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Abstract: Thirteen benzothiazolone derivatives (M1–M13) were synthesized and evaluated for
their inhibitory activity against cholinesterases (ChEs) and monoamine oxidases (MAOs). All the
compounds inhibited ChEs more effectively than MAOs. In addition, most of the compounds showed
higher inhibitory activities against butyrylcholinesterase (BChE) than acetylcholinesterase (AChE).
Compound M13 most potently inhibited BChE with an IC50 value of 1.21 µM, followed by M2
(IC50 = 1.38 µM). Compound M2 had a higher selectivity index (SI) value for BChE over AChE (28.99)
than M13 (4.16). The 6-methoxy indole group of M13 was expected to have a greater effect on BChE
inhibitory activity than the other groups. Kinetics and reversibility tests showed that M13 was a
reversible noncompetitive BChE inhibitor with a Ki value of 1.14 ± 0.21 µM. In a docking simulation,
M13 is predicted to form a hydrogen bond with the backbone carbonyl group of Ser287 of BChE
through its methoxy indole moiety and π−π interactions between its benzothiazolone group and the
side chain of Trp82 with the five-membered pyrrole ring and with the six-membered benzene ring.
From these results, it is suggested that M13 is a BChE inhibitor and a potential candidate agent for
the treatment of Alzheimer’s disease.

Keywords: benzothiazolone; cholinesterase inhibitor; kinetics; docking analysis

1. Introduction

As for the general consideration, Alzheimer’s disease (AD) is associated with neu-
ron loss in the brain; however, the pathophysiological events leading to neuron loss are
yet to be entirely understood. According to the cholinergic hypothesis, the reduction of
acetylcholine, a crucial neurotransmitter, is assumed to be the cause of AD [1,2]. In AD
patients, cholinergic neurons in the basal forebrain degenerate, and levels of cholinergic
receptors and choline acetyltransferase in the cerebral cortex are found to be significantly
decreased [3]. Clinical trials have shown that medications focused on raising acetylcholine
levels offer symptomatic alleviation, with the fact that many previous treatment methods
were founded on this concept [4,5]. According to recent research on the cholinergic hypoth-
esis, amyloid fibrillation, one of the pathological signs of AD, may be influenced by the use
of cholinesterase inhibitors [6–8].
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Some cholinesterase (ChE) inhibitors, such as rivastigmine, tacrine, galantamine,
donepezil, and huperzine A, have been shown to slow the progression of AD. Tacrine
(Cognex®), the first drug among these compounds approved by the FDA in the USA for the
treatment of AD, is based on the cholinergic hypothesis of AD as an acetylcholinesterase
(AChE) inhibitor and was put into clinical use. However, due to its hepatotoxicity, tacrine
has been limited in clinical use. By contrast, three other AChE inhibitors, rivastigmine,
donepezil, and galantamine, were approved as anti-AD drugs and used clinically. These
drugs also show effects other than AChE inhibition. Rivastigmine can block butyryl-
cholinesterase (BChE), while galantamine can modulate nicotinic acetylcholine recep-
tors [8,9]. Donepezil is a moderate inhibitor of β-amyloid (Aβ) synthesis and the β-secretase
(BACE1) responsible for Aβ synthesis, and it can also interact with sigma-1 receptors, which
are known for their anti-amnesic activities [10].

Structural features and key binding sites of residues of AChE and BChE active sites
have been clarified by crystallographic studies with molecules known to be AChE and BChE
inhibitors, such as tacrine, donepezil, and galantamine [11–17]. Studies have determined
that there is a catalytic active site (CAS), peripheral anionic site (PAS), anionic subsite (AS),
oxyanion hole, and acyl binding pocket in the active site of the enzyme. It has been reported
that the interactions with residues in the CAS, PAS, and AS cause significant changes in the
activity of the enzyme. Contrary to tacrine, donepezil and galantamine interact with the
cationic active site (CAS), the acyl-binding pocket, and the PAS residues that surround the
rim at the entry to the active gorge [12,17–20]. The acetylcholine bond breaking is catalyzed
by the catalytic triad of three amino acids, S203, E334, and H447, which are located at
the bottom of this gorge [21]. The ideal scenario would be for an agent to interact with
these active regions of the enzyme by inhibiting ChE (Figure 1a). Despite a 65% sequence
similarity between BChE and AChE, there are notable differences that are crucial for the
enzyme’s selectivity, for example, the larger acyl-binding pocket in BChE [22].

It has been reported that the benzoxazolone ring has many important activities, such
as anticancer, antimicrobial, antiviral, antioxidant, analgesic, anti-inflammatory, and ChE in-
hibitory activities. The benzoxazolone ring was defined as a “privileged skeleton” because
of its high chemical reactivity and wide variety of biological activities [23–26]. In addition,
various tertiary amine moieties have been reported as a pharmacophore group in ChE inhi-
bition, including the importance of designing compounds with a benzoxazolone structure
containing the tertiary amine moieties with a ChE inhibition effect [27,28].

It has been reported in the literature that various compounds carrying the benzothia-
zolone skeleton have ChE inhibitory effects. Erdogan et al. investigated the ChE inhibitory
activity of some benzothiazol-2-one derivatives and reported the most effective compound
(Figure 1b) with an IC50 value of 0.34 µM against AChE [23]. The synthesized compounds
(M1-13) were derived from the 3rd position of the benzothiazolone core, and the most active
compound (Figure 1b) was derived from the 6th position of the core. When compound M13
and the most active compound are evaluated, both compounds have a benzothiazol-2-one
core in the peripheral anionic region. M13 and the most effective compound (Figure 1b)
have a 6-methoxyindole group and phenyl ring at the choline-binding site, respectively,
as well as an acetohydrazide structure and a piperazine ring at the positive charge center.

In addition, various compounds have been designed and synthesized as ChE inhibitors
using Schiff bases as linkers. The compounds were observed to be potentially useful for
ChE inhibition and possible treatment for AD (Figure 1c,d) [29,30].

In light of this information, in the present study, we aimed to synthesize and charac-
terize benzothiazolone derivatives, i.e., the M series, and determine their ChE inhibitory
activity according to the hypothesis as shown below (Figure 2).
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2. Materials and Methods
2.1. Experimental Procedure for Synthesis

General procedure of synthesis:
Benzo[d]thiazol-2(3H)-one (1): A mixture of 2-aminothiophenol [1 eq] and urea [2 eq]

was taken into a flask and irradiated in a microwave oven at 140 ◦C and 500 W for 15 min
without a solvent. The reaction was cooled and poured into ice water, and the resulting
solid was filtered off. The solid obtained was added to a 10% NaOH solution and filtered,
and the filtrate was acidified with concentrated hydrochloric acid. The precipitate was
filtered off, dried, and crystallized from water. The product was obtained with an 87%
yield. The reaction was monitored with TLC and LC-MS [31].

Ethyl 2-(2-oxobenzo[d]thiazol-3(2H)-yl)acetate (2): Benzo[d]thiazol-2(3H)-one 1 eq],
ethyl bromoacetate [1.2 eq], K2CO3 [2 eq], and acetone were mixed at 400 W at 58 ◦C for
20 min. The reaction was cooled and taken up in ice water, and the precipitated solid
was filtered off, washed with water, and dried. The product was obtained in 91% yield.
The reaction was monitored with TLC and LC-MS [32].

2-(2-oxobenzo[d]thiazol-3(2H)-yl)acetohydrazide (3): Ethyl 2-(2-oxobenzo[d]thiazol-
3(2H)-yl)acetate [1 eq] was dissolved in ethanol and hydrazine hydrate [10 eq] was added
dropwise and refluxed at 70 ◦C for 3 h. The reaction was cooled, and the solid formed
was filtered and dried. The product was obtained with an 82% yield. The reaction was
monitored with TLC and LC-MS [33].

2-(2-oxobenzo[d]thiazol-3(2H)-yl)-N′-(substitued)acetohydrazide derivatives (M1–
M13): 2-(2-Oxobenzo[d]thiazol-3(2H)-yl)acetohydrazide [1 eq] and its aldehyde derivatives
[1.2 eq] were mixed in 5 mL of acetic acid at 400 W for 10 min at 85 ◦C. The reaction
was cooled, taken up in ice water, and filtered, and the solid in ethanol:water [8:2] was
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crystallized, and the crystals were filtered and adjusted. The products were obtained with
a 55–75% yield. The reaction was monitored with TLC and LC-MS.

General information about materials and methods for the chemistry is described in
the Supplementary information (Method S).

2.2. Inhibition Studies of ChE and MAO

Using 0.5 mM of acetylthiocholine (ATCI) and butyrylthiocholine iodide (BTCI) as
substrates, respectively, the inhibitory activity of AChE and BChE were evaluated for
15 min at 412 nm. For the colour development, 0.5 mM of 5,5-dithiobis (2-nitrobenzoic acid)
(DTNB) was also added [34]. AChE from Electrophorus electricus and BChE from horse
serum were used for the ChEs. Before adding BTCI and DTNB, AChE or BChE was mixed
with an inhibitor and preincubated for 10 min. Thiocholine, an AChE or BChE reaction
product, and DTNB form the yellowish 5-thio-2-nitrobenzoic acid. According to a prior
description, the activities of MAO-A and MAO-B were monitored continuously for 45 min
at 316 nm using 0.06 mM of kynuramine and at 250 nm using 0.3 mM of benzylamine,
respectively, as described previously [35].

2.3. Enzyme Inhibition and Kinetic Studies

After inhibitory activities of the compounds for ChEs or MAOs were evaluated at
a concentration of 10 µM, an IC50 value of each compound showing residual activity of
<50% was determined. The IC50 value was calculated by measuring the residual activity
at different concentrations of the compound and by using GraphPad Prism software
5 [36,37]. The selectivity index (SI) value of BChE was calculated by (IC50 of AChE)/(IC50
of BChE) [38]. Enzyme kinetic parameters, inhibitor type, and Ki value of compound M13
were determined by measuring enzyme activity at five different substrate concentrations
and at three different inhibitor concentrations (0.5–2 times of IC50) [39,40]. The inhibition
type and Ki value were determined by the Lineweaver–Burk plots and their secondary
plots, respectively.

2.4. Reversibility Analysis of M13

The reversibility of BChE inhibition by M13 was evaluated using dialysis after prein-
cubation of BChE and M13 for 10 min at ~2.0 × IC50 (i.e., 2.42 µM), as previously de-
scribed [41]. For the reference compound, donepezil (a reference reversible BChE inhibitor)
was preincubated at ~2.0 × IC50 (0.36 µM). The reversibility pattern was determined by
comparing the activities of dialyzed (AD) and undialyzed (AU) samples.

2.5. Docking Studies

First of all, the three-dimensional X-ray structures of hAChE (PDB ID: 4EY7 [17]) and
hBChE (PDB ID: 6RUA [42]) were retrieved from the Protein Data Bank (PDB). The target
structures were refined using Protein Preparation Wizard (Schrödinger Suite 2021–4) [43]
in order to correct the bond order and to add hydrogen atoms and possible missing amino
acidic side chains and loops.

The 3D conformation of the compound M13 was processed by LigPrep (Schrödinger
Suite 2021–4) [44] in order to properly generate all the possible tautomers and ionization
states at a physiological pH value of 7.4. For the co-crystallized cognate ligands (donepezil
and KJT for 4EY7 and 6RUA, respectively), cubic grids for hAChE and hBChE were
generated. The edges of the inner and outer boxes were 10× 10× 10 Å and 28 × 28 × 28 Å,
and 10 × 10 × 10 Å and 24 × 24 × 24 Å, respectively.

Docking simulations were, thus, performed using Grid-based Ligand Docking with
Energetics (GLIDE) v.9.1 [45,46], which is a part of the Schrodinger Suite (Schrödinger Suite
2021–4). All the default advanced settings for standard precision (SP) were used, and the
Force Field OPLS_2005 was employed. The reliability of an SP simulation protocol was
previously challenged by computing the Root Mean Square Deviation (RMSD) values.
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3. Results and Discussion
3.1. Chemistry

The title compounds (M1–M13) were synthesized in accordance with the literature,
as shown in Scheme 1.
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Scheme 1. Synthesis of the compounds M1-13.

Synthesis-starting material benzo[d]thiazol-2(3H)-one (1) was synthesized using 2-
aminothiophenol and urea with an 87% yield according to the microwave irradiation
method. As a result of the reaction of the resulting compound (1) with ethyl bromoacetate,
ethyl 2-(2-oxobenzo[d]thiazol-3(2H)-yl)acetate (2) was obtained in high yield (91%) by the
microwave irradiation method. Compound 2-(2-oxobenzo[d]thiazol-3(2H)-yl)acetohydrazide
(3) was synthesized by the reaction of compound 2 with hydrazide hydrate in ethanol,
and the reaction was completed in 3 h at 70 ◦C. In the third step (iii), without microwave
irradiation, the reaction time was considerably prolonged, and the yield was reduced.
The resulting compounds, the Schiff bases (M1-13), were obtained by the reaction of com-
pound 3 with substituted and unsubstituted benzaldehyde derivatives. The resulting
compounds (M1–13) were synthesized in a 55–93% yield (Table 1). The spectral charac-
terization of the compounds (M1–M13) is provided in the supplementary information
(Figure S).

3.2. Inhibition Studies of ChE and MAO

Thirteen benzothiazolone derivatives were synthesized and tested for ChEs’ and
MAOs’ inhibitory activities. All derivatives showed more effective inhibitory activity
against ChEs than MAOs. Based on the residual activity at 10 µM, three and five compounds
showed < 50% for AChE and BChE, respectively (Table 2); however, no compounds showed
< 50% for MAO-A and MAO-B, except M10 for MAO-B (Table S1). Compound M13 most
potently inhibited BChE with an IC50 value of 1.21 µM, followed by M2 (IC50 = 1.38 µM)
(Table 2). In the case of BChE inhibitory activity, the IC50 values of M13 and M2 were lower
than those of glycyrol (7.22 µM) from the roots of Glycyrrhiza uralensis [47] and khellactone
coumarin 3′,4′-disenecioylkhellactone (7.20 µM) from Peucedanum japonicum Thurnberg [48]
and sargachromanol I (13.69 µM) from Sargassum siliquastrum 20 [36]. Structurally, M13 and
M9 have a 6-methoxy indole and 5-bromo indole, respectively, whereas M4 and M2 have a
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1-methyl pyrrole and 5-methyl thiophene, respectively. It is suggested that the 6-methoxy
indole group is expected to have a greater effect on BChE inhibitory activity than the other
groups. Compound M2 had a higher selectivity index (SI) value for BChE (28.99) than
M13 (4.16). The substrate preference of AChE and BChE is different; AChE prefers ACh,
while BChE has a relatively wide substrate range with a low preference for ACh. Therefore,
SI values are important in inhibitor screening. On the other hand, all derivatives showed
weak MAO inhibitory activities, except M10 for MAO-B (IC50 = 2.75 µM) (Table S1). These
results show that M13 is a potent BChE inhibitor.

Table 1. Structures, yields, melting points, and molecular formula of the synthesized compounds.
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[47] and khellactone coumarin 3′,4′-disenecioylkhellactone (7.20 μM) from Peucedanum ja-
ponicum Thurnberg [48] and sargachromanol I (13.69 μM) from Sargassum siliquastrum 
20[36]. Structurally, M13 and M9 have a 6-methoxy indole and 5-bromo indole, respec-
tively, whereas M4 and M2 have a 1-methyl pyrrole and 5-methyl thiophene, respectively. 
It is suggested that the 6-methoxy indole group is expected to have a greater effect on 
BChE inhibitory activity than the other groups. Compound M2 had a higher selectivity 
index (SI) value for BChE (28.99) than M13 (4.16). The substrate preference of AChE and 
BChE is different; AChE prefers ACh, while BChE has a relatively wide substrate range 
with a low preference for ACh. Therefore, SI values are important in inhibitor screening. 
On the other hand, all derivatives showed weak MAO inhibitory activities, except M10 
for MAO-B (IC50 = 2.75 μM) (Table S1). These results show that M13 is a potent BChE 
inhibitor. 

Table 2. Inhibitions of ChE by the M series a. 

Compound 
Residual Activity at  

10 µM (%) 
IC50 (µM) 

SI b 
AChE BChE AChE BChE 

M1 61.85 ± 6.48 44.45 ± 0.72 >40 11.55 ± 2.22 >3.46 
M2 53.33 ± 0.73 18.08 ± 0.80 >40 1.38 ± 0.17 >28.99 
M3 70.22 ± 3.00 67.20 ± 3.63 >40 >40 >1.33 

Compound R Yield (%) M.P. (◦C) Molecular
Formula

M1 thiophen-2-yl 91 250-2 C14H11N3O2S2

M2 5-methylthiophen-2-yl 93 284-6 C15H13N3O2S2

M3 1H-pyrrol-2-yl 70 238-4 C14H12N4O2S

M4 1-methyl-1H-pyrrol-2-yl 91 264-6 C15H14N4O2S

M5 pyridin-2-yl 68 228-30 C15H12N4O2S

M6 pyridin-4-yl 71 162-4 C15H12N4O2S

M7 furan-2-yl 71 216-7 C14H11N3O3S

M8 5-methylfuran-2-yl 80 238-40 C15H13N3O3S

M9 5-bromo-1H-indol-3-yl 67 268-9 C18H13BrN4O2S

M10 quinolin-2-yl 59 271-2 C19H14N4O2S

M11 6-chloropyridin-3-yl 75 237-8 C15H11ClN4O2S

M12 6-methoxypyridin-3-yl 55 226-7 C16H14N4O3S

M13 6-methoxy-1H-indol-3-yl 62 262-3 C19H16N4O3S

Table 2. Inhibitions of ChE by the M series a.

Compound

Residual Activity at
10 µM (%) IC50 (µM)

SI b

AChE BChE AChE BChE

M1 61.85 ± 6.48 44.45 ± 0.72 >40 11.55 ± 2.22 >3.46

M2 53.33 ± 0.73 18.08 ± 0.80 >40 1.38 ± 0.17 >28.99

M3 70.22 ± 3.00 67.20 ± 3.63 >40 >40 >1.33

M4 43.17 ± 5.68 41.66 ± 0.28 5.52 ± 0.06 4.55 ± 0.25 1.21

M5 73.61 ± 0.05 70.43 ± 5.13 >40 >40 >1.33

M6 72.15 ± 1.02 80.22 ± 3.82 >40 >40 >1.33

M7 72.89 ± 1.06 76.62 ± 2.89 >40 >40 >1.33

M8 62.34 ± 2.93 62.20 ± 3.12 >40 >40 >1.33
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Table 2. Cont.

Compound

Residual Activity at
10 µM (%) IC50 (µM)

SI b

AChE BChE AChE BChE

M9 39.05 ± 1.35 33.42 ± 2.39 8.17 ± 0.28 3.30 ± 0.74 2.48

M10 60.06 ± 1.26 59.30 ± 4.76 32.27 ± 121 17.16 ± 2.92 1.88

M11 68.93 ± 0.84 61.42 ± 1.77 37.25 ± 1.16 11.39 ± 3.09 3.27

M12 60.22 ± 3.22 84.93 ± 0.58 36.22 ± 0.37 >40 <1.21

M13 37.73 ± 1.93 15.82 ± 2.40 5.03 ± 0.93 1.21 ± 0.05 4.16

Donepezil 0.010 ± 0.002 0.180 ± 0.004
a Results are the means ± standard errors of duplicate or triplicate experiments. b Selectivity index (SI) values are
expressed for BChE over AChE.

3.3. Kinetic Study

The mode of BChE inhibition by M13 was investigated using Lineweaver–Burk plots.
The plots of BChE inhibition by M13 were linear, and the lines seemed to be intersected at a
point on the X-axis, showing that M13 was a noncompetitive inhibitor of BChE (Figure 3a).
A secondary plot obtained from the slopes of the Lineweaver–Burk plots against inhibitor
concentrations showed that the Ki value of M13 was 1.14 ± 0.21 µM (Figure 3b). These
results suggest that M13 is a potent noncompetitive inhibitor of BChE. It is similar to the
inhibition type of donepezil.
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3.4. Reversibility Studies

A reversibility study of BChE inhibition by M13 was analyzed using the dialysis
method. In the experiment, the concentrations used were the following: M13 at 2.42 µM
and donepezil (a reference reversible inhibitor) at 0.36 µM. After dialysis of the preincubated
mixture of BChE and M13, the relative activities for the undialyzed (AU) and dialyzed (AD)
samples were compared to determine the reversibility pattern. As a result, the inhibition of
BChE by M13 was recovered from 30.6% (AU) to 82.2% (AD) (Figure 4). The recovery value
for M13 was similar to that for donepezil (from 29.5% to 88.2%). These results indicate that
M13 is a reversible BChE inhibitor.
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Figure 4. Recovery of BChE inhibition by M13 using the dialysis method.

3.5. Docking Studies

In order to corroborate the validity of the docking studies, redocking simulations were
first performed on the co-crystallized ligands in their binding sites. The cognate ligands
moved back to the original positions with RMSD accounting for all the heavy atoms equal
to 0.126 Å and 0.686 Å for donepezil and KJT, respectively, whose docking score values
were equal to −12.428 and −10.035 kcal/mol, respectively (Figure 5).
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Figure 5. Overlaps of the X-ray solved (green sticks) and docking poses for donepezil for hAChE
(PDB entry: 4EY7) (a) and KJT for hBChE (PDB entry: 6RUA) (b), rendering in cyan and yellow sticks,
respectively.

The docking simulations were, thus, exploited to investigate the binding modes of
the M13 compound towards the hAChE and hBChE crystal structures. The docking poses
of the M13 compound against both the target proteins, as well as the relevant binding
residues, are depicted in Figure 6.

Overall, the molecular docking analyses of M13 with hAChE and hBChE provide
a good rationale for the observed bioactivities. The IC50 values correlated well with the
docking scores equal to −9.097 kcal/mol and −8.783 kcal/mol for hAChE and hBChE,
respectively, considering that the volume of the catalytic site of BChE is much larger than
that of AChE. As a result, the latter is more prone to engage in hydrophobic interactions
whose contributions are more effective in enhancing docking scores.
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π−π interactions and hydrogen bonds, respectively. Ligands and the target residues of the binding
sites are rendered in yellow and gray sticks, respectively. For the sake of completeness, all the
molecular interactions observed in the docking simulations were automatically flagged by GLIDE
software.

Interactions between M13 and hAChE were observed, and the methoxy group of M13
established a hydrogen bond with the backbone of Arg296 with a distance of 2.2 Å, whereas
π−π hydrophobic stacking contacts occurred between the benzothiazolone group of M13
and the side chain of Trp286 (at a distance of 4.1 Å). The side chain of Trp86 (Figure 6a)
was, instead, involved in a bidentate interaction involving the engagement of its five- and
six-membered rings (at distances of 3.9 and 3.8 Å, respectively) with the benzothiazolone
arm of M13.

As far as the interactions between M13 and the hBChE target residues (Figure 6b) are
concerned, a hydrogen bond occurred with the backbone carbonyl group of Ser287 (at a
distance of 2.1 Å). Interestingly, M13 was predicted to form hydrophobic π−π interactions
between the benzothiazolone group and the side chain of Trp82 (at a distance of 3.9 Å)
through contacts with its five- and six-membered rings (at distances of 3.5 and 4.1 Å,
respectively).

Both AChE and BChE catalyze the hydrolysis of esters and regulate the ACh concentra-
tion in glial cells, the hippocampus, and the temporal nerve cortex; therefore, ChE inhibitors
can increase ACh levels to treat AD [49]. In this study, M13 was found to be a potent BChE
inhibitor (IC50 = 1.21 µM) with an effective AChE inhibitory activity (IC50 = 5.03 µM).

4. Conclusions

In the study, thirteen benzothiazolone derivatives were synthesized, and their ChE and
MAO inhibitory activities were investigated. The ChE inhibitory effects of the compounds
were considerably higher than the MAO inhibitory effects. M13 (IC50 = 1.21± 0.05 µM) and
M2 (IC50 = 1.38 ± 0.17 µM) were the most active compounds to BChE. In the kinetics and
reversibility studies, the most effective compound, M13, was determined to be a reversible
and noncompetitive inhibitor of BChE. These results suggest that M13 is a potential BChE
inhibitor to be considered a candidate agent for the treatment of Alzheimer’s disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr10091872/s1, Method S: Chemistry; Figure S: 1H-NMR, 13C-
NMR, and HRMS spectra of the compounds M1-13 (data 1~39); Table S1: Inhibitions of MAO by
M series.
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