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Abstract

:

Advanced agronomic methods, urbanisation, and industrial expansion contaminate air, water and soil, globally. Agricultural and industrial activities threaten living biota, causing biodiversity loss and serious diseases. Strategies such as bioremediation and physiochemical remediation have not been effectively beneficial at treating pollutants. Metal-based nanoparticles (NPs) such as copper, zinc, silver, gold, etc., in various nanoformulations and nanocomposites are used more and more as they effectively resist the uptake of toxic compounds via plants by facilitating their immobilisation. According to studies, bio-based NP synthesis is a recent and agroecologically friendly approach for remediating environmental waste, which is effective against carcinogens, heavy metal contamination, treating marine water polluted with excessive concentrations of phosphorus, nitrogen and harmful algae, and hazardous dye- and pesticide-contaminated water. Biogenic resources such as bacteria, fungi, algae and plants are extensively used for the biosynthesis of NPs, particularly metallic NPs. Strategies involving green synthesis of NPs are nontoxic and could be employed for commercial scale production. Here, the focus is on the green synthesis of NPs for reduction of hazardous wastes to help with the clean-up process.
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1. Introduction


The combination of two sciences, i.e., nanotechnology and biotechnology, is gradually expanding its roots in almost all the sectors involving biology, engineering, cosmetics, remediation, biomedical, agriculture, food, etc. Numerous nanoscale (below 100 nm) materials show remarkable features in contrast to their bulk elements and components. With progressive studies, researchers have developed nano-based composites and materials, and found their effective application in almost every field including waste remediation, solar applications, and nano-sensors [1,2,3].



Economic development and accelerated industrial growth have overall resulted in higher environmental pollution through more energy expenditure, release of hazardous wastes, emission of toxic gases [4], and exhaust emissions from the automobile industry [5]. Hazardous wastes include various dyes (Azure-B, Disperse orange I, Disperse Red I, Crystal Violet, Basic Red 9, Sudan I) eluted from textile industries [6], toxic heavy metals [7,8], pesticides [9,10], and polyaromatic hydrocarbons (chrysene, pyrene, fluoranthene, anthracene, naphthalene etc.) [11], which all are carcinogenic and mutagenic in nature [12].



Metallic nanoparticles (NPs) have been used in the past few years, as many metals such as copper (Cu), silver (Ag), gold (Au), platinum (Pt), zinc (Zn) and titanium (Ti) show promising results once utilised in nanosized composites compared to bulk materials [3]. Metallic NPs have various exceptional properties such as magnetic, electronic, optical, catalysing, anti-cancer, and antimicrobial activities in contrast with their respective elements. Conventionally, metal NPs have been synthesised using physicochemical procedures [13]. These various synthesis procedures include chemical vapor deposition, microemulsion synthesis, thermal decomposition, sol-gel method, hydrothermal process, stream transport synthesis, mechanochemical process, spray pyrolysis, co-precipitation, spark discharge method, liquid infiltration, inert gas condensation and biological synthesis [14,15].



Due to drawbacks such as the use of extreme conditions and hazardous reagents, the synthesis procedures have shifted towards eco-friendly approaches involving living entities, either using unicellular or multicellular organisms. Biological constituents, as depicted in Figure 1, serve to be a great platform for their non-toxic and economic synthesis [16], which not only include various microorganisms and plants but also their products and components such as extracts, isolates, enzymes, etc. These have been effectively utilised in polymer preparation, catalysis, sensor technology, disease management, and labelling of optoelectronic recorded media [13].



Pollution and contamination of the environment is a big issue to tackle. Numerous solutions have been identified and worked upon, and the use of nanotechnology is one of them. Nanoformulations such as nanomembranes, nanotubes, nanopolymers, graphene-based NPs, and metal-, carbon-, and silicon-based NPs have been extensively used in the remediation of environmental toxic elements [17]. As they are obtained from natural sources, NPs have been found to be effective in reducing pollutants in the environment with negligible effects on ecosystems. The green approach of NP synthesis is eco-friendly and does not interfere with other living organisms [1]. Their phyto- and cytotoxic effects are notably low, indicating that they are safe to use for broader practices [18].



The current review focuses on various research activities with reference to the green biosynthesis of metal-based NPs, their reducing sources, and mechanisms of action. It discusses various biological sources of NPs and their contribution to the remediation process for mitigating hazardous wastes from environment.




2. Nanoparticles and Approaches to Green Synthesis


Based on nature, size, morphology, and chemical characteristics, NPs have been briefly categorised in five groups as stated below and depicted in Figure 2 [19,20,21,22,23].



	
Natural carbon-containing NPs: Fullerene, chitosan NPs etc.;



	
Anthropogenic carbon-containing NPs: Carbon nanotubes/nanofibers, graphene NPs etc.;



	
Natural inorganic NPs: Iron oxide/sulfides, silver, gold, manganese, aluminosilicates NPs etc.;



	
Anthropogenic inorganic NPs: Quantum dots, titanium dioxide, silicon dioxide, ceramics NPs etc.;



	
Peptide- and DNA-based NPs: Gelatine, albumin, silk sericin NPs etc.






The methods involved in the synthesis of NPs are categorised into two classes, namely the top-down approach and bottom-up approach, based on differences in the starting materials, as depicted in Figure 3.



2.1. Top-Down Approach


The base material is exploited in bulk to reduce the size to nanoscale in top-down approaches, which can be achieved by both physical and chemical techniques [23]. These methods include photochemical and chemical reduction as well as electrochemical changes using various techniques such as laser and thermal ablation and mechanical milling, which yield stabilised NPs. These are easier to implement but might induce changes in properties and surface chemistry of the prepared NPs [3].



Laser ablation involves the application of high-powered lasers onto metal plates, yielding ablated NPs in the liquid medium. This method is suitable for NP fabrication and is affected by ablation time, wavelength and energy of the laser, and absorption by the liquid medium. This technique has been used for the synthesis of Cu, Au, and Ag NPs [24]. Mechanical milling involves the reduction of coarse particles into the desired smaller size. It is achieved by using an agitator at the speed of 75–500 rpm as per the requirements. The size of the vial in which the operation is carried out, the speed, time, temperature, and environment (dry or wet) of milling, and the usage of inert or reactive gases affect the particle size and homogeneity of the prepared NPs [25].




2.2. Bottom-Up Approach


On the other hand, bottom-up approaches involve the assembly of atoms or molecules to form nanostructured building units which eventually form the desired NPs. It can be achieved via both chemical and biological techniques. Studies have clearly shown that biological methods for NP synthesis have the fewest drawbacks compared with the other methods. Physical methods have high expenditures in time, energy and cost, as well as low production rate. Chemical synthesis is attained by involvement of toxic chemicals and solvents and results in noxious derivatives and byproducts [23].



In contrast with various alternatives, the solid-state method of NP synthesis is cost effective and convenient to use. The stages involved are milling, calcination, and sintering [26]. Particles produced using this method are unlikely to aggregate and are highly stable. Secondly, the preparation process involves the removal of solvents, which facilitates simpler handling and large-scale synthesis of the NPs, for example, AgNPs [27]. One of the liquid-state methods, i.e., synthesis via sol-gel technique, provides economic production of metal-oxide NPs with various other advantages. In addition to being a simple and fast technique, the method is suitable for the synthesis of high quality and complex nanocomposites with low processing temperature and higher purity. Various metal-oxide NPs such as zinc oxide (ZnO), tungsten oxide (WO3), tin oxide (SnO2), and titanium dioxide (TiO2) have been prepared using this method [28]. This chemical technique involves the formation of a gel-like phase which comprises both a solid and liquid phase. The organic solvents used in the procedure might be toxic for human beings, which is a major drawback of this process [5].



The gas-phase method of synthesis involves magnetron-sputtering using gas-phase condensation and inert-gas cooling which provides high cluster yield under the controlling parameters including temperature, pressure, and vapor concentration [20]. The technique offers an advantage in yielding NPs of desired size and is controlled by the flow rate of the inert gas, which could be argon or helium. Another approach called biological synthesis or green synthesis is subsequently gaining attention as it involves exploitation of microorganisms for the synthesis of NPs [14], which will be specifically discussed in detail in the following sections.





3. Green Synthesis of Nanoparticles


Formation of NPs using green synthesis is currently growing as an emerging approach combining both biotechnology and nanotechnology. This technique involves production of NPs using biological resources, which effectively overcomes the drawbacks imposed by physical and chemical methods [29]. A few examples include Cu NPs from seeds of Illicium vercium (star anise) and Mysristica fragrans (nutmeg) [30], Ag NPs from agricultural wastes [31] and extracts of red currant and bilberry wastes [32]. Being eco-friendly, this approach does not require the involvement of noxious chemicals and extreme conditions. It is cost effective and could be useful for large-scale production [29,33]. The green synthesis approach serves various advantages of being simple, reproducible, biocompatible, eco-friendly, and economic. Different biological agents have their own mechanisms to acknowledge metal ions for the synthesis of respective NPs. Major advantages of using biological resources over non-biological means is obtained via biomolecules present in the biological system which maintains the properties of NPs and therefore stabilizing or capping agents are not required [13].



Extraction from plants includes drying and downsizing of the plant component, leading to increased surface area [34]. Green synthesis involves heating and boiling for preparation of plant extracts. Powdered peels of Punica granatum (pomegranate) for copper oxide (CuO) NPs [35], Cucurbita pepo (pumpkin) seeds for TiO2 NPs [36], Chromolaena odorata roots for smart nanocomposites [37], and Basella alba leaves for Ag NPs [38] were boiled in distilled water for 30 min at 55 °C, 2 h at 90 °C, 2 h at 85 °C, 20 min at 60 °C, respectively. Nepeta leucophylla roots were boiled in methanol for 8 h to synthesize Ag NPs [39]. Alternatively, various other methods such as sonication, maceration, autoclaving etc., have also been employed. Ground kernels of Caesalpina bonducella were sonicated for 30 min [40], fruits of Solanum mammosum [41] and Crateagus pentagyna [42] were macerated, roots of Scutellaria biacalensis [43] were autoclaved at 100 °C for 30 min for green synthesis of CuO, Ag, (Fe/Si/Cu-Ag), and ZnO NPs, respectively. Another technique called co-precipitation has been used to synthesize ferric sulfate (Fe2SO3) NPs from marine alga (Turbinaria ornate) [44]. Cube-shaped ferroso ferric oxide (Fe3SO4) NPs were synthesised using Fenton process from extracts of Rhamnidium elaeocarpum and therefore could be regarded as a green chemical approach [45]. In another study, the biogenic deposition precipitation approach has been used for biogenic preparation of Ag-ZnO nanocomposites via extracts of fennel seeds, which were found to degrade chlorpyrifos pesticide and rhodamine dye [46].



Cyanobacteria, regarded as ‘cell factories’, are the most appropriate biological resource for synthesis of metal-based NPs. In one study [47], they employed Haloleptolyngbya alcalis KR2005/106 cyanobacterial extract as a reducing agent acting upon silver ions to yield Ag NPs of size < 50 nm when exposed to photosynthetically active radiation (PAR). The synthesised Ag NPs were shown to possess ammonia-sensing properties which could be used to monitor water quality. In another study, Ag NPs were biologically synthesised using Bacillus brevis (NCIM 2533). The prepared NPs showed potential antibacterial activity against various pathogenic bacteria such as Staphylococcus aureus and Salmonella typhi which could further be used in disease management [48]. Another advantage of green synthesised NPs includes generation of no by-products in the process. Additionally, various phytochemicals and natural compounds present in biological extracts stabilize and enhance various physico-chemical properties of the NPs without needing any other external agent [49].




4. Mechanisms Involved in Green Synthesis


The mechanism in biosynthesis simply involves the reduction of metal ions into the respective NPs. Ref. [50] synthesised Ag/TiO2 nanocomposites (NCs) of sizes ranging from 25–50 nm using leaf extract of Origanum majorana, serving as reducing agent, under ultrasound irradiation. Ref. [51] employed Cleistocalyx operculatus extract as reductant to synthesize Ag/TiO2 NCs of size ranging from 20–40 nm, which was found to be 91.4% efficient in photocatalytic degradation of Rhodamine B dye. The basic procedure makes use of biological resources which might be carried out both intra- and extracellularly as depicted in Figure 4. This can be done using cell free extracts, supernatants of bacterial cultures, and bacterial biomass. The complex down-streaming process in intra-cellular synthesis is the reason that an extracellular process is preferred [13].



The ion transport system present in microbial cells facilitates intracellular production. Positively charged metal ions are attracted to the negatively charged bacterial cell wall where they are reduced by the embedded enzymes to respective metallic NPs. Reductases are secreted by the microbial cells in case of extracellular production and stabilisation where metal ions are reduced into NPs in the medium, which could be easily retrieved. As for an example, green synthesised ligninase-dependent Au NPs have been produced using fungus Phanerochaete chrysosporium intracellularly and was found to be highly stable [52]. Other examples with details are mentioned in Table 1.



Besides enzymes, various cofactors such as NADH, compounds such as quinones and glutathione [13] and biomolecules such as vitamins, tannins, steroids, flavonoids, amino acids and peptides, and carboxylic acids are also responsible for the reduction of the metal ions [73]. Other compounds such as phytochemicals and secondary metabolites found in medicinal plants such as saponins, alkaloids, terpenes, phenols, alcohols and extracellular enzymes and metabolites such as hemicellulose, acetyl xylem asterase, glucosidase, paracelsin, and cell wall lytic enzymes are excreted by several fungal species and aid in the reduction of metal ions [74]. Comprehensively, the overall mechanism and the biomolecules used in NP synthesis are summarized in Figure 5.




5. Green Synthesised Nanoparticles in Remediation for Degrading Toxic Substances


Remediation processes involving the exploitation of biological resources, or their components and extracts, are referred to as ‘bioremediation’, which is achieved by the breakdown of toxic components into less toxic ones [75] as shown in Figure 6.



Nanoformulations are great alternatives to get rid of contaminants present in the environment. They are actively used in remediation processes for treating and eliminating hazardous wastes. Heavy metals and dye contaminants cause serious issues for both land and aquatic biota by restraining uptake and consumption of dissolved oxygen and diminishing photosynthetic capability. Fe-based NPs possess properties required not only to disinfect water but also for removal of heavy metals from soil [1].



5.1. Bacterial Nanoparticles in Remediation


Bacterial cells are suitable options for the production of NPs as they contain biomolecules required for the reduction of metal ions, and NPs can be synthesised both intra- and extracellularly in the medium and display a large number of applications [15] such as green synthesised ZnO nanoflower from Bacillus licheniformis MTCC 9555 [76], which possesses the capability of photocatalytic degradation of pollutant dye methylene blue (C16H18N3SCl). Bacterial cells secrete stabilising enzymes that prevent the agglomeration of NPs. Photocatalysis is a helpful technology, regarded as an advanced oxidation process, which requires direct application of solar energy for elimination of numerous organic pollutants [77]. ZnO NPs are most extensively studied as photocatalysts in remediating aquatic wastewater [78]. Various other studies have been cited in Table 2.




5.2. Fungal Nanoparticles in Remediation


Mycosynthesised NPs have gained tremendous importance as they are cost effective and their yield is relatively good. Among other biological agents, fungi are considered to be the most suitable because they possess a large number of mycelia and fruiting bodies [79], and contain an ample amount of biomolecules required for NP synthesis [80,81]. Therefore, the amount of mycosynthesised NPs are sufficient and quick as compared with other biological agents [82]. Numerous fungal species have been exploited for biosynthesis of NPs employed for remediation. In one study, the waste substrate of Lentinula edodes was used to synthesise ferroferric oxide NPs which were found to be effective in the reduction of pollutants such as Cr, NH4-N, Pb, Ni, and Cu [83]. Various studies have been cited and elaborated on in Table 2.




5.3. Algal Nanoparticles in Remediation


Algae have been considered as ‘bio-nano factories’ as they actively absorb metal ions from their surroundings, resulting in their reduction and the synthesis of respective NPs in both living and dry dead form [15]. The controlled growth rate and energy of forming NPs are conventionally achieved by using suitable capping agents or surfactants. Due to being non-biodegradable in nature, these chemicals are present as remnants which are difficult to remove completely. In order to circumvent this issue, naturally occurring biomolecules found in variety of algae are employed for the stabilisation and synthesis of NPs [84] as they have a huge capacity for metal-binding. Ag NPs are the most studied and prevalent among the others. In one study, AgNO3 was exposed to extracts of seaweed Enteromorpha flexusa [85] and Chaetomorpha linum. Reduction of metal ions was facilitated by the water-soluble components found in the extract, such as terpenoids, flavonoids, amines, and peptides, which resulted in the formation of Ag NPs [86]. Prasiola crispa, a freshwater alga, was employed for green synthesis of Au NPs carried out by reduction of aqueous solution of chloroauric acid [87]. Toxicity issues are important to consider as they must not harm living biota. Algal synthesis serves to provide no or negligible toxicity hence it is a safer and green approach. Additionally, they are considered as ‘nano-reserves’ and could be cultured conveniently with less effort [88].



Many algal species have been employed in remediation processes for the degradation of hazardous dyes and chemicals as earlier methods such as redox treatment, UV degradation, activated carbon sorption etc., were inefficient [84]. Ag NPs were green synthesised using seaweed Ulva lactuca [89] and Hypnea musciformis [90], which have been very efficient in degrading methyl orange dye. Green synthesised iron oxide NPs via Spirulina were found to be very effective in adsorbing crystal violet. NPs when treated with water containing dyes results in decolorisation of the solution, which was reaffirmed via analytical techniques hence could be used in treating wastewater [91]. Various other studies have been cited and discussed in Table 2.




5.4. Plant Nanoparticles in Remediation


Synthesis of NPs using plant extracts have been used for a long time. Cinnamomum camphora sun-dried leaves were employed for the biosynthesis of Ag and Au NPs of sizes ranging from 55 nm to 80 nm [92]. Utilising plant extracts is beneficial compared to microbes because they are non-pathogenic and this is a one-step process [15]. Synthetic dyes are majorly found in wastewaters, mainly via industrial effluents, inflict a serious threat to the environment, causing severe health issues and imbalances in nature [93]. CoO NPs were biosynthesised via Vitis rotundifolia, commonly named Jumbo Mascadine, using co-precipitation, which was found effective in degrading Acid Blue-74 (AB-74) [94].



Water treatment tools and techniques are now more refined, eco-friendly, and inexpensive. Salvia rosmarinus extract-mediated TiO2 NPs were found effective in degrading Rhodamine B, Methyl orange, and Methylene blue [95]. FeO NPs were firstly biosynthesised using Ruellia tuberosa leaf extract and were shown to possess antimicrobial activity against various pathogenic bacteria such as Klebsiella pneumonia, Staphylococcus aureus, etc., and have the ability to degrade toxic dyes [96]. In one study, the synthesis of iron oxide (FeO, Fe3O4, and Fe2O3) particles was mediated by plant extracts of Petlophorum pterocarpum, which were found to be effective in elimination of rhodamine from wastewater [97]. Various other studies have been considered in Table 2.
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Table 2. Several biologically derived nanoparticles in environmental remediation.






Table 2. Several biologically derived nanoparticles in environmental remediation.





	
Biological Resource

	
Name of Organism

	
Synthesised Nanoparticles

	
Size of Nanoparticles (nm)

	
Source of Metal Ion

	
Applications

	
References






	
BACT

ERIA

	
Bacillus amyloliquefaciens

	
Ag

	
20–40

	
AgNO3

	
Photocatalytic degradation of p-nitrophenol

	
[98]




	
Bacillus cereus

	
Ag

	
51

	
AgNO3

	
Remediation of Pb and Cr

	
[99]




	
Shewanella oneidensis

	
Pd-Pt

	
13.2

	
Mixed salt solution of Pd(II) and Pt(IV)

	
Degradation of azo dyes and nitrophenol

	
[57]




	
FUNGI

	
Saccharomyces cerevisiae

	
Pd

	
32

	
C4H6O4Pd

	
Degradation of a textile dye named direct blue 71

	
[100]




	
Acaulospora mellea

	
Nano-zero-valent iron

	
69.5

	
-

	
Remediation of soil contaminated with Zn, Pb and Cd

	
[101]




	
Ganoderma applanatum

	
Au

	
18.70

	
HAuCl4

	
Reduction of methylene blue dye

	
[79]




	
Aspergillus tamarii

	
Fe3O4

	
16.5

	
FeSO4·7H2O and FeCl3·6H2O

	
Remediation of wastewater containing textile dyes

	
[102]




	
ALGAE

	
Padina pavonica

	
Fe3O4

	
23.45

	
FeCl3

	
Removal of Pb from wate water

	
[103]




	
Sargassum acinarium

	
Fe3O4

	
24.5

	
FeCl3

	
Removal of Pb from wate water

	
[103]




	
Chlorella sp.

	
ZnO

	
19.44

	
ZnC4H6O4

	
Degradation of dibenzothiophene

	
[104]




	
Chlorella pyrenoidosa

	
CdSe quantum dots

	
6

	
CdCl2, Cd(NO3)2·

4H2O, Na2SeO3

	
Recycling of toxic cadmium metal

	
[105]




	
Scenedesmus obliquus




	
Chlorella vulgaris

	
Ag

	
55.06

	
AgNO3

	
Degradation of methylene blue dye

	
[106]




	
Spirulina platensis

	
CdS

	
8.4

	
Cd(NO3)2

	
Degradation of malachite green dye and detoxification Cd(II)

	
[107]




	
PLANTS

	
Amomum longiligulare

	
ZnO

	
50

	
Zn(NO3)2·

6H2O

	
Degradation of malachite green and methylene blue dye

	
[108]




	
Anthophalus cadamba

	
ZnO

	
167

	
ZnC4H6O4·

2H2O

	
Removal of Cr from soil

	
[109]




	
Catharanthus roseus

	
Ag

	
58.4–97.4

	
AgNO3

	
Remediation of Cr and Cd

	
[110]




	
Catunaregam spinosa

	
SnO2

	
47

	
SnCl2

	
Degradation of Congo red dye

	
[111]




	
Citrus reticulata

	
FeO

	
50

	
FeCl2·4H2O, FeCl3

	
Co+2 heavy metal removal

	
[112]




	
Cynometra ramiflora

	
Fe2O3

	
58.5

	
FeCl2, FeCl3

	
Degradation of methylene blue dye

	
[113]




	
Eucalyptus globulus

	
FeO

	
4.17

	
Fe(NO3)3·

9H2O

	
Remediation of Cr and Cd

	
[114]




	
Eucalyptus spp.

	
ZnO

	
20–40

	
Zn(NO3)2·

6H2O

	
Degradation of malachite green and Congo red dye

	
[115]




	
Ficus benjamina

	
Ag

	
60–105

	
AgNO3

	
Remediation of Cd

	
[116]




	
Jatropha curcas

	
TiO2

	
13

	
TiCl4

	
Remediation of effluent from tannery industry and Cr

	
[117]




	
Madhuca longifolia

	
CuO

	
30

	
Cu(NO3)2·

3H2O

	
Degradation of methylene blue dye

	
[118]




	
Ocimum tenuiflorum

	
Ag

	
32.58

	
AgNO3

	
Degradation of turquoise blue dye

	
[119]




	
Parthenium

	
Fe

	
100

	
FeSO4·7H2O

	
Degradation of crystal violet dye

	
[120]




	
Phoenix dactylifera

	
FeS

	
68

	
FeSO4·7H2O

	
Removal of ciprofloxacin and Cr(VI) heavy metal

	
[121]




	
Piliostigma thonningii

	
Ag

	
50–114

	
AgNO3

	
Remediation of Fe, Pb, Cu, and Mg heavy metals

	
[122]




	
Pimpinella tirupatiensis

	
Pd

	
15.4

	
PdCl2

	
Degradation of Congo red dye

	
[123]




	
Plumbago zeylanica

	
Ag

	
55

	
AgNO3

	
Degradation of methylene blue, methyl red, phenol red dye

	
[124]




	
Psidium guajava

	
Fe2O3-Ag

	
50–90

	
Fe(NO3)3 and AgNO3

	
Remediation of Cr(VI) heavy metal

	
[125]




	
Sapium sebiferum

	
Pd

	
5

	
PdCl2

	
Degradation of methylene blue dye

	
[126]




	
Sphagneticola trilobata

	
ZnO

	
65–80

	
ZnC4H6O4

	
Remediation of Cr heavy metal

	
[127]




	
Verbascum thapsus

	
Nano-zero-valent iron

	
40–50

	
FeCl3

	
Remediation of Cd

	
[128]




	
Vitex agnus-castus

	
SnO2

	
8

	
SnCl2

	
Degradation of rhodamine B and Co+2 heavy metal removal

	
[129]




	
Zingiber zerumbet

	
ZnO

	
10

	
ZnC4H6O4·

2H2O

	
Adsorptive removal of Pb(II)

	
[130]











6. Factors Affecting Synthesis of Nanoparticles


Toxicity and environmental safety are crucial points to note when synthesising and using NPs in remediation. Few studies have describes health hazards imposed by NPs where the degree of severity depends upon its shape and size. Sometimes their properties are unpredictable once they are introduced to the human body [131]. Morphological characteristics and biological activities of NPs are governed by various factors involving temperature, pH, concentration of reactants, reaction time [124], the metallic precursor [132] and the type of extract utilized, and are optimized for green synthesis. Studies have depicted that larger volumes of extracts yield larger amounts of and more stabilized NPs [15].



The types and morphology of the synthesised NPs depends on the precursor and methodology used. For Cu-based NPs, CuCl2 [133], copper nitrate [Cu(NO3)2] [134], Copper acetate [Cu(OAc)2] [135], and CuSO4 [136] have been used as precursors in various studies. Furthermore, its concentration defines the NP formation and particle size. Increased amounts of Cuminum cyminum (cumin) extract [137] and Syzygium aromaticum (clove) [138] resulted in increased size of Ag NPs. In one study, the concentration of the precursor molecule was optimized to obtain larger NP size from root extract of Senna didymobotrya (Popcorn Cassia) [139]. Additionally, when precursors are added in combined form, a blended nanocomposite is formed. For example, the combination of ZnO and AgNO3 yield an Ag-ZnO nanocomposite [46] and a mixture of Fe3SO4, SiO2, Cu2O, and Ag salt yield a (Fe/Si/Cu-Ag) nanocomposite [42].



Studies have reported that plant-mediated NP synthesis is directly dependent on temperature, which ranges from 25 to 100 °C. Higher temperature facilitates increased reduction of metal ions into their respective NPs. Additionally, with the gradual increase in temperature and conversion rate, the size of NPs decreases [34]. pH values ranging from 7–9 yield maximum NPs [140] whereas acidic pH leads to inactivation of phytochemicals required for the reduction of metal ions [141]. Parameters such as temperature, pH, reactants etc., decides the reaction time and duration of the process accordingly in order to obtain maximum product [34]. Another important factor is the preparation cost of NPs. Due to cost-effectiveness, biogenic synthesis is a more adaptable approach and could be carried out on a larger scale [142].




7. Conclusions


With increases in urbanisation, population, and industrial growth, environmental issues are increasing day by day. Ecological pollution remains an unsolved issue, leading to contamination at every atmospheric level. These contaminants impose severe threats on plants, aquatic, and terrestrial lifeforms. Modern problems require modern solutions and nanobiotechnology serves to be a great platform for this. The domain has grown rapidly in the past ten years as the technologies and approaches are becoming more advanced day by day in an eco-friendly direction. There is a need to develop sustainable and pollution-free routes for NP synthesis as chemical and physical methods are harmful and, hence, green synthesis came into being. This review showed insights into remediation of hazardous wastes using NPs obtained via numerous biological resources. Nanobioremediation strategies are future solutions which are time and energy efficient and economical. Their by-products are nontoxic and biodegradable in nature, and do not impose any threat to the ecological balance as well as living biota. Many studies carried out up to now have confirmed the sustainable execution of NPs in maintaining a healthier agro-environment.
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Figure 1. Various biological resources used for nanoparticle synthesis via green approach. 
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Figure 2. Brief categorisation of nanoparticles. 
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Figure 3. Biological, chemical, and physical methods of NP synthesis are categorized as bottom-up and top-down approaches. 
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Figure 4. Mechanism of nanoparticle synthesis via reduction of metal ions. 
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Figure 5. Brief mechanisms of nanoparticle synthesis. 
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Figure 6. Concept of bioremediation using green nanoparticles. 
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Table 1. Various nanoparticles via different biological resources.
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Name of Organism

	
Type of Organism

	
Synthesised Nanoparticles

	
Size (nm); Morphology of Nanoparticles

	
Source of Metal Ion

	
Mechanism of Synthesis

	
References






	
Acetobacter xylinum

	
BACT ERIA

	
Pt

	
6.3–9.3

	
K2PtCl4

	
Extracellular

	
[53]




	
Bacillus cereus

	
Ag

	
18–39; spherical

	
AgNO3

	
Extracellular

	
[54]




	
Pseudomonas putida

	
Pt

	
8.02; spherical

	
H2PtCl6·6H2O

	
Extracellular

	
[55]




	
Psychrobaacter faecalis

	
Pt

	
2.49;

Spherical

	
H2PtCl6·6H2O

	
Extracellular

	
[55]




	
Rhodococcus spp.

	
Au

	
5–15; spherical

	
HAuCl4

	
Intracellular

	
[56]




	
Shewanella oneidensis

	
Pd-Pt

	
3–40; spherical

	
Mixed salt solution of Pd(II) and Pt(IV)

	
Both extra- and intracellular

	
[57]




	
Vibrio fischeri

	
Pt

	
3.84;

Spherical

	
H2PtCl6·6H2O

	
Extracellular

	
[55]




	
Agaricus bisporus

	
FUNGI

	
Cu

	
10; spherical

	
Cu(NO3)2

	
Extracellular

	
[58]




	
Hypocrea lixii

	
NiO

	
3.8; spherical

	
NiCl2·6H2O

	
Extracellular

	
[59]




	
Hypocrea lixii

	
NiO

	
1.25; spherical

	
NiCl2·6H2O

	
Intracellular

	
[59]




	
Lentinula edoded

	
Au

	
72; triangular, spherical, hexagonal, irregular

	
HAuCl4

	
Extracellular

	
[60]




	
Caulerpa racemosa

	
ALGAE

	
Ag

	
5–25; triangular and spherical

	
AgNO3

	
Extracellular

	
[61]




	
Chlorella vulgaris

	
Au

	
2–10

	
HAuCl4

	
Extracellular

	
[62]




	
Desmodesmus spp.

	
Ag

	
15–30;

Spherical

	
AgNO3

	
Intracellular

	
[63]




	
Ecklonia cava

	
Au

	
30; triangular and spherical

	
HAuCl4

	
Extracellular

	
[64]




	
Rhizoclonium fontinale

	
Au

	
16; spherical

	
HAuCl4

	
Extracellular

	
[65]




	
Tetraselmis lochinensis

	
Au

	
5–35; triangular and spherical

	
HAuCl4

	
Intracellular

	
[66]




	
Arabidopsis thaliana

	
PLANTS

	
Au

	
20–50; triangular and spherical

	
KAuCl4

	
Intracellular

	
[67,68]




	
Arabidopsis spp. (WT)

	
Pd

	
32; spherical

	
Pd(C2H3O2)2, K2PdCl4

	
Intracellular

	
[69]




	
Arachis hypogaea

	
Ag

	
30–100; mostly spherical

	
AgNO3

	
Extracellular

	
[70]




	
Tephrosia apollinea

	
Ag

	
Cubical and spherical

	
AgNO3

	
Extracellular

	
[71]




	
Vigna unguiculata

	
Au

	
20–50; spherical

	
HAuCl4

	
Extracellular

	
[72]
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