Design of Multifunctional and Efficient Water-Based Annulus Protection Fluid for HTHP Sour Gas Wells
Abstract
:1. Introduction
2. Experiments
2.1. Environmental Analysis of Corrosion of Sour Gas Well Production String
2.2. Experimental Consideration
2.3. Experimental Method
2.3.1. Physical and Chemical Properties Test
2.3.2. Electrochemical Test
2.3.3. HTHP Test
3. Results and Discussion
3.1. Additive Research
3.1.1. Compatibility Test of Additives
3.1.2. Deoxidizer Selection Test
3.1.3. Bactericide Selection
3.1.4. Corrosion Inhibitor Selection
3.2. Protection Fluid Evaluation
3.2.1. Compatibility Experiment
3.2.2. Collaborative Evaluation Experiment
Deaeration Rate Experiment
Corrosion Inhibition Rate Experiment
3.2.3. Composition Design of Annulus Protection Fluid
Ratio Design of Corrosion Inhibitor
Ratio Design of Deoxidizer
Ratio Design of Bactericide
3.2.4. Physical and Chemical Properties Test
3.2.5. Water-Based Annular Protective Fluid Formulated by Formation Water
3.2.6. Corrosion Experiment of Water-Based Annular Protective Liquid
4. Conclusions
- (1)
- The formula of one clear water-based annular protective liquid includes clear water, a corrosion inhibitor CT2-19C (30,000 ppm), bactericide BN-45 (2 g/L), and deoxidizer anhydrous sodium sulfite (3 g/L), and the other contains 50% formation water, 50% clear water, retarder CT2-19C (30,000 ppm), bactericide BN-45 (1 g/L), and deoxidizer D-sodium isoascorbate (3 g/L).
- (2)
- Annular protective fluid prepared by formation water is easy to scale because formation water contains Ca2+ and Mg2+ ions, and the risk of long-term use is greater. The produced wells are recommended to use water-based annular protective liquid prepared with clear water, including CT2-19C corrosion inhibitor (30,000 ppm) + anhydrous sodium sulfite (3 g/L) + BN-45 bactericide (2 g/L).
- (3)
- The density of water-based annular protective liquid prepared with clear water is 1.02 g/cm3, and its freezing point is −2.01 °C. The water-based annular protective liquid controls the dissolved oxygen content in the injected water within 0.3 ppm.
- (4)
- The corrosion inhibition rate of clear, water-based annulus protection fluid exceeds 90%, and the corrosion rate of steel in the gas phase is lower than the oilfield corrosion control index (0.076 mm/y). The water-based annular protective fluid meets the anti-corrosion requirements of actual production and working conditions, so it can be popularized and applied in sour gas field production.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Li, Y.; Liu, B.; Mou, L.; Yu, S.; Zhang, Y.; Yan, X. Understanding the synergistic effect of CO2, H2S and fluid flow towards carbon steel corrosion. Vacuum 2022, 196, 110790. [Google Scholar] [CrossRef]
- Sun, C.; Zeng, H.; Luo, J.L. Unraveling the effects of CO2 and H2S on the corrosion behavior of electroless Ni-P coating in CO2/H2S/Cl− environments at high temperature and high pressure. Corros. Sci. 2019, 148, 317–330. [Google Scholar] [CrossRef]
- Qin, M.; Liao, K.; He, G.; Huang, Y.; Wang, M.; Zhang, S. Main control factors and prediction model of flow-accelerated CO2/H2S synergistic corrosion for X65 steel. Process Saf. Environ. Prot. 2022, 160, 749–762. [Google Scholar] [CrossRef]
- Li, J.; Sun, C.; Roostaei, M.; Vahidoddin, F.; Hong, B.; Jing, L. Insights into the electrochemical corrosion behavior and mechanism of electroless Ni-P coating in the CO2/H2S/Cl− environment. Corrosion 2020, 76, 578–590. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, B.; Xing, X.; He, S.; Zhang, L.; Liu, M. Effects of flow velocity on the corrosion behaviour of super 13Cr stainless steel in ultra-HTHP CO2–H2S coexistence environment. Corros. Sci. 2022, 200, 110235. [Google Scholar] [CrossRef]
- Li, L.; Yan, J.; Xiao, J.; Sun, L.; Fan, H.; Wang, J. A comparative study of corrosion behavior of S-phase with AISI 304 austenitic stainless steel in H2S/CO2/Cl− media. Corros. Sci. 2021, 187, 109472. [Google Scholar] [CrossRef]
- Zeng, D.; Dong, B.; Zeng, F.; Yu, Z.; Zeng, W.; Guo, Y.; Peng, Z.; Tao, Y. Analysis of corrosion failure and materials selection for CO2–H2S gas well. J. Nat. Gas Sci. Eng. 2021, 86, 103734. [Google Scholar] [CrossRef]
- Dong, B.; Liu, W.; Zhang, Y.; Banthukul, W.; Zhao, Y.; Zhang, T.; Fan, Y.; Li, X. Comparison of the characteristics of corrosion scales covering 3Cr steel and X60 steel in CO2-H2S coexistence environment. J. Nat. Gas Sci. Eng. 2020, 80, 103371. [Google Scholar] [CrossRef]
- Zeng, D.; He, Q.; Li, T.; Hu, J.; Shi, T.; Zhang, Z.; Yu, Z.; Liu, R. Corrosion mechanism of hydrogenated nitrile butadiene rubber O-ring under simulated wellbore conditions. Corros. Sci. 2016, 107, 145–154. [Google Scholar] [CrossRef]
- Zeng, D.; Dong, B.; Qi, Y.; Yu, Z.; Wang, J.; Huang, X.; Liu, X.; Liu, Y. On how CO2 partial pressure on corrosion of HNBR rubber O-ring in CO2–H2S–CH4 environment. Int. J. Hydrog. Energy 2021, 46, 8300–8316. [Google Scholar] [CrossRef]
- Dong, B.; Liu, W.; Cheng, L.; Gong, J.; Wang, Y.; Gao, Y.; Dong, S.; Zhao, Y.; Fan, Y.; Zhang, T.; et al. Investigation on mechanical properties and corrosion behavior of rubber for packer in CO2-H2S gas well. Eng. Fail. Anal. 2021, 124, 105364. [Google Scholar] [CrossRef]
- Li, K.; Zeng, Y.; Luo, J.L. Influence of H2S on the general corrosion and sulfide stress cracking of pipelines steels for supercritical CO2 transportation. Corros. Sci. 2021, 190, 109639. [Google Scholar] [CrossRef]
- Abadeh, H.K.; Javidi, M. Assessment and influence of temperature, NaCl and H2S on CO2 corrosion behavior of different microstructures of API 5L X52 carbon steel in aqueous environments. J. Nat. Gas Sci. Eng. 2019, 67, 93–107. [Google Scholar] [CrossRef]
- Nimmervoll, M.; Schmid, A.; Mori, G.; Hönig, S.; Haubner, R. Surface sulphide formation on high-temperature corrosion resistant alloys in a H2S-HCl-CO2 mixed atmosphere. Corros. Sci. 2021, 181, 109241. [Google Scholar] [CrossRef]
- Zeng, D.; Dong, B.; Zhang, S.; Yi, Y.; Huang, Z.; Tian, G.; Yu, H.; Sun, Y. Annular corrosion risk analysis of gas injection in CO2 flooding and development of oil-based annulus protection fluid. J. Pet. Sci. Eng. 2021, 208, 109526. [Google Scholar] [CrossRef]
- Zeng, D.; He, Q.; Yu, Z.; Jia, W.; Zhang, S.; Liu, Q. Risk assessment of sustained casing pressure in gas wells based on the fuzzy comprehensive evaluation method. J. Nat. Gas Sci. Eng. 2017, 46, 756–763. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, T.; Shi, S.; Li, S.; Lu, Q.; Zhang, Z.; Feng, S.; Ming, C.; Wu, K. Failure analysis of a fracture tubbing used in the formate annulus protection fluid. Eng. Fail. Anal. 2019, 95, 248–262. [Google Scholar]
- Dong, B.; Liu, W.; Zhang, T.; Chen, L.; Zhang, T.; Fan, Y.; Zhao, Y.; Li, S.; Yang, W.; Banthukul, W. Optimize Ni, Cu, Mo element of low Cr-steel rebars in tropical marine atmosphere environment through two years of corrosion monitoring. Cem. Concr. Compos. 2022, 125, 104317. [Google Scholar] [CrossRef]
- William, D.R.; De, M.A.; Jefferson, B. Development of a Structure-Activity Relationship for Oil Field Corrosion Inhibitors. J. Electrochem. Soc. 2019, 146, 1751–1756. [Google Scholar]
- Zhao, J.; Gu, F.; Zhao, T.; Jiang, R. Corrosion inhibition performance of imidazoline derivatives with different pedant chains under three flow rates in high-pressure CO2 environment. Res. Chem. Intermed. 2016, 42, 5753–5764. [Google Scholar] [CrossRef]
- Dong, B.; Zeng, D.; Yu, Z.; Cai, L.; Yu, H.; Shi, S.; Tian, G.; Yi, Y. Major corrosion influence factors analysis in the production well of CO2 flooding and the optimization of relative anti-corrosion measures. J. Pet. Sci. Eng. 2021, 200, 108052. [Google Scholar] [CrossRef]
- Saad, G.; Sasha, O. The effect of electrolyte flow on the performance of 12-aminododecanoic acid as a carbon steel corrosion inhibitor in CO2-saturated hydrochloric acid. Corros. Sci. 2011, 53, 3805–3812. [Google Scholar]
- Zeng, D.; Dong, B.; Yu, Z.; Huang, Z.; Yi, Y.; Yu, H.; Li, J.; Tian, G. Design of water-based annulus protection fluid for CO2 flooding injection well. J. Pet. Sci. Eng. 2021, 205, 108726. [Google Scholar] [CrossRef]
- SY/T5273-2014 Standard; Technical Specifications and Evaluating Methods of Corrosion-Inhibitors for Oilfield Produced Water. National Energy Administration: Beijing, China, 2015.
- SYT 5757-2010 Standard; General Technical Conditions for Fungicides Injected into Oilfield. National Energy Administration: Beijing, China, 2010.
- Dong, B.; Liu, W.; Chen, L.; Zhang, T.; Fan, Y.; Zhao, Y.; Li, H.; Yang, W.; Sun, Y. Unraveling the effect of chloride ion on the corrosion product film of Cr-Ni- containing steel in tropical marine atmospheric environment. Corros. Sci. 2022, 209, 110741. [Google Scholar] [CrossRef]
- Xie, F.; Wang, X.; Wang, D.; Wu, M.; Yu, C.; Sun, D. Effect of strain rate and sulfate reducing bacteria on stress corrosion cracking behaviour of X70 pipeline steel in simulated sea mud solution. Eng. Fail. Anal. 2019, 100, 245–258. [Google Scholar] [CrossRef]
- Standish, T.; Yari, M.; Shoesmith, D.; Noel, J. Crevice Corrosion of Grade-2 Titanium in Saline Solutions at Different Temperatures and Oxygen Concentrations. J. Electrochem. Soc. 2017, 164, C788–C795. [Google Scholar] [CrossRef] [Green Version]
- Yoon-Seok, C.; Srdjan, N.; David, Y. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments. Environ. Sci. Technol. 2010, 44, 9233–9238. [Google Scholar]
- Nešić, S. Key issues related to modelling of internal corrosion of oil and gas pipelines—A review. Corros. Sci. 2007, 49, 4308–4338. [Google Scholar] [CrossRef]
- Abdulazeez, I.; Al-Hamouz, O.C.S.; Khaled, M.; Al-Saadi, A.A. Inhibition of mild steel corrosion in CO2 andH2S saturated acidic media by a new polyurea based material. Mater. Corros. Werkst. Korros. 2019, 270, C788–C795. [Google Scholar]
- Asadian, M.; Sabzi, M.; Anojdan, S.H.M. The effect of temperature, CO2, H2S gases and the resultant iron carbonate and iron sulfide compounds on the sour corrosion behaviour of ASTM A-106 steel for pipeline transportation. Int. J. Press. Vessel. Pip. 2019, 171, 184–193. [Google Scholar] [CrossRef]
- Dong, B.; Liu, W.; Zhang, T.; Chen, L.; Fan, Y.; Zhao, Y.; Li, H.; Yang, W.; Sun, Y. Clarifying the effect of a small amount of Cr content on the corrosion of Ni-Mo steel in tropical marine atmospheric environment. Corros. Sci. 2023, 210, 110813. [Google Scholar] [CrossRef]
- Busahmin, B.; Maini, B. A Potential Parameter for A Non-Darcy Form of Two-Phase Flow Behaviour, Compressibility Related. Int. J. Eng. Technol. 2018, 7, 126–131. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Cr | Mo | Ni | Nb | Ti | V | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
0.27 | 0.26 | 0.60 | 0.009 | 0.003 | 0.50 | 0.60 | 0.25 | 0.05 | 0.02 | 0.005 | BaL |
Compounds | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | Na+/K+ |
---|---|---|---|---|---|---|
Content (mg/L). | 292.72 | 138.8 | 37,443.03 | 32.04 | 1868.2 | 31,489.37 |
Additives | Type | Phenomenon (30 min, 60 °C) | Evaluation Results | |
---|---|---|---|---|
Acetone oxime | homogeneous | good dispersion | ||
Deoxidizer | Anhydrous sodium sulfite | homogeneous | good dispersion | |
Sodium D-isoascorbate | homogeneous | good dispersion | ||
XJ-4 | homogeneous | good dispersion | ||
Bactericide | BN-45 | homogeneous | good dispersion | |
BN-42 | homogeneous | good dispersion | ||
IU-3 | homogeneous | good dispersion | ||
YC-12 | carboxylic acid compound corrosion inhibitor | milky white flocs | good dispersion | |
Corrosion inhibitor | Z-05 | Imidazolines | homogeneous | good dispersion |
CT2-19C | Quaternary ammonium salts | homogeneous | good dispersion |
Group | Corrosion Inhibitor | Deoxidizer | Bactericide | Phenomenon (30 min, 60 °C) | Evaluation Results |
---|---|---|---|---|---|
1 | CT2-19C | Sodium D-isoascorbate | muddy | poor | |
2 | Anhydrous sodium sulfite | homogeneous | good | ||
3 | BN-45 | homogeneous | good | ||
4 | BN-42 | homogeneous | good | ||
5 | Sodium D-isoascorbate | BN-45 | muddy | poor | |
6 | Sodium D-isoascorbate | BN-42 | muddy | poor | |
7 | Anhydrous sodium sulfite | BN-45 | homogeneous | good | |
8 | Anhydrous sodium sulfite | BN-42 | homogeneous | good |
Group | Inhibitor Concentration (ppm) | Temperature (°C) | H2S Partial Pressure (MPa) | CO2 Partial Pressure (MPa) | Total Pressure (MPa) | Time (h) |
---|---|---|---|---|---|---|
1 | 5000 | 120 | 1.5 | 3 | 40 | 168 |
2 | 10,000 | |||||
3 | 20,000 | |||||
4 | 30,000 |
Number | BN-45 Dosing (g/L) | Saprophytic Bacteria (CFU/mL) | Iron Bacteria (CFU/mL) | Sulfate Reducing Bacteria (CFU/mL) |
---|---|---|---|---|
1 | 0 | 2.52 × 103 | 2.52 × 103 | 0.61 × 104 |
2 | 1 | 2.56 | 5.05 × 102 | 0.64 × 102 |
3 | 1.5 | 0 | 2.59 × 10 | 2.02 × 10 |
4 | 2 | 0 | 0 | 0 |
Density (g/cm3) | Freezing Point (°C) | pH |
---|---|---|
1.02 | −2.01 | 7.73 |
Group | Formation Water | Water | Corrosion Inhibitor | Deoxidizer | Bactericide | Phenomenon (30 min,60 °C) | Evaluation Results |
---|---|---|---|---|---|---|---|
1 | 100% | CT2-19C | Anhydrous sodium sulfite | precipitate | Poor | ||
2 | Sodium D-isoascorbate | precipitate | Poor | ||||
3 | Anhydrous sodium sulfite | BN-45 | precipitate | Poor | |||
Sodium D-isoascorbate | BN-45 | precipitate | Poor | ||||
4 | 75% | 25% | Anhydrous sodium sulfite | precipitate | Poor | ||
5 | Sodium D-isoascorbate | precipitate | Poor | ||||
6 | Anhydrous sodium sulfite | BN-45 | precipitate | Poor | |||
7 | Sodium D-isoascorbate | BN-45 | precipitate | Poor | |||
8 | 50% | 50% | Anhydrous sodium sulfite | precipitate | poor | ||
9 | Sodium D-isoascorbate | homogeneous | Good | ||||
10 | Anhydrous sodium sulfite | BN-45 | precipitate | Poor | |||
11 | Sodium D-isoascorbate | BN-45 | homogeneous | Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Han, X.; Cao, J.; Du, L.; Jia, N.; Zheng, R.; Chen, W.; Zeng, D. Design of Multifunctional and Efficient Water-Based Annulus Protection Fluid for HTHP Sour Gas Wells. Processes 2023, 11, 171. https://doi.org/10.3390/pr11010171
Liu Q, Han X, Cao J, Du L, Jia N, Zheng R, Chen W, Zeng D. Design of Multifunctional and Efficient Water-Based Annulus Protection Fluid for HTHP Sour Gas Wells. Processes. 2023; 11(1):171. https://doi.org/10.3390/pr11010171
Chicago/Turabian StyleLiu, Qilin, Xue Han, Jian Cao, Lang Du, Ning Jia, Rong Zheng, Wen Chen, and Dezhi Zeng. 2023. "Design of Multifunctional and Efficient Water-Based Annulus Protection Fluid for HTHP Sour Gas Wells" Processes 11, no. 1: 171. https://doi.org/10.3390/pr11010171
APA StyleLiu, Q., Han, X., Cao, J., Du, L., Jia, N., Zheng, R., Chen, W., & Zeng, D. (2023). Design of Multifunctional and Efficient Water-Based Annulus Protection Fluid for HTHP Sour Gas Wells. Processes, 11(1), 171. https://doi.org/10.3390/pr11010171