Investigation of CO2 Splitting on Ceria-Based Redox Materials for Low-Temperature Solar Thermochemical Cycling with Oxygen Isotope Exchange Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preperation
2.2. Experimental Setup for Isotope Exchange Utilizing C18O2
2.3. Secondary Ion Mass Spectrometry and Analysis
3. Results and Discussion
3.1. Oxygen Exchange from C18O2 Atmospheres at 300 °C ≤ T ≤ 800 °C
3.2. Simultaneous Determination of and and Estimation of the Kinetic Regime by / Data
3.3. Reaction Model for CO2 Splitting on Reduced CeO2-δ Surfaces and Derivation of the Equilibrium Exchange Rate of Oxygen
3.4. Discussion of the Oxygen Exchange Kinetics Considering the Determined Apparent Activation Enthalpies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chueh, W.C.; Haile, S.M. Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H2O and CO2. ChemSusChem 2009, 2, 735–739. [Google Scholar] [CrossRef] [Green Version]
- Chueh, W.C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S.M.; Steinfeld, A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 2010, 330, 1797–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chueh, W.C.; Haile, S.M. A thermochemical study of ceria: Exploiting an old material for new modes of energy conversion and CO2 mitigation. Phil. Trans. R. Soc. A 2010, 368, 3269–3294. [Google Scholar] [CrossRef] [Green Version]
- Scheffe, J.R.; Steinfeld, A. Thermodynamic Analysis of Cerium-Based Oxides for Solar Thermochemical Fuel Production. Energy Fuels 2012, 26, 1928–1936. [Google Scholar] [CrossRef]
- Call, F.; Roeb, M.; Schmücker, M.; Bru, H.; Curulla-Ferre, D.; Sattler, C.; Pitz-Paal, R. Thermogravimetric Analysis of Zirconia-Doped Ceria for Thermochemical Production of Solar Fuel. Am. J. Anal. Chem. 2013, 4, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, S.; Scheffe, J.R.; Steinfeld, A. Diffusion of Oxygen in Ceria at Elevated Temperatures and Its Application to H2O/CO2 Splitting Thermochemical Redox Cycles. J. Phys. Chem. C 2014, 118, 5216–5225. [Google Scholar] [CrossRef]
- Call, F.; Roeb, M.; Schmücker, M.; Sattler, C.; Pitz-Paal, R. Ceria Doped with Zirconium and Lanthanide Oxides to Enhance Solar Thermochemical Production of Fuels. J. Phys. Chem. C 2015, 119, 6929–6938. [Google Scholar] [CrossRef]
- Ackermann, S.; Sauvin, L.; Castiglioni, R.; Rupp, J.L.M.; Scheffe, J.R.; Steinfeld, A. Kinetics of CO2 Reduction over Nonstoichiometric Ceria. J. Phys. Chem. C 2015, 119, 16452–16461. [Google Scholar] [CrossRef] [Green Version]
- Marxer, D.; Furler, P.; Scheffe, J.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A. Demonstration of the Entire Production Chain to Renewable Kerosene via Thermochemical Splitting of H2O and CO2. Energy Fuels 2015, 29, 3241–3250. [Google Scholar] [CrossRef]
- Lange, M.; Roeb, M.; Sattler, C.; Pitz-Paal, R. Entropy Analysis of Solar Two-Step Thermochemical Cycles for Water and Carbon Dioxide Splitting. Entropy 2016, 18, 24. [Google Scholar] [CrossRef]
- Takacs, M.; Ackermann, S.; Bonk, A.; Neises-von Puttkamer, M.; Haueter, P.; Scheffe, J.R.; Vogt, U.F.; Steinfeld, A. Splitting CO2 with a Ceria-Based Redox Cycle in a Solar-Driven Thermogravimetric Analyzer. AIChE J. 2017, 63, 1263–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhosale, R.R.; Takalkar, G.; Sutar, P.; Kumar, A.; AlMomani, F.; Khraisheh, M. A decade of ceria based solar thermochemical H2O/CO2 splitting cycle. Int. J. Hydrogen Energy 2019, 44, 34–60. [Google Scholar] [CrossRef]
- Belle, J. Oxygen and uranium diffusion in uranium dioxide (a review). J. Nucl. Mater. 1969, 30, 3–15. [Google Scholar] [CrossRef]
- Matzke, H.J. On uranium self-diffusion in UO2 and UO2+x. J. Nucl. Mater. 1969, 30, 26–35. [Google Scholar] [CrossRef]
- Ando, K.; Oishi, Y. Diffusion Characteristics of Actinide Oxides. J. Nucl. Sci. Technol. 1983, 20, 973–982. [Google Scholar] [CrossRef]
- Matzke, H.J. Diffusion processes and surface effects in non-stoichiometry nuclear fuel oxides UO2+x and (U, Pu)O2±x. J. Nucl. Mater. 1983, 114, 121–135. [Google Scholar] [CrossRef]
- Bayoglu, A.; Lorenzelli, R. Oxygen diffusion in f.c.c. fluorite nonstoichiometric nuclear oxides MO2±x. Solid State Ion. 1984, 12, 53–66. [Google Scholar] [CrossRef]
- Matzke, H.J. Atomic Transport Properties in UO2 and mixed Oxides (U, Pu)O2. J. Chem. Soc. Faraday Trans. 1987, 2, 1121–1142. [Google Scholar] [CrossRef]
- Abanades, S.; Flamant, G. Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Sol. Energy 2006, 80, 1611–1623. [Google Scholar] [CrossRef]
- Blumenthal, R.N.; Lee, P.W.; Panlener, R.J. Studies on the Defect Structure on Nonstoichiometric Cerium Dioxide. J. Electrochemic. Soc. 1971, 118, 123–129. [Google Scholar] [CrossRef]
- Tuller, H.L.; Nowick, A.S. Small polaron electron transport in reduced CeO2 single crystals. J. Phys. Chem. Solids 1977, 38, 859–867. [Google Scholar] [CrossRef]
- Wang, D.Y.; Nowick, A.S. The “grain-boundary effect” in doped ceria solid electrolytes. J. Solid State Chem. 1980, 35, 325–333. [Google Scholar] [CrossRef]
- Hohnke, D.K. Ionic conduction in doped oxides with the fluorite structure. Solid State Ion. 1981, 5, 531–534. [Google Scholar] [CrossRef]
- Faber, J.; Geoffroy, C.; Roux, A.; Sylvestre, A.; Abelard, P. A systematic investigation of the dc electrical conductivity of rare-earth doped ceria. Appl. Phys. A 1989, 49, 225–232. [Google Scholar] [CrossRef]
- Eguchi, K.; Setoguchi, T.; Inoue, T.; Arai, H. Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ion. 1992, 52, 165–172. [Google Scholar] [CrossRef]
- Mogensen, M.; Sammes, N.M.; Tompsett, G.A. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion. 2000, 129, 63–94. [Google Scholar] [CrossRef]
- Tianshu, Z.; Hing, P.; Huang, H.; Kilner, J.A. Ionic conductivity in the CeO2-Gd2O3 system (0.05 ≤ Gd/Ce ≤ 0.4) prepared by oxalate coprecipitation. Solid State Ion. 2002, 148, 567. [Google Scholar] [CrossRef]
- Feng, Z.A.; Gabaly, F.E.; Ye, X.; Shen, Z.-X.; Chueh, W.C. Fast vacancy-mediated oxygen ion incorporation across the ceria-gas electrochemical interface. Nat. Commun. 2014, 5, 4374–4382. [Google Scholar] [CrossRef] [Green Version]
- Pullar, R.C.; Novais, R.M.; Caetano, A.P.F.; Barreiros, M.A.; Abanades, S.; Costa Oliveira, F.A. A Review of Solar Thermochemical CO2 Splitting Using Ceria-Based Ceramics with Designed Morphologies and Microstructures. Front. Chem. 2019, 7, 601. [Google Scholar] [CrossRef] [Green Version]
- Knoblauch, N.; Dörrer, L.; Fielitz, P.; Schmücker, M.; Borchardt, G. Surface controlled reduction kinetics of nominally undoped polycrystalline CeO2. Phys. Chem. Chem. Phys. 2015, 17, 5849–5860. [Google Scholar] [CrossRef]
- Knoblauch, N.; Simon, H.; Dörrer, L.; Uxa, D.; Fielitz, P.; Wendelstorf, J.; Spitzer, K.-H.; Schmücker, M.; Borchardt, G. Ceria: Recent Results on Dopant-Induced Surface Phenomena. Inorganics 2017, 5, 76. [Google Scholar] [CrossRef] [Green Version]
- Hahn, K.R.; Iannuzzi, M.; Seitsonen, A.P.; Hutter, J. Coverage Effect of the CO2 Adsorption Mechanisms on CeO2(111) by First Principles Analysis. J. Phys. Chem. C 2013, 117, 1701–1711. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Sherman, B.J.; Lo, C.S. Carbon dioxide activation and dissociation on ceria(110): A density functional theory study. J. Chem. Phys. 2013, 138, 014702–014714. [Google Scholar] [CrossRef]
- Pechini, M.P. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. U.S. Patent 3.330.697, 11 July 1967. [Google Scholar]
- Fielitz, P.; Borchardt, G. On the accurate measurement of oxygen self-diffusivities and surface exchange coefficients in oxides via SIMS depth profiling. Solid State Ion. 2001, 144, 71–80. [Google Scholar] [CrossRef]
- Kilner, J.A.; Steele, B.C.H. Oxygen self-diffusion studies using negative-ion secondary ion mass spectrometry (SIMS). Solid State Ion. 1984, 12, 89–97. [Google Scholar] [CrossRef]
- Chater, R.J.; Carter, S.; Kilner, J.A.; Steele, B.C.H. Development of a novel SIMS technique for oxygen self-diffusion and surface exchange coefficient measurements in oxides of high diffusivity. Solid State Ion. 1992, 53–56, 859–867. [Google Scholar] [CrossRef]
- Bevan, D.J.M.; Kordis, J. Mixed oxides of the type MO2 (fluorite)-M2O3-I. Oxygen dissociation pressures and phase relationships in the system CeO2-Ce2O3 at high temperatures. J. Inorg. Nucl. Chem. 1964, 26, 1509–1523. [Google Scholar] [CrossRef]
- Panlener, R.J.; Blumenthal, R.N.; Ganier, J.E. A thermodynamic study of nonstoichiometric cerium oxide. J. Phys. Chem. Solids 1975, 36, 1213–1222. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
- Kilner, J.A.; De Souza, R.A.; Fullarton, I.C. Surface exchange of oxygen in mixed conducting perovskite oxides. Solid State Ion. 1996, 86–88, 703–709. [Google Scholar] [CrossRef]
- Fischer, E.; Hertz, J.L. Measurability of the diffusion and surface exchange coefficients using isotope exchange with thin film and traditional samples. Solid State Ion. 2012, 218, 18–24. [Google Scholar] [CrossRef]
- Manning, P.S.; Sirman, J.D.; Kilner, J.A. Oxygen self-diffusion and surface exchange studies of oxide electrolytes having he fluorite structure. Solid State Ion. 1997, 93, 125–132. [Google Scholar] [CrossRef]
- Maier, J. Interaction of oxygen with oxides: How to interpret measured effective rate constants? Solid State Ion. 2000, 135, 575–588. [Google Scholar] [CrossRef]
- De Souza, R.A. A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides. Phys. Chem. Chem. Phys. 2006, 8, 890–897. [Google Scholar] [CrossRef]
- Schaube, M.; Merkle, R.; Maier, J. Interdependence of Point Defects and Reaction Kinetics: CO and CH4 Oxidation on Ceria and Zirconia. J. Phys. Chem. C 2020, 124, 18544–18556. [Google Scholar] [CrossRef]
- Kroeger, F.A.; Vink, H.J. Relations between Concentrations of Imperfections in Crystalline Solids. In Solid State Physics; Seitz, F., Turnbull, D., Eds.; Academic Press: New York, NY, USA, 1956; Volume 3, pp. 307–435. [Google Scholar]
- Chueh, W.C.; McDaniel, A.H.; Grass, M.E.; Hao, Y.; Jabeen, N.; Liu, Z.; Haile, S.M.; McCarty, K.F.; Bluhm, H.; El Gabaly, F. Highly Enhanced Concentration and Stability of Reactive Ce3+ on Doped CeO2 Surface Revealed In Operando. Chem. Mater. 2012, 24, 1876–1882. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Uddi, M.; Tsvetkov, N.; Yildiz, B.; Ghoniem, A.F. Redox Kinetics Study of Fuel educed Ceria for Chemical-Looping Water Splitting. J. Phys. Chem. C 2016, 120, 16271–16289. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Grass, M.E.; Yu, Y.; Gaskell, K.J.; DeCaluwe, S.C.; Chang, R.; Jackson, G.S.; Hussain, Z.; Bluhm, H.; Eichhorn, B.W.; et al. Multielement Activity Mapping and Potential Mapping in Solid Oxide Electrochemical Cells through the use of operando XPS. ACS Catal. 2012, 2, 2297–2304. [Google Scholar] [CrossRef]
- Yu, Y.; Mao, B.; Geller, A.; Chang, R.; Gaskell, K.; Liu, Z.; Eichhorn, B.W. CO2 activation and carbonate intermediates: An operando AP-XPS study of CO2 electrolysis reactions on solid oxide electrochemical cells. Phys. Chem. Chem. Phys. 2014, 16, 11633–11639. [Google Scholar] [CrossRef]
- Feng, Z.; Machala, M.L.; Chueh, W.C. Surface electrochemistry of CO2 reduction and CO oxidation on Sm-doped CeO2-x: Coupling between Ce3+ and carbonate adsorbates. Phys. Chem. Chem. Phys. 2015, 17, 12273–12281. [Google Scholar] [CrossRef]
- Fielitz, P.; Borchardt, G. Oxygen exchange at gas/solid interfaces: How the apparent activation energy of the surface exchange coefficient depends on the kinetic regime. Phys. Chem. Chem. Phys. 2016, 18, 22031–22038. [Google Scholar] [CrossRef]
- Muhich, C.L. Re-Evaluating CeO2 Expansion Upon Reduction: Non-counterpoised Forces, Not Ionic Radius Effects, Are the Cause. J. Phys. Chem. C 2017, 121, 8052–8059. [Google Scholar] [CrossRef]
- Grieshammer, S. Defect Interactions in the CeO2-ZrO2-Y2O3 Solid Solution. J. Phys. Chem. C 2017, 121, 15078–15084. [Google Scholar] [CrossRef]
- Grieshammer, S.; Eisele, S.; Koettgen, J. Modeling Oxygen Ion Migration in the CeO2-ZrO2-Y2O3 Solid Solution. J. Phys. Chem. C 2018, 122, 18809–18817. [Google Scholar] [CrossRef]
- Eufinger, J.-P.; Daniels, M.; Schmale, K.; Berendts, S.; Ulbrich, G.; Lerch, M.; Wiemhöfer, H.-D.; Janek, J. The model case of an oxygen storage catalyst—Non-stoichiometry, point defects and electrical conductivity of single crystalline CeO2-ZrO2-Y2O3 solid solutions. Phys. Chem. Chem. Phys. 2014, 16, 25583–25600. [Google Scholar] [CrossRef] [Green Version]
- Bishop, S.R.; Duncan, K.L.; Wachsman, E.D. Defect equilibria and chemical expansion in nonstoichiometric undoped and gadolinium-doped cerium oxide. Electrochim. Acta 2009, 54, 1436–1443. [Google Scholar] [CrossRef]
- Bishop, S.R.; Duncan, K.L.; Wachsman, E.D. Surface and bulk oxygen non-stoichiometry and bulk expansion in gadolinium-doped cerium oxide. Acta Mater. 2009, 57, 3596–3605. [Google Scholar] [CrossRef]
- Claus, J.; Leonhardt, M.; Maier, J. Tracer diffusion and chemical diffusion of oxygen in acceptor doped SrTiO3. J. Phys. Chem. Solids 2000, 61, 1199–1207. [Google Scholar] [CrossRef]
Element | Concentration/ppm |
---|---|
La | 1910 |
Zr | 358 |
Pr | 217 |
Ca | 110 |
Nd | 99 |
Mg | 63 |
Nb | 48 |
Fe | 44 |
Na | 192 |
Ga, Cr, K, Li, Sm, Y | <25 |
Reduction Step | Isotope Exchange with C18O2 Gas |
---|---|
Ar | Ar/C18O2 (10:1) |
Treduction ≥ Texperiment | T = Texperiment |
= 1 bar | = 1 bar |
≤ 10−25 bar | ≤ 10−12 bar |
Sample Type | |||
---|---|---|---|
CeO2-δ | 0.7 | 0.87 | 0.53 |
Ce0.9Zr0.1O2-δ | 1.1 | 1.7 | 0.5 |
Ce0.9Sm0.1O1.95-δ | 0.58 | 0.46 | 0.7 |
Ce0.9Y0.1O1.95-δ | 0.6 | 0.56 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uxa, D.; Dörrer, L.; Schulz, M.; Knoblauch, N.; Fielitz, P.; Roeb, M.; Schmücker, M.; Borchardt, G. Investigation of CO2 Splitting on Ceria-Based Redox Materials for Low-Temperature Solar Thermochemical Cycling with Oxygen Isotope Exchange Experiments. Processes 2023, 11, 109. https://doi.org/10.3390/pr11010109
Uxa D, Dörrer L, Schulz M, Knoblauch N, Fielitz P, Roeb M, Schmücker M, Borchardt G. Investigation of CO2 Splitting on Ceria-Based Redox Materials for Low-Temperature Solar Thermochemical Cycling with Oxygen Isotope Exchange Experiments. Processes. 2023; 11(1):109. https://doi.org/10.3390/pr11010109
Chicago/Turabian StyleUxa, Daniel, Lars Dörrer, Michal Schulz, Nicole Knoblauch, Peter Fielitz, Martin Roeb, Martin Schmücker, and Günter Borchardt. 2023. "Investigation of CO2 Splitting on Ceria-Based Redox Materials for Low-Temperature Solar Thermochemical Cycling with Oxygen Isotope Exchange Experiments" Processes 11, no. 1: 109. https://doi.org/10.3390/pr11010109
APA StyleUxa, D., Dörrer, L., Schulz, M., Knoblauch, N., Fielitz, P., Roeb, M., Schmücker, M., & Borchardt, G. (2023). Investigation of CO2 Splitting on Ceria-Based Redox Materials for Low-Temperature Solar Thermochemical Cycling with Oxygen Isotope Exchange Experiments. Processes, 11(1), 109. https://doi.org/10.3390/pr11010109