Porous Defective Bi/Bi3NbO7 Nanosheets for Efficient Photocatalytic NO Removal under Visible Light
Abstract
:1. Introduction
2. Experimental Methods
2.1. Chemicals
2.2. Photocatalyst Preparation
2.2.1. Synthesis of Bi3NbO7
2.2.2. Synthesis of Bi@Bi3NbO7
2.3. Characterization
2.4. Photocatalytic NO Removal
2.5. Trapping Test
3. Results and Discussion
3.1. Photocatalytic Efficiency
3.2. Structural and Surface Characterizations
3.3. Photocatalytic Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, N.; Shi, M.; Xin, Y.; Zhang, W.; Qin, J.; Zhang, K.; Lv, H.; Yuan, M.; Wang, C. Oxygen vacancies-modified S-scheme Bi2Ti2O7/CaTiO3 heterojunction for highly efficient photocatalytic NO removal under visible light. J. Environ. Chem. Eng. 2022, 10, 107420. [Google Scholar] [CrossRef]
- Li, X.; Dong, G.; Guo, F.; Zhu, P.; Huang, Y.; Wang, C. Enhancement of photocatalytic NO removal activity of g-C3N4 by modification with illite particles. Environ. Sci.-Nano 2020, 7, 1990–1998. [Google Scholar] [CrossRef]
- Li, N.; Wang, C.; Zhang, K.; Lv, H.; Yuan, M.; Bahnemann, D.W. Progress and prospects of photocatalytic conversion of low-concentration NOx. Chin. J. Catal. 2022, 43, 2363–2387. [Google Scholar] [CrossRef]
- Zhu, Q.; Hailili, R.; Xin, Y.; Zhou, Y.; Huang, Y.; Pang, X.; Zhang, K.; Robertson, P.K.J.; Bahnemann, D.W.; Wang, C. Efficient full spectrum responsive photocatalytic NO conversion at Bi2Ti2O7: Co-effect of plasmonic Bi and oxygen vacancies. Appl. Catal. B Environ. 2022, 319, 121888. [Google Scholar] [CrossRef]
- Yang, W.; Ren, Q.; Zhong, F.; Wang, Y.; Wang, J.; Chen, R.; Li, J.; Dong, F. Promotion mechanism of -OH group intercalation for NOx purification on BiOI photocatalyst. Nanoscale 2021, 13, 20601–20608. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Zhang, K.; Zhu, Q.; Tian, Q.; Wang, H.; Zhang, W.; Liang, J.; Lin, J.; Allam, A.A.; Ajarem, J.S.; et al. One Step Synthesis of Oxygen Defective Bi@Ba2TiO4/BaBi4Ti4O15 Microsheet with Efficient Photocatalytic Activity for NO Removal. Catalysts 2022, 12, 1455. [Google Scholar] [CrossRef]
- Duan, Y.; Luo, J.; Zhou, S.; Mao, X.; Shah, M.W.; Wang, F.; Chen, Z.; Wang, C. TiO2-supported Ag nanoclusters with enhanced visible light activity for the photocatalytic removal of NO. Appl. Catal. B Environ. 2018, 234, 206–212. [Google Scholar] [CrossRef]
- Wang, C.-y.; Böttcher, C.; Bahnemann, D.W.; Dohrmann, J.K. In situ Electron Microscopy Investigation of Fe(III)-doped TiO2 Nanoparticles in an Aqueous Environment. J. Nanoparticle Res. 2004, 6, 119–122. [Google Scholar] [CrossRef]
- Li, Y.; Dang, L.; Han, L.; Li, P.; Wang, J.; Li, Z. Iodine-sensitized Bi4Ti3O12/TiO2 photocatalyst with enhanced photocatalytic activity on degradation of phenol. J. Mol. Catal. A Chem. 2013, 379, 146–151. [Google Scholar] [CrossRef]
- Hao, L.; Yan, J.; Guan, S.; Cheng, L.; Zhao, Q.; Zhu, Z.; Wang, Y.; Lu, Y.; Liu, J. Oxygen vacancies in TiO2/SnOx coatings prepared by ball milling followed by calcination and their influence on the photocatalytic activity. Appl. Surf. Sci. 2019, 466, 490–497. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, M.; Wang, L.; Wang, F.; Yang, L.; Li, X.; Wang, C. Plasmonic Ag-TiO2−x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: The role of oxygen vacancies. Appl. Catal. B Environ. 2017, 204, 67–77. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, M.; Huang, T.; Huang, Y.; Cao, J.-j.; Li, H.; Ho, W.; Lee, S.C. Oxygen vacancy-dependent photocatalytic activity of well-defined Bi2Sn2O7-x hollow nanocubes for NOx removal. Environ. Sci.-Nano 2021, 8, 1927–1933. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, L.; Dun, M.; Yang, X.; Chen, H.; Li, J.; Hu, J. Synthesis and characterization of visible light responsive Bi3NbO7 porous nanosheets photocatalyst. Appl. Catal. B Environ. 2016, 196, 127–134. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.; Zhang, G.; Li, J.; Wu, X. 0D Bi nanodots/2D Bi3NbO7 nanosheets heterojunctions for efficient visible light photocatalytic degradation of antibiotics: Enhanced molecular oxygen activation and mechanism insight. Appl. Catal. B Environ. 2019, 240, 39–49. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.; Guo, Y.; Guo, W.; Wang, M.; Guo, Y.; Huo, M. Preparation and enhanced visible-light photocatalytic activity of graphitic carbon nitride/bismuth niobate heterojunctions. J. Hazard. Mater. 2013, 261, 235–245. [Google Scholar] [CrossRef]
- Liu, G.; Huang, Y.; Lv, H.; Wang, H.; Zeng, Y.; Yuan, M.; Meng, Q.; Wang, C. Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion. Appl. Catal. B Environ. 2021, 284, 119683. [Google Scholar] [CrossRef]
- Liu, J.; Bunes, B.R.; Zang, L.; Wang, C. Supported single-atom catalysts: Synthesis, characterization, properties, and applications. Environ. Chem. Lett. 2018, 16, 477–505. [Google Scholar] [CrossRef]
- Li, Y.; Wen, M.; Wang, Y.; Tian, G.; Wang, C.; Zhao, J. Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Light-Driven Catalytic CO2 Reduction on Bi2O3−x. Angew. Chem. Int. Ed. 2021, 60, 910–916. [Google Scholar] [CrossRef]
- Rej, S.; Santiago, E.Y.; Baturina, O.; Zhang, Y.; Burger, S.; Kment, S.; Govorov, A.O.; Naldoni, A. Colloidal titanium nitride nanobars for broadband inexpensive plasmonics and photochemistry from visible to mid-IR wavelengths. Nano Energy 2022, 104, 107989. [Google Scholar] [CrossRef]
- Bayles, A.; Tian, S.; Zhou, J.; Yuan, L.; Yuan, Y.; Jacobson, C.R.; Farr, C.; Zhang, M.; Swearer, D.F.; Solti, D.; et al. Al@TiO2 Core–Shell Nanoparticles for Plasmonic Photocatalysis. ACS Nano 2022, 16, 5839–5850. [Google Scholar] [CrossRef]
- Xiao, K.; Liu, H.; Li, Y.; Yang, G.; Wang, Y.; Yao, H. Excellent performance of porous carbon from urea-assisted hydrochar of orange peel for toluene and iodine adsorption. Chem. Eng. J. 2020, 382, 122997. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H.; Sun, B.; Qiao, P.; Ren, L.; Tian, G.; Jiang, B.; Pan, K.; Zhou, W. Surface oxygen vacancy defect-promoted electron-hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance. Chem. Eng. J. 2020, 379, 122295. [Google Scholar] [CrossRef]
- Song, P.; Sun, S.; Cui, J.; Zheng, X.; Liang, S. Organic dye-reformed construction of porous-defect g-C3N4 nanosheet for improved visible-light-driven photocatalytic activity. Appl. Surf. Sci. 2021, 568, 150986. [Google Scholar] [CrossRef]
- Zhou, Y.; Ren, X.; Du, Y.; Jiang, Y.; Wan, J.; Ma, F. In-situ template cooperated with urea to construct pectin-derived hierarchical porous carbon with optimized pore structure for supercapacitor. Electrochim. Acta 2020, 355, 136801. [Google Scholar] [CrossRef]
- Wang, S.; Dong, L.; Li, Z.; Lin, N.; Xu, H.; Gao, S. Sustainable supercapacitors of nitrogen-doping porous carbon based on cellulose nanocrystals and urea. Int. J. Biol. Macromol. 2020, 164, 4095–4103. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Rhimi, B.; Zhang, K.; Xu, J.; Bahnemann, D.W.; Wang, C. Visible light-driven novel Bi2Ti2O7/CaTiO3 composite photocatalyst with enhanced photocatalytic activity towards NO removal. Chemosphere 2021, 275, 130083. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, J.; Allam, A.A.; Xin, Y.; Lin, J.; Gao, T.; Ajarem, J.S.; Li, X.; Wang, C.; Bahnemann, D.W. Palladium Nanoparticles Embedded Nutshell-like Bi2WO6 as an Efficient and Stable Visible-Light-Responsive Photocatalysts for NO Removal. Energy Fuels 2022, 36, 13852–13862. [Google Scholar] [CrossRef]
- Gan, H.; Zhang, G.; Huang, H. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli by Bi2O2CO3/Bi3NbO7 composites. J. Hazard. Mater. 2013, 250–251, 131–137. [Google Scholar] [CrossRef]
- Saeed, N.A.M.; Coetsee, E.; Kroon, R.E.; Bettinelli, M.; Swart, H.C. Photoluminescence of Bi3+ doped in YOF phosphor as an activator. Opt. Mater. 2021, 119, 111291. [Google Scholar] [CrossRef]
- Chu, H.; Zhang, Z.; Song, Z.; Du, A.; Dong, S.; Li, G.; Cui, G. Facilitated magnesium atom adsorption and surface diffusion kinetics via artificial bismuth-based interphases. Chem. Commun. 2021, 57, 9430–9433. [Google Scholar] [CrossRef]
- Eraky, M.S.; Sanad, M.M.S.; El-Sayed, E.M.; Shenouda, A.Y.; El-Shereafy, E.-S. Influence of the electrochemical processing parameters on the photocurrent–voltage conversion characteristics of copper bismuth selenide photoactive films. Eur. Phys. J. Plus 2022, 137, 907. [Google Scholar] [CrossRef]
- Jiang, D.; Sun, X.; Wu, X.; Zhang, S.; Qu, X.; Shi, L.; Zhang, Y.; Du, F. MXene-Ti3C2 assisted one-step synthesis of carbon-supported TiO2/Bi4NbO8Cl heterostructures for enhanced photocatalytic water decontamination. Nanophotonics 2020, 9, 2077–2088. [Google Scholar] [CrossRef]
- Batoo, K.M.; Verma, R.; Chauhan, A.; Kumar, R.; Hadi, M.; Aldossary, O.M.; Al-Douri, Y. Improved room temperature dielectric properties of Gd3+ and Nb5+ co-doped Barium Titanate ceramics. J. Alloys Compd. 2021, 883, 160836. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, S.; Liu, Y.; Zhang, Q.; Zhou, Y. Photoreduction of non-noble metal Bi on the surface of Bi2WO6 for enhanced visible light photocatalysis. Appl. Surf. Sci. 2017, 396, 652–658. [Google Scholar] [CrossRef]
- Sun, J.; Wang, L.; Wang, Y.; Lv, W.; Yao, Y. Activation of peroxymonosulfate by MgCoAl layered double hydroxide: Potential enhancement effects of catalyst morphology and coexisting anions. Chemosphere 2022, 286, 131640. [Google Scholar] [CrossRef]
- Zhu, Q.; Dar, A.A.; Zhou, Y.; Zhang, K.; Qin, J.; Pan, B.; Lin, J.; Patrocinio, A.O.T.; Wang, C. Oxygen Vacancies Promoted Piezoelectricity toward Piezo-Photocatalytic Decomposition of Tetracycline over SrBi4Ti4O15. ACS EST Eng. 2022, 2, 1365–1375. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, T.; Lin, J.; Zhang, K.; Padervand, M.; Zhang, Y.; Zhang, W.; Shi, M.; Wang, C. Porous Defective Bi/Bi3NbO7 Nanosheets for Efficient Photocatalytic NO Removal under Visible Light. Processes 2023, 11, 115. https://doi.org/10.3390/pr11010115
Gao T, Lin J, Zhang K, Padervand M, Zhang Y, Zhang W, Shi M, Wang C. Porous Defective Bi/Bi3NbO7 Nanosheets for Efficient Photocatalytic NO Removal under Visible Light. Processes. 2023; 11(1):115. https://doi.org/10.3390/pr11010115
Chicago/Turabian StyleGao, Ting, Jingqi Lin, Ke Zhang, Mohsen Padervand, Yifan Zhang, Wei Zhang, Menglin Shi, and Chuanyi Wang. 2023. "Porous Defective Bi/Bi3NbO7 Nanosheets for Efficient Photocatalytic NO Removal under Visible Light" Processes 11, no. 1: 115. https://doi.org/10.3390/pr11010115
APA StyleGao, T., Lin, J., Zhang, K., Padervand, M., Zhang, Y., Zhang, W., Shi, M., & Wang, C. (2023). Porous Defective Bi/Bi3NbO7 Nanosheets for Efficient Photocatalytic NO Removal under Visible Light. Processes, 11(1), 115. https://doi.org/10.3390/pr11010115