. Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybern. 1971, SMC-1, 364–378. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Mohamadpour, G.; Roshani, S.; Ami, M.; Roshani, S.; Sayem, A.S.; Alibakhshikenari, M.; Koziel, S. Design of a compact planar transmission line for miniaturized rat-race coupler with harmonics suppression. IEEE Access 2021, 9, 129207–129217. [Google Scholar] [CrossRef]
- Hookari, M.; Roshani, S.; Roshani, S. High-efficiency balanced power amplifier using miniaturized harmonics suppressed cou-pler. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22252. [Google Scholar] [CrossRef]
- Lotfi, S.; Roshani, S.; Roshani, S.; Gilan, M.S. Wilkinson power divider with band-pass filtering response and harmonics suppres-sion using open and short stubs. Frequenz 2020, 74, 169–176. [Google Scholar] [CrossRef]
- Jamshidi, M.; Siahkamari, H.; Roshani, S.; Roshani, S. A compact Gysel power divider design using U-shaped and T-shaped res-onators with harmonics suppression. Electromagnetics 2019, 39, 491–504. [Google Scholar] [CrossRef]
- Roshani, S.; Jamshidi, M.B.; Mohebi, F.; Roshani, S. Design and modeling of a compact power divider with squared resonators using artificial intelligence. Wirel. Pers. Commun. 2021, 117, 2085–2096. [Google Scholar] [CrossRef]
- Roshani, S.; Azizian, J.; Roshani, S.; Jamshidi, M.B.; Parandin, F. Design of a miniaturized branch line microstrip coupler with a simple structure using artificial neural network. Frequenz 2022, 76. [Google Scholar] [CrossRef]
- Khaleghi, M.; Salimi, J.; Farhangi, V.; Moradi, M.J.; Karakouzian, M. Application of Artificial Neural Network to Predict Load Bearing Capacity and Stiffness of Perforated Masonry Walls. CivilEng 2021, 2, 48–67. [Google Scholar] [CrossRef]
- Dabiri, H.; Farhangi, V.; Moradi, M.J.; Zadehmohamad, M.; Karakouzian, M. Applications of Decision Tree and Random Forest as Tree-Based Machine Learning Techniques for Analyzing the Ultimate Strain of Spliced and Non-Spliced Reinforce-ment Bars. Appl. Sci. 2022, 12, 4851. [Google Scholar] [CrossRef]
- Zych, M.; Petryka, L.; Kępński, J.; Hanus, R.; Bujak, T.; Puskarczyk, E. Radioisotope investigations of compound two-phase flows in an ope channel. Flow Meas. Instrum. 2014, 35, 11–15. [Google Scholar] [CrossRef]
- Zych, M.; Hanus, R.; Wilk, B.; Petryka, L.; Świsulski, D. Comparison of noise reduction methods in radiometric correlation measurements of two-phase liquid-gas flows. Measurement 2018, 129, 288–295. [Google Scholar] [CrossRef]
- Golijanek-Jędrzejczyk, A.; Mrowiec, A.; Hanus, R.; Zych, M.; Heronimczak, M.; Świsulski, D. Uncertainty of mass flow meas-urement using centric and eccentric orifice for Reynolds number in the range 10,000 ≤ Re ≤ 20,000. Measurement 2020, 160, 107851. [Google Scholar] [CrossRef]
- Mayet, A.; Hussain, M. Amorphous WNx Metal For Accelerometers and Gyroscope. In Proceedings of the MRS Fall Meeting, Boston, MA, USA, 30 November–5 December 2014. [Google Scholar]
- Mayet, A.; Hussain, A.; Hussain, M. Three-terminal nanoelectromechanical switch based on tungsten nitride—An amor-phous metallic material. Nanotechnology 2016, 27, 035202. [Google Scholar] [CrossRef]
- Shukla, N.K.; Mayet, A.M.; Vats, A.; Aggarwal, M.; Raja, R.K.; Verma, R.; Muqeet, M.A. High speed integrated RF–VLC data communication system: Performance constraints and capacity considerations. Phys. Commun. 2022, 50, 101492. [Google Scholar] [CrossRef]
- Mayet, A.; Smith, C.E.; Hussain, M.M. Energy Reversible Switching from Amorphous Metal Based Nanoelectromechanical Switch. In Proceedings of the 13th IEEE International onference on Nanotechnology (IEEE-NANO 2013), Beijing, China, 5–8 August 2013; pp. 366–369. [Google Scholar]
- Khaibullina, K. Technology to Remove Asphaltene, Resin and Paraffin Deposits in Wells Using Organic Solvents. In Proceedings of the SPE Annual Technical Conference and Exhibition 2016, Dubai, United Arab Emirates, 26–28 September 2016. [Google Scholar]
- Tikhomirova, E.A.; Sagirova, L.R.; Khaibullina, K.S. A review on methods of oil saturation modelling using IRAP RMS. IOP Conf. Ser. Earth Environ. Sci. 2019, 378, 012075. [Google Scholar] [CrossRef]
- Khaibullina, K.S.; Korobov, G.Y.; Lekomtsev, A.V. Development of an asphalt-resin-paraffin deposits inhibitor and substan-tiation of the technological parameters of its injection into the bottom-hole formation zone. Period. Tche Quim. 2020, 17, 769–781. [Google Scholar]
- Khaibullina, K.S.; Sagirova, L.R.; Sandyga, M.S. Substantiation and selection of an inhibitor for preventing the formation of asphalt-resin-paraffin deposits. Period. Tche Quim. 2020, 17, 541–551. [Google Scholar]
- Mayet, A.M.; Alizadeh, S.M.; Kakarash, Z.A.; Al-Qahtani, A.A.; Alanazi, A.K.; Alhashimi, H.H.; Eftekhari-Zadeh, E.; Nazemi, E. Introducing a Precise System for Determining Volume Percentages Independent of Scale Thickness and Type of Flow Regime. Mathematics 2022, 10, 1770. [Google Scholar] [CrossRef]
- Mayet, A.M.; Alizadeh, S.M.; Nurgalieva, K.S.; Hanus, R.; Nazemi, E.; Narozhnyy, I.M. Extraction of Time-Domain Charac-teristics and Selection of Effective Features Using Correlation Analysis to Increase the Accuracy of Petroleum Fluid Monitor-ing Systems. Energies 2022, 15, 1986. [Google Scholar] [CrossRef]
- Hanus, R.; Zych, M.; Golijanek-Jędrzejczyk, A. Investigation of Liquid–Gas Flow in a Horizontal Pipeline Using Gamma-Ray Technique and Modified Cross-Correlation. Energies 2022, 15, 5848. [Google Scholar] [CrossRef]
- Hosseini, S.; Roshani, G.H.; Setayeshi, S. Precise gamma based two-phase flow meter using frequency feature extraction and only one detector. Flow Meas. Instrum. 2020, 72, 101693. [Google Scholar] [CrossRef]
- Roshani, M.; Ali, P.J.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Phan, N.H.; Tran, H.N.; Nazemi, E. X-ray tube with artificial neural network model as a promising alternative for radioisotope source in radiation based two phase flowmeters. Appl. Radiat. Isot. 2020, 164, 109255. [Google Scholar] [CrossRef]
- Peyvandi, R.G.; Rad, S.I. Application of artificial neural networks for the prediction of volume fraction using spectra of gamma rays backscattered by three-phase flows. Eur. Phys. J. Plus 2017, 132, 511. [Google Scholar] [CrossRef]
- Roshani Gholam, H.; Ehsan, N.; Farzin, S.; Mohammad, A.I.; Salar, M. Designing a simple radiometric system to predict void fraction percentage independent of flow pattern using radial basis function. Metrol. Meas. Syst. 2018, 25, 347–358. [Google Scholar]
- Roshani, G.H.; Nazemi, E.; Feghhi, S.A.H.; Setayeshi, S. Flow regime identification and void fraction prediction in two-phase flows based on gamma ray attenuation. Measurement 2015, 62, 25–32. [Google Scholar] [CrossRef]
Data Number | Train Targets | Train Outputs | Test Targets | Test Outputs |
---|---|---|---|---|
1 | 0.5000 | 0.8364 | 1.5000 | 1.3493 |
2 | 1.0000 | 1.2139 | 2.5000 | 2.6387 |
3 | 1.0000 | 1.0764 | 1.0000 | 0.9995 |
4 | 3.0000 | 2.8872 | 2.0000 | 1.8995 |
5 | 1.5000 | 1.7345 | 0 | −0.1932 |
6 | 1.0000 | 0.7840 | 0.5000 | 0.5605 |
7 | 0 | 0.1079 | 0.5000 | 0.6024 |
8 | 0 | 0.0893 | 2.5000 | 2.3590 |
9 | 2.5000 | 2.3907 | 2.0000 | 1.9970 |
10 | 1.0000 | 0.8268 | 2.0000 | 1.5573 |
11 | 0 | 0.0608 | 2.0000 | 2.1318 |
12 | 1.0000 | 1.2595 | 2.5000 | 2.5019 |
13 | 1.0000 | 1.1938 | 0 | 0.2556 |
14 | 2.5000 | 2.4362 | 2.5000 | 2.5553 |
15 | 0.5000 | 0.6588 | 0 | 0.0966 |
16 | 2.5000 | 2.6227 | 1.5000 | 1.4977 |
17 | 3.0000 | 2.8169 | 3.0000 | 2.9088 |
18 | 3.0000 | 2.9739 | 1.0000 | 1.2369 |
19 | 2.5000 | 2.6138 | 2.0000 | 1.7970 |
20 | 2.0000 | 2.3813 | 2.5000 | 2.2073 |
21 | 2.0000 | 2.2872 | 3.0000 | 2.9807 |
22 | 0 | 0.0054 | 3.0000 | 3.0354 |
23 | 0.5000 | 0.5838 | 1.5000 | 1.0813 |
24 | 1.5000 | 1.7266 | 0.5000 | 0.8614 |
25 | 0 | 0.1918 | 3.0000 | 3.0631 |
26 | 2.0000 | 1.7102 | 0 | 0.3922 |
27 | 0 | 0.0498 | 0 | 0.1574 |
28 | 1.5000 | 1.8249 | 1.0000 | 1.0251 |
29 | 2.5000 | 2.0919 | 0 | 0.0212 |
30 | 2.5000 | 2.3027 | 2.0000 | 2.1242 |
31 | 0 | −0.1304 | 2.5000 | 2.2996 |
32 | 2.5000 | 2.6107 | 3.0000 | 3.0133 |
33 | 0.5000 | 0.6473 | 1.0000 | 0.8878 |
34 | 3.0000 | 3.0209 | 1.0000 | 0.9709 |
35 | 0.5000 | 0.8172 | 2.0000 | 1.8204 |
36 | 0 | 0.0083 | 1.5000 | 1.7240 |
37 | 0.5000 | 0.5213 | 0.5000 | 0.6903 |
38 | 1.5000 | 1.2158 | 2.5000 | 2.3593 |
39 | 1.5000 | 1.8909 | 0 | 0.0223 |
40 | 2.0000 | 2.0860 | 1.5000 | 1.3002 |
41 | 2.0000 | 2.2205 | 1.5000 | 1.5859 |
42 | 1.0000 | 0.9735 | 3.0000 | 3.0234 |
43 | 0 | 0.1812 | 1.5000 | 1.1938 |
44 | 0.5000 | 0.9019 | 2.0000 | 2.0133 |
45 | 2.0000 | 2.0582 | 1.5000 | 1.2607 |
46 | 0 | 0.2109 | 3.0000 | 3.0214 |
47 | 1.5000 | 1.6819 | 1.0000 | 1.1423 |
48 | 2.0000 | 2.3901 | 0 | −0.1317 |
49 | 0 | 0.0807 | 1.0000 | 0.9227 |
50 | 2.0000 | 1.3950 | 3.0000 | 2.6769 |
51 | 2.5000 | 2.6330 | 3.0000 | 2.9334 |
52 | 2.5000 | 2.3719 | 2.5000 | 2.1041 |
53 | 1.5000 | 1.3983 | 2.0000 | 1.8912 |
54 | 1.0000 | 1.1618 | 1.5000 | 1.4685 |
55 | 0.5000 | 0.4591 | 2.0000 | 1.5945 |
56 | 2.5000 | 2.3568 | 2.0000 | 1.7184 |
57 | 2.5000 | 2.5199 | 3.0000 | 2.8049 |
58 | 3.0000 | 2.7633 | 3.0000 | 2.7848 |
59 | 1.0000 | 1.1078 | 0.5000 | 0.2380 |
60 | 0 | 0.1705 | 3.0000 | 2.9187 |
61 | 1.0000 | 0.8614 | 2.5000 | 2.3903 |
62 | 1.0000 | 0.9309 | 3.0000 | 3.0254 |
63 | 1.5000 | 1.4250 | 1.0000 | 0.9684 |
64 | 0.5000 | 0.8160 | 2.0000 | 2.2965 |
65 | 2.0000 | 2.4583 | 2.0000 | 2.3671 |
66 | 0.5000 | 0.5069 | 0 | 0.0096 |
67 | 0.5000 | 0.7269 | 1.0000 | 0.9977 |
68 | 2.5000 | 2.3730 | 2.0000 | 2.1213 |
69 | 1.5000 | 1.3851 | 0.5000 | 0.7948 |
70 | 3.0000 | 3.0613 | 1.5000 | 1.5571 |
71 | 1.0000 | 1.0067 | 2.0000 | 2.0093 |
72 | 1.0000 | 0.6657 | 1.5000 | 1.2935 |
73 | 1.0000 | 0.7362 | 0 | 0.0936 |
74 | 1.0000 | 1.0683 | 0.5000 | 0.6893 |
75 | 0 | 0.1252 | 2.0000 | 1.5044 |
76 | 1.5000 | 1.2048 | 3.0000 | 2.7268 |
77 | 2.0000 | 2.1610 | - | - |
78 | 0.5000 | 0.3873 | - | - |
79 | 0.5000 | 0.6288 | - | - |
80 | 1.5000 | 1.2658 | - | - |
81 | 1.5000 | 1.3239 | - | - |
82 | 0.5000 | 0.3186 | - | - |
83 | 1.0000 | 0.9420 | - | - |
84 | 1.5000 | 1.4139 | - | - |
85 | 3.0000 | 3.0394 | - | - |
86 | 3.0000 | 2.9834 | - | - |
87 | 0 | 0.0517 | - | - |
88 | 3.0000 | 2.6107 | - | - |
89 | 1.0000 | 0.9446 | - | - |
90 | 0.5000 | 0.5613 | - | - |
91 | 0 | −0.0763 | - | - |
92 | 0 | −0.1754 | - | - |
93 | 3.0000 | 3.0456 | - | - |
94 | 3.0000 | 2.7840 | - | - |
95 | 2.5000 | 2.3713 | - | - |
96 | 0.5000 | 0.7758 | - | - |
97 | 2.0000 | 2.4267 | - | - |
98 | 2.0000 | 1.8703 | - | - |
99 | 1.0000 | 1.1189 | - | - |
100 | 1.0000 | 1.2409 | - | - |
101 | 1.0000 | 1.0213 | - | - |
102 | 2.0000 | 2.0038 | - | - |
103 | 0 | −0.1516 | - | - |
104 | 1.5000 | 1.5227 | - | - |
105 | 3.0000 | 2.7891 | - | - |
106 | 1.5000 | 1.4973 | - | - |
107 | 2.0000 | 2.3414 | - | - |
108 | 3.0000 | 2.9899 | - | - |
109 | 2.0000 | 1.7173 | - | - |
110 | 0.5000 | 0.8231 | - | - |
111 | 1.5000 | 1.6692 | - | - |
112 | 0.5000 | 0.6473 | - | - |
113 | 0 | −0.0318 | - | - |
114 | 1.0000 | 1.1917 | - | - |
115 | 0.5000 | 0.3629 | - | - |
116 | 0.5000 | 0.4943 | - | - |
117 | 0 | −0.1362 | - | - |
118 | 3.0000 | 3.0185 | - | - |
119 | 2.5000 | 2.1735 | - | - |
120 | 2.5000 | 2.1380 | - | - |
121 | 0 | 0.0072 | - | - |
122 | 2.0000 | 1.9919 | - | - |
123 | 2.5000 | 2.3027 | - | - |
124 | 0 | 0.0226 | - | - |
125 | 1.5000 | 1.6830 | - | - |
126 | 0 | −0.0423 | - | - |
127 | 0.5000 | 0.7433 | - | - |
128 | 0.5000 | 0.7383 | - | - |
129 | 0 | 0.1972 | - | - |
130 | 3.0000 | 3.0329 | - | - |
131 | 2.5000 | 2.4056 | - | - |
132 | 3.0000 | 3.0404 | - | - |
133 | 2.5000 | 2.4958 | - | - |
134 | 3.0000 | 3.0254 | - | - |
135 | 0 | 0.0398 | - | - |
136 | 3.0000 | 2.8249 | - | - |
137 | 2.5000 | 2.6042 | - | - |
138 | 2.5000 | 2.4641 | - | - |
139 | 0.5000 | 0.7573 | - | - |
140 | 2.0000 | 1.4576 | - | - |
141 | 1.5000 | 1.7930 | - | - |
142 | 2.5000 | 2.5810 | - | - |
143 | 1.5000 | 1.1687 | - | - |
144 | 1.0000 | 1.1215 | - | - |
145 | 3.0000 | 3.0252 | - | - |
146 | 0.5000 | 0.4367 | - | - |
147 | 2.5000 | 2.2581 | - | - |
148 | 0.5000 | 0.6105 | - | - |
149 | 2.5000 | 2.5026 | - | - |
150 | 2.0000 | 1.5837 | - | - |
151 | 3.0000 | 2.9770 | - | - |
152 | 1.5000 | 1.3390 | - | - |
153 | 2.0000 | 1.9029 | - | - |
154 | 1.0000 | 0.9743 | - | - |
155 | 1.5000 | 1.2099 | - | - |
156 | 1.5000 | 1.2457 | - | - |
157 | 2.5000 | 2.6815 | - | - |
158 | 2.5000 | 1.9872 | - | - |
159 | 2.0000 | 2.1030 | - | - |
160 | 0 | −0.0921 | - | - |
161 | 1.0000 | 1.3085 | - | - |
162 | 1.5000 | 1.1887 | - | - |
163 | 1.5000 | 1.5302 | - | - |
164 | 0.5000 | 0.2263 | - | - |
165 | 0.5000 | 0.6759 | - | - |
166 | 2.5000 | 2.2218 | - | - |
167 | 1.5000 | 1.4478 | - | - |
168 | 2.5000 | 2.2561 | - | - |
169 | 1.0000 | 1.2136 | - | - |
170 | 0.5000 | 0.6492 | - | - |
171 | 0 | −0.1685 | - | - |
172 | 1.0000 | 1.0860 | - | - |
173 | 1.0000 | 0.8985 | - | - |
174 | 0.5000 | 0.6025 | - | - |
175 | 3.0000 | 3.0462 | - | - |
176 | 3.0000 | 2.9525 | - | - |
Ref | Number of Detectors | Source Type | Type of Neural Network | Maximum MSE | Maximum RMSE |
---|---|---|---|---|---|
[9] | 1 | 137Cs | GMDH | 1.24 | 1.11 |
[7] | 2 | 137Cs | MLP | 0.21 | 0.46 |
[8] | 1 | 60Co | GMDH | 7.34 | 2.71 |
[38] | 2 | 137Cs | MLP | 0.67 | 0.82 |
[39] | 1 | X-Ray tube | MLP | 17.05 | 4.13 |
[40] | 1 | 137Cs | MLP | 2.56 | 1.6 |
[41] | 1 | 60Co | RBF | 37.45 | 6.12 |
[42] | 2 | 137Cs | MLP | 1.08 | 1.04 |
[current study] | 1 | Dual-energy gamma source | GMDH | 0.04 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayet, A.M.; Chen, T.-C.; Alizadeh, S.M.; Al-Qahtani, A.A.; Alanazi, A.K.; Ghamry, N.A.; Alhashim, H.H.; Eftekhari-Zadeh, E. Optimizing the Gamma Ray-Based Detection System to Measure the Scale Thickness in Three-Phase Flow through Oil and Petrochemical Pipelines in View of Stratified Regime. Processes 2022, 10, 1866. https://doi.org/10.3390/pr10091866
Mayet AM, Chen T-C, Alizadeh SM, Al-Qahtani AA, Alanazi AK, Ghamry NA, Alhashim HH, Eftekhari-Zadeh E. Optimizing the Gamma Ray-Based Detection System to Measure the Scale Thickness in Three-Phase Flow through Oil and Petrochemical Pipelines in View of Stratified Regime. Processes. 2022; 10(9):1866. https://doi.org/10.3390/pr10091866
Chicago/Turabian StyleMayet, Abdulilah Mohammad, Tzu-Chia Chen, Seyed Mehdi Alizadeh, Ali Awadh Al-Qahtani, Abdullah K. Alanazi, Nivin A. Ghamry, Hala H. Alhashim, and Ehsan Eftekhari-Zadeh. 2022. "Optimizing the Gamma Ray-Based Detection System to Measure the Scale Thickness in Three-Phase Flow through Oil and Petrochemical Pipelines in View of Stratified Regime" Processes 10, no. 9: 1866. https://doi.org/10.3390/pr10091866
APA StyleMayet, A. M., Chen, T. -C., Alizadeh, S. M., Al-Qahtani, A. A., Alanazi, A. K., Ghamry, N. A., Alhashim, H. H., & Eftekhari-Zadeh, E. (2022). Optimizing the Gamma Ray-Based Detection System to Measure the Scale Thickness in Three-Phase Flow through Oil and Petrochemical Pipelines in View of Stratified Regime. Processes, 10(9), 1866. https://doi.org/10.3390/pr10091866