Copper Recovery from Aqueous Solutions by Hemp Shives: Adsorption Studies and Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hemp Shives and Reagents
2.2. In-Batch Copper Adsorption Experiments
2.3. Adsorption Models
3. Results and Discussion
3.1. Effect of Solution pH on Hemp Shives Performances
3.2. Effect of Ionic Strength of Solution on Hemp Shives Performances
3.3. Adsorption Isotherm of Copper Removal Using Hemp Shives
- -
- Redlich-Peterson > Tόth > Hill > Freundlich > Langmuir > Tempkin > Dubinin-Radushkevich for SHI W sample;
- -
- Tempkin > Freundlich > Langmuir > Redlich-Peterson > Toth > Hill > Dubinin-Radushkevich for SHI-C sample.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chowdhury, S.; Jafar Mazumder, M.A.; Al-Attas, O.; Husain, T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ. 2016, 569–570, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Al-Saydeh, S.A.; El-Naas, M.H.; Zaidi, S.J. Copper removal from industrial wastewater: A comprehensive review. J. Ind. Eng. Chem. 2017, 56, 35–44. [Google Scholar] [CrossRef]
- Rehman, M.; Liu, L.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D.X. Copper environmental toxicology, recent advances, and future outlook: A review. Environ. Sci. Pollut. Res. 2019, 26, 18003–18016. [Google Scholar] [CrossRef] [PubMed]
- Botelho Junior, A.B.; Dreisinger, D.B.; Espinosa, D.C. A review of nickel, copper and cobalt recovery by chelating ion exchange resins from mining processes and mining tailings. Min. Met. Explor. 2019, 36, 199–213. [Google Scholar] [CrossRef]
- Kute, A.D.; Gaikwad, R.P.; Warkad, I.R.; Gawande, M.B. A review on the synthesis and applications of sustainable copper-based nanomaterials. Green Chem. 2022, 24, 3502–3573. [Google Scholar] [CrossRef]
- Gupta, V.K.; Nayak, A.; Agarwal, S. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. 2015, 20, 1–18. [Google Scholar] [CrossRef]
- Malik, D.S.; Jain, C.K.; Yadav, A.K. Removal of heavy metals from emerging cellulosic low-cost biosorbents: A review. Appl. Water Sci. 2017, 7, 2113–2136. [Google Scholar] [CrossRef] [Green Version]
- Jamshaid, A.; Hamid, A.; Muhammad, N.; Naseer, A.; Ghauri, M.; Iqbal, J.; Rafiq, S.; Shah, N.S. Cellulose-based materials for the removal of heavy metals from wastewater—An overview. ChemBioEng 2017, 4, 240–256. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. NPJ Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Alsafran, M.; Saleem, M.H.; Al Jabri, H.; Rizwan, M.; Usman, K. Principles and applicability of integrated remediation strategies for heavy metal removal/recovery from contaminated environments. J. Plant Growth Regul. 2022, 1–22. [Google Scholar] [CrossRef]
- Barakat, M.A.; Kumar, R. Modified and New Adsorbents for Removal of Heavy Metals from Wastewater. In Heavy Metals in Water: Presence, Removal and Safety; Chapter 10; Sharma, S.K., Ed.; The Royal Society of Chemistry: London, UK, 2015; pp. 193–212. [Google Scholar]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Torres, E. Biosorption: A review of the latest advances. Processes 2020, 8, 1584. [Google Scholar] [CrossRef]
- Abdolali, A.; Guo, W.S.; Ngo, H.H.; Chen, S.S.; Nguyen, N.C.; Tung, K.L. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresour. Technol. 2014, 160, 57–66. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Balasubramanian, R. Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J. Environ. Manag. 2015, 160, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Azarova, Y.A.; Pestov, A.V.; Bratskaya, S.Z. Application of chitosan and its derivatives for solid-phase extraction of metal and metalloid ions: A mini-review. Cellulose 2016, 23, 2273–2289. [Google Scholar] [CrossRef]
- Emenike, P.C.; Omole, D.O.; Ngene, B.U.; Tenebe, I.T. Potentiality of agricultural adsorbent for the sequestering of metal ions from wastewater. Glob. J. Environ. Sci. Manag. 2016, 2, 411–442. [Google Scholar]
- Kumar, R.; Sharma, R.K.; Singh, A.P. Cellulose based grafted biosorbents—Journey from lignocellulose biomass to toxic metal ions sorption applications—A review. J. Mol. Liq. 2017, 232, 62–93. [Google Scholar] [CrossRef]
- Afroze, S.; Sen, T.K. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 2018, 229, 225. [Google Scholar] [CrossRef]
- Rozumová, L.; Legátová, B. Biosorbent from industrial hemp hurds for copper ions removal. Int. J. Mater. Sci. Eng. 2018, 6, 114–125. [Google Scholar] [CrossRef]
- Bashir, M.; Tyagi, S.; Annachhatre, A.P. Adsorption copper from aqueous solution onto agricultural adsorbent: Kinetics and isotherm studies. Mater. Today Proc. 2020, 28, 1833–1840. [Google Scholar] [CrossRef]
- Begum, B.; Yuhana, N.Y.; Saleh, N.M.; Kamarudin, N.H.N.; Sulong, A.B. Review of chitosan composite as a heavy metal adsorbent: Material preparation and properties. Carbohydr. Polym. 2021, 259, 117613. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, R.; Yang, J.; Shuai, Q.; Yuliarto, B.; Kaneti, Y.V.; Yamauchi, Y. Nanoarchitectured porous organic polymers and their environmental applications for removal of toxic metal ions. Chem. Eng. J. 2021, 408, 127991. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V. A comprehensive review on application of lignocellulose derived nanomaterial in heavy metals removal from wastewater. Chem. Afr. 2022, 1–40. [Google Scholar] [CrossRef]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Jain, B.; Susan, A.B.H. Adsorption of heavy metal ions by various low-cost adsorbents: A review. Int. J. Environ. Anal. Chem. 2022, 102, 342–379. [Google Scholar] [CrossRef]
- Bugnet, J.; Morin-Crini, N.; Cosentino, C.; Chanet, G.; Winterton, P.; Crini, G. Hemp decontamination of poly-metallic aqueous solutions. Environ. Eng. Manag. J. 2017, 16, 535–542. [Google Scholar]
- Loiacono, S.; Crini, G.; Chanet, G.; Raschetti, M.; Placet, V.; Morin-Crini, N. Metals in aqueous solutions and real effluents: Biosorption behavior onto a hemp-based felt. J. Chem. Technol. Biotechnol. 2018, 93, 2592–2601. [Google Scholar] [CrossRef] [Green Version]
- Crini, G.; Bradu, C.; Cosentino, C.; Staelens, J.N.; Martel, B.; Fourmentin, M.; Loiacono, S.; Chanet, G.; Torri, G.; Morin-Crini, N. Simultaneous removal of inorganic and organic pollutants from polycontaminated wastewaters on modified hemp-based felts. Rev. Chim. 2021, 72, 25–43. [Google Scholar] [CrossRef]
- Mongioví, C.; Morin-Crini, N.; Lacalamita, D.; Bradu, C.; Raschetti, M.; Placet, V.; Ribeiro, A.R.L.; Ivanovska, A.; Kostić, M.; Crini, G. Biosorbents from plant fibers of hemp and flax for metal removal: Comparison of their biosorption properties. Molecules 2021, 26, 4199. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Über die adsorption in lösungen. Z. Phys. Chem. 1906, 57, 385–471. [Google Scholar] [CrossRef]
- Tempkin, M.J.; Pyzhev, V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Phys. URSS 1940, 12, 217–256. [Google Scholar]
- Redlich, O.; Peterson, D.L. A useful adsorption isotherm. J. Phys. Chem. 1959, 63, 1024–1026. [Google Scholar] [CrossRef]
- Tόth, J. State equations of the solid gas interface layer. Acta Chem. Acad. Sci. Hung. 1971, 69, 311–317. [Google Scholar]
- Hill, A.V. The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. J. Physiol. 1910, 40, 4–7. [Google Scholar]
- Dubinin, M.M.; Radushkevich, L.V. The equation of the characteristic curve of activated charcoal. Proc. Acad. Sci. Phys. Chem. Sect. 1947, 55, 331–333. [Google Scholar]
- Mongioví, C.; Lacalamita, D.; Morin-Crini, N.; Gabrion, X.; Placet, V.; Ribeiro, A.R.L.; Ivanovska, A.; Kostić, M.; Bradu, C.; Staelens, J.N.; et al. Use of chènevotte, a valuable co-product of industrial hemp fiber, as adsorbent for copper ions: Kinetic studies and modelling. Arab. J. Chem. 2022, 15, 103742. [Google Scholar] [CrossRef]
- Mongioví, C.; Crini, G.; Gabrion, X.; Placet, V.; Blondeau-Patissier, V.; Krystianiak, A.; Durand, S.; Beaugrand, J.; Dorlando, A.; Rivard, C.; et al. Revealing the adsorption mechanism of copper on hemp-based materials through EDX, nano-CT, XPS, FTIR, Raman, and XANES characterization techniques. Chem. Eng. J. Adv. 2022, 10, 100282. [Google Scholar] [CrossRef]
- Hadi, M.; McKay, G.; Samarghandi, M.R.; Maleki, A.; Aminabad, M.S. Prediction of optimimum adsorption isotherm: Comparison of chi-square and Log-likelihood statistics. Desalin. Water Treat. 2012, 49, 81–94. [Google Scholar] [CrossRef]
- Kaushal, A.; Singh, S.K. Critical analysis of adsorption data statistically. Appl. Water Sci. 2017, 7, 3191–3196. [Google Scholar] [CrossRef] [Green Version]
- González-López, M.E.; Laureano-Anzaldo, C.M.; Pérez-Fonseca, A.A.; Arellano, M.; Robledo-Ortíz, J.R. A critical overview of adsorption models linearization: Methodological and statistical inconsistencies. Sep. Purif. Rev. 2021, 51, 358–372. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Hosseini-Bandegharaei, A.; Chao, H.P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef] [PubMed]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherms models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Saadi, R.; Saadi, Z.; Fazaeli, R.; Fard, N.E. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J. Chem. Eng. 2015, 32, 787–799. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Hamdaoui, O.; Naffrechoux, E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part II. Models with more than two parameters. J. Hazard. Mater. 2007, 147, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Dubinin, M.M. Physical Adsorption of Gases and Vapors in Micropores. In Progress in Surface and Membrane Science; Cadenhead, D.A., Danielli, J.F., Rosenberg, M.D., Eds.; Academic Press: New York, NY, USA, 1975; Volume 9, pp. 1–70. [Google Scholar]
- Dubinin, M.M. The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surfaces. Chem. Rev. 1960, 60, 235–241. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Z. Application of Dubinin-Radushkevich isotherm model at solid/solution interface: A theoretical analysis. J. Mol. Liq. 2019, 277, 646–648. [Google Scholar] [CrossRef]
- Batool, F.; Akbar, J.; Iqbal, S.; Noreen, S.; Bukhari, S.N.A. Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: An overview of linear and nonlinear approach and error analysis. Bioinorg. Chem. Appl. 2018, 2018, 3463724. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.M.; Flora, J.R.V.; Park, C.M.; Yoon, Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef]
- Rahman, M.S.; Sathasivam, K.V. Heavy metal adsorption onto Kappaphycus sp. from aqueous solutions: The use of error functions for validation of isotherm and kinetics models. Biomed. Res. Int. 2015, 2015, 126298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, J.; Saha, R.; Nath, H.; Mondal, A.; Nag, S. An eco-friendly removal of Cd(II) utilizing banana pseudo-fibre and Moringa bark as indigenous green adsorbent and modelling of adsorption by artificial neural network. Environ. Sci. Pollut. Res. 2022, 29, 86528–86549. [Google Scholar] [CrossRef] [PubMed]
- Villaescusa, I.; Fiol, N.; Martínez, M.; Miralles, N.; Poch, J.; Serarols, J. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res. 2004, 38, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Khee, Y.L.; Kiew, P.L.; Chung, Y.T. Valorizing papaya seed waste for wastewater treatment: A review. Int. J. Environ. Sci. Technol. 2022, 1–20. [Google Scholar] [CrossRef]
- Zeng, H.Q.; Hao, H.Y.; Wang, X.; Shao, Z. Chitosan-based composite film adsorbents reinforced with nanocellulose for removal of Cu (II) ion from wastewater: Preparation, characterization, and adsorption mechanism. Int. J. Biol. Macromol. 2022, 213, 369–380. [Google Scholar] [CrossRef]
- Rangabhashiyam, S.; Anu, N.; Giri Nandagopal, M.S.; Selvaraju, N. Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. J. Environ. Chem. Eng. 2014, 2, 398–414. [Google Scholar] [CrossRef]
- Mongiovì, C.; Lacalamita, D.; Morin-Crini, N.; Gabrion, X.; Ivanovska, A.; Sala, F.; Placet, V.; Rizzi, V.; Gubitosa, J.; Mesto, E.; et al. Use of chènevotte, a valuable coproduct of industrial hemp fiber, as adsorbent for pollutant removal. Part 1: Chemical microscopic, spectroscopic and thermogravimetric characterization of raw and modified samples. Molecules 2021, 26, 4574. [Google Scholar] [CrossRef]
- Atkins, P. Physical Chemistry, 6th ed.; Oxford University Press: London, UK, 1999; pp. 857–864. [Google Scholar]
- Nagy, B.; Mânzatu, C.; Török, A.; Indolean, C.; Măicăneanu, A.; Tonk, S.; Majdik, C. Isotherm and thermodynamic studies of Cd(II) removal process using chemically modified lignocellulosic adsorbent. Rev. Roum. Chim. 2015, 60, 257–264. [Google Scholar]
- Dada, A.O.; Olalekan, A.P.; Olatunya, A.M.; Dada, O. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ onto phosphoric acid modified rice husk. J. Appl. Chem. 2012, 3, 38–45. [Google Scholar]
- Ratkowski, D.A. Handbook of Nonlinear Regression Models; Marcel Dekker: New York, NY, USA, 1990. [Google Scholar]
- Myers, R.H. Classical and Modern Regression with Applications; PWS-KENT: Boston, MA, USA, 1990; Volume 444–445, pp. 297–298. [Google Scholar]
- Crini, G.; Peindy, H.N.; Gimbert, F.; Robert, C. Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Sep. Purif. Technol. 2007, 53, 97–110. [Google Scholar] [CrossRef]
Sample | SHI-R | SHI-W | SHI-C |
---|---|---|---|
α-cellulose (%) | 55.53 | 56.93 | 62.93 |
Hemicelluloses (%) | 12.48 | 15.42 | 9.58 |
Klason lignin (%) | 26.54 | 26.70 | 26.59 |
Pectins (%) | 0.43 | 0.79 | 0.42 |
Fats and waxes (%) | 0.72 | 0.38 | 0.04 |
pH value at the point of zero charge | 6.4 | 6.2 | 6.2 |
Ion-exchange capacity (meq/g) | 0.10 | 0.13 | 0.31 |
Volume of the pores a (µm3) | 72.9 | 75.3 | 68.9 |
Isotherm | Non-Linear Form | Parameters |
---|---|---|
Langmuir | (2) (3) | KL (L/g): Langmuir isotherm equilibrium constant aL (L/mg): Langmuir isotherm constant RL: separation factor C0 (mg/L): initial concentration |
Freundlich | (4) | KF ((mg/g)(L/mg)1/n): Freundlich constant nF: Freundlich isotherm exponent 1/nF: heterogeneity factor |
Tempkin | (5) | A (L/g): Tempkin isotherm equilibrium constant b (J/mol): Tempkin isotherm constant T (K): temperature R (8.31 J/mol K): gaz constant |
Redlich-Peterson | (6) | KR (L/g): Redlich-Peterson isotherm equilibrium constant aR (L/mg)β: Redlich-Peterson isotherm parameter β: Redlich-Peterson exponent |
Tóth | (7) | qmT (mg/g): Tόth maximum adsorption capacity KT: Tόth isotherm constant t: Tόth exponent |
Hill | (8) | qH (mg/g): Hill theoretical isotherm saturation capacity KD (mg/L): saturation constant nH: Hill cooperative binding constant |
Dubinin-Radushkevich | (9) (10) | KDR (mol2/J2): Dubinin-Radushkevich isotherm constant qmax (mg/g): Dubinin-Radushkevich maximum adsorption capacity T (K): temperature R (8.31 J/mol K): gaz constant E: apparent free energy |
Model | Parameters | SHI-W | SHI-C |
---|---|---|---|
Langmuir | qmax (mg/g) | 6.1 | 10.2 |
KL (L/g) | 0.13 | 8.74 | |
aL (L/mg) | 0.02 | 0.98 | |
Freundlich | KF (mg/g)(L/mg)1/n | 0.31 | 3.33 |
nF | 1.78 | 3.35 | |
Tempkin | b (kJ/mol) | 0.80 | 1.74 |
A (L/g) | 0.71 | 18.33 | |
Redlich-Peterson | KR (L/g) | 0.38 | 17.90 |
aR (L/mg)−β | 0.62 | 3.60 | |
b | 0.57 | 0.82 | |
Tόth | qmT (mg/g) | 11.63 | 15.02 |
KT (L/mg) | 0.24 | 1.59 | |
t | 0.41 | 0.35 | |
Hill | qmax (mg/g) | 7.50 | 12.7 |
n | 0.73 | 0.55 | |
K (mg/L) | 29.14 | 2.50 | |
Dubinin-Radushkevich | qmax (mg/g) | 3.07 | 9.90 |
KDR (mol2/kJ2) | 7.89 | 6.36 |
Isotherm | SHI-W | SHI-C | ||
---|---|---|---|---|
R2 | χ2 | R2 | χ2 | |
Langmuir | 0.9589 | 0.0839 | 0.8004 | 2.8537 |
Freundlich | 0.9604 | 0.0815 | 0.8041 | 2.8005 |
Tempkin | 0.9392 | 0.1241 | 0.8400 | 2.2874 |
Redlich–Peterson | 0.9641 | 0.0734 | 0.7994 | 2.8677 |
Tόth | 0.9628 | 0.0759 | 0.79621 | 2.9139 |
Hill | 0.9610 | 0.0797 | 0.7928 | 2.9631 |
Dubinin–Radushkevich | 0.8759 | 0.2534 | 0.5588 | 6.3084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mongioví, C.; Crini, G. Copper Recovery from Aqueous Solutions by Hemp Shives: Adsorption Studies and Modeling. Processes 2023, 11, 191. https://doi.org/10.3390/pr11010191
Mongioví C, Crini G. Copper Recovery from Aqueous Solutions by Hemp Shives: Adsorption Studies and Modeling. Processes. 2023; 11(1):191. https://doi.org/10.3390/pr11010191
Chicago/Turabian StyleMongioví, Chiara, and Grégorio Crini. 2023. "Copper Recovery from Aqueous Solutions by Hemp Shives: Adsorption Studies and Modeling" Processes 11, no. 1: 191. https://doi.org/10.3390/pr11010191
APA StyleMongioví, C., & Crini, G. (2023). Copper Recovery from Aqueous Solutions by Hemp Shives: Adsorption Studies and Modeling. Processes, 11(1), 191. https://doi.org/10.3390/pr11010191