Current Challenges in the Sustainable Valorisation of Agri-Food Wastes: A Review
Abstract
:1. Introduction
2. Extraction Techniques for Bioactive Recovery from Agri-Food Wastes
2.1. Supercritical Fluid Extraction
2.2. Subcritical Water Extraction
2.3. Pulsed Electric Fields
2.4. Ultrasound-Assisted Extraction
2.5. Microwave-Assisted Extraction
2.6. Enzyme-Assisted Extraction
2.7. Pressurized Liquid Extraction
3. Valorisation of Agri-Food Waste
3.1. As a Source of Biomass for Bioethanol and Biodiesel Production
3.2. As a Source of Valuable Chemicals
3.2.1. Pigments
3.2.2. Essential Oils
3.3. As a Source of Bioactive Compounds
3.3.1. Phenolic Compounds
3.3.2. Bioactive Peptides
3.3.3. Carotenoids
3.3.4. Dietary Fibres
4. Potential Applications and Challenges of Agri-Food Wastes Management
4.1. Food Additives and Nutraceuticals
4.2. Cosmetic and Pharmaceutical Industries
4.3. Encapsulation Strategies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs. World Population Prospects 2019: Highlights. United Nations Dep. Public Inf. 2019. (ST/ESA/SER.A/423). [Google Scholar]
- FAO. FAO Statistical Yearbook 2021-World Food and Agriculture; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment; European Commission: Luxembourg, 2018. [Google Scholar]
- Saini, A.; Panesar, P.S.; Bera, M.B. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess. 2019, 6, 26. [Google Scholar] [CrossRef]
- Jiménez-Moreno, N.; Esparza, I.; Bimbela, F.; Gandía, L.M.; Ancín-Azpilicueta, C. Valorization of selected fruit and vegetable wastes as bioactive compounds: Opportunities and challenges. Crit. Rev. Environ. Sci. Technol. 2019, 50, 2061–2108. [Google Scholar] [CrossRef]
- Pereira, J.A.M.; Berenguer, C.V.; Andrade, C.F.P.; Câmara, J.S. Unveiling the Bioactive Potential of Fresh Fruit and Vegetable Waste in Human Health from a Consumer Perspective. Appl. Sci. 2022, 12, 2747. [Google Scholar] [CrossRef]
- Genkinger, J.M.; Platz, E.A.; Hoffman, S.C.; Comstock, G.W.; Helzlsouer, K.J. Fruit, vegetable, and antioxidant intake and all-cause, cancer, and cardiovascular disease mortality in a community-dwelling population in Washington County, Maryland. Am. J. Epidemiol. 2004, 160, 1223–1233. [Google Scholar] [CrossRef]
- Freedman, N.D.; Park, Y.; Subar, A.F.; Hollenbeck, A.R.; Leitzmann, M.F.; Schatzkin, A.; Abnet, C.C. Fruit and vegetable intake and head and neck cancer risk in a large United States prospective cohort study. Int. J. Cancer 2008, 122, 2330–2336. [Google Scholar] [CrossRef]
- More, P.R.; Jambrak, A.R.; Arya, S.S. Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends Food Sci. Technol. 2022, 128, 296–315. [Google Scholar] [CrossRef]
- de Andrade Lima, M.; Charalampopoulos, D.; Chatzifragkou, A. Optimisation and modelling of supercritical CO2 extraction process of carotenoids from carrot peels. J. Supercrit. Fluids 2018, 133, 94–102. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.d.P.; Gutiérrez, L.F.; Vargas, S.M.; Martinez-Correa, H.A.; Parada-Alfonso, F.; Narváez-Cuenca, C.E. Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. J. Supercrit. Fluids 2019, 152, 104574. [Google Scholar] [CrossRef]
- Santos-Zea, L.; Gutierrez-Uribe, J.A.; Benedito, J. Effect of ultrasound intensification on the supercritical fluid extraction of phytochemicals from Agave salmiana bagasse. J. Supercrit. Fluids 2019, 144, 98–107. [Google Scholar] [CrossRef]
- Fornereto Soldan, A.C.; Arvelos, S.; Watanabe, É.O.; Hori, C.E. Supercritical fluid extraction of oleoresin from Capsicum annuum industrial waste. J. Clean. Prod. 2021, 297, 126593. [Google Scholar] [CrossRef]
- Torres-Valenzuela, L.S.; Ballesteros-Gómez, A.; Rubio, S. Green Solvents for the Extraction of High Added-Value Compounds from Agri-food Waste. Food Eng. Rev. 2019, 12, 83–100. [Google Scholar] [CrossRef]
- Manna, L.; Bugnone, C.A.; Banchero, M. Valorization of hazelnut, coffee and grape wastes through supercritical fluid extraction of triglycerides and polyphenols. J. Supercrit. Fluids 2015, 104, 204–211. [Google Scholar] [CrossRef]
- Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical water extraction of bioactive compounds from waste onion skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- Natolino, A.; Da Porto, C. Supercritical carbon dioxide extraction of pomegranate (Punica granatum L.) seed oil: Kinetic modelling and solubility evaluation. J. Supercrit. Fluids 2019, 151, 30–39. [Google Scholar] [CrossRef]
- Restrepo-Serna, D.L.; Solarte-Toro, J.C.; Cardona-Alzate, C.A. A Biorefinery Approach for an Integral Valorisation of Avocado Peel and Seeds Through Supercritical Fluids. Waste Biomass Valorization 2022, 13, 3973–3988. [Google Scholar] [CrossRef]
- Coelho, J.P.; Filipe, R.M.; Robalo, M.P.; Stateva, R.P. Recovering value from organic waste materials: Supercritical fluid extraction of oil from industrial grape seeds. J. Supercrit. Fluids 2018, 141, 68–77. [Google Scholar] [CrossRef]
- Šafranko, S.; Ćorković, I.; Jerković, I.; Jakovljević, M.; Aladić, K.; Šubarić, D.; Jokić, S. Green Extraction Techniques for Obtaining Bioactive Compounds from Mandarin Peel (Citrus unshiu var. Kuno): Phytochemical Analysis and Process Optimization. Foods 2021, 10, 1043. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, M.S.; Gürü, M. Extraction of phytosterols from melon (Cucumis melo) seeds by supercritical CO2 as a clean technology. Green Process. Synth. 2019, 8, 677–682. [Google Scholar] [CrossRef]
- Hwang, H.J.; Kim, H.J.; Ko, M.J.; Chung, M.S. Recovery of hesperidin and narirutin from waste Citrus unshiu peel using subcritical water extraction aided by pulsed electric field treatment. Food Sci. Biotechnol. 2021, 30, 217–226. [Google Scholar] [CrossRef]
- Pedras, B.M.; Regalin, G.; Sá-Nogueira, I.; Simões, P.; Paiva, A.; Barreiros, S. Fractionation of red wine grape pomace by subcritical water extraction/hydrolysis. J. Supercrit. Fluids 2020, 160, 104793. [Google Scholar] [CrossRef]
- Guthrie, F.; Wang, Y.; Neeve, N.; Quek, S.Y.; Mohammadi, K.; Baroutian, S. Recovery of phenolic antioxidants from green kiwifruit peel using subcritical water extraction. Food Bioprod. Process. 2020, 122, 136–144. [Google Scholar] [CrossRef]
- Benito-román, Ó.; Blanco, B.; Sanz, M.T.; Beltrán, S. Subcritical Water Extraction of Phenolic Compounds from Onion Skin Wastes (Allium cepa cv. Horcal): Effect of Temperature and Solvent Properties. Antioxid 2020, 9, 1233. [Google Scholar] [CrossRef]
- Giombelli, C.; Iwassa, I.J.; da Silva, C.; Bolanho Barros, B.C. Valorization of peach palm by-product through subcritical water extraction of soluble sugars and phenolic compounds. J. Supercrit. Fluids 2020, 165, 104985. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; Matias, A.A.; Paiva, A. Recovery of antioxidant protein hydrolysates from shellfish waste streams using subcritical water extraction. Food Bioprod. Process. 2021, 130, 154–163. [Google Scholar] [CrossRef]
- Dorosh, O.; Moreira, M.M.; Pinto, D.; Peixoto, A.F.; Freire, C.; Costa, P.; Rodrigues, F.; Delerue-Matos, C. Evaluation of the Extraction Temperature Influence on Polyphenolic Profiles of Vine-Canes (Vitis vinifera) Subcritical Water Extracts. Foods 2020, 9, 872. [Google Scholar] [CrossRef]
- Gabaston, J.; Leborgne, C.; Valls, J.; Renouf, E.; Richard, T.; Waffo-Teguo, P.; Mérillon, J.M. Subcritical water extraction of stilbenes from grapevine by-products: A new green chemistry approach. Ind. Crops Prod. 2018, 126, 272–279. [Google Scholar] [CrossRef]
- Pollini, L.; Cossignani, L.; Juan, C.; Mañes, J. Extraction of Phenolic Compounds from Fresh Apple Pomace by Different Non-Conventional Techniques. Molecules 2021, 26, 4272. [Google Scholar] [CrossRef]
- Hendrawan, Y.; Larasati, R.; Wibisono, Y.; Umam, C.; Sutan, S.M.; Choviya Hawa, L. Extraction of Phenol and Antioxidant Compounds from Kepok Banana Skin with PEF Pre-Treatment. IOP Conf. Ser. Earth Environ. Sci. 2019, 305, 012065. [Google Scholar] [CrossRef]
- Lal, A.M.N.; Prince, M.V.; Kothakota, A.; Pandiselvam, R.; Thirumdas, R.; Mahanti, N.K.; Sreeja, R. Pulsed electric field combined with microwave-assisted extraction of pectin polysaccharide from jackfruit waste. Innov. Food Sci. Emerg. Technol. 2021, 74, 102844. [Google Scholar] [CrossRef]
- Peiró, S.; Luengo, E.; Segovia, F.; Raso, J.; Almajano, M.P. Improving Polyphenol Extraction from Lemon Residues by Pulsed Electric Fields. Waste Biomass Valorization 2019, 10, 889–897. [Google Scholar] [CrossRef]
- Frontuto, D.; Carullo, D.; Harrison, S.M.; Brunton, N.P.; Ferrari, G.; Lyng, J.G.; Pataro, G. Optimization of Pulsed Electric Fields-Assisted Extraction of Polyphenols from Potato Peels Using Response Surface Methodology. Food Bioprocess Technol. 2019, 12, 1708–1720. [Google Scholar] [CrossRef]
- Rajha, H.N.; Abi-Khattar, A.M.; El Kantar, S.; Boussetta, N.; Lebovka, N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Comparison of aqueous extraction efficiency and biological activities of polyphenols from pomegranate peels assisted by infrared, ultrasound, pulsed electric fields and high-voltage electrical discharges. Innov. Food Sci. Emerg. Technol. 2019, 58, 102212. [Google Scholar] [CrossRef]
- Niu, D.; Ren, E.F.; Li, J.; Zeng, X.A.; Li, S.L. Effects of pulsed electric field-assisted treatment on the extraction, antioxidant activity and structure of naringin. Sep. Purif. Technol. 2021, 265, 118480. [Google Scholar] [CrossRef]
- Andreou, V.; Psarianos, M.; Dimopoulos, G.; Tsimogiannis, D.; Taoukis, P. Effect of pulsed electric fields and high pressure on improved recovery of high-added-value compounds from olive pomace. J. Food Sci. 2020, 85, 1500–1512. [Google Scholar] [CrossRef] [PubMed]
- Pataro, G.; Carullo, D.; Falcone, M.; Ferrari, G. Recovery of lycopene from industrially derived tomato processing by-products by pulsed electric fields-assisted extraction. Innov. Food Sci. Emerg. Technol. 2020, 63, 102369. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Kaldmäe, H.; Rätsep, R.; Bleive, U.; Aluvee, A.; Rinken, T. Optimization of Ultrasound-Assisted Extraction of Phloretin and Other Phenolic Compounds from Apple Tree Leaves (Malus domestica Borkh.) and Comparison of Different Cultivars from Estonia. Antioxidants 2021, 10, 189. [Google Scholar] [CrossRef] [PubMed]
- Pollini, L.; Blasi, F.; Ianni, F.; Grispoldi, L.; Moretti, S.; Di Veroli, A.; Cossignani, L.; Cenci-goga, B.T. Ultrasound-Assisted Extraction and Characterization of Polyphenols from Apple Pomace, Functional Ingredients for Beef Burger Fortification. Molecules 2022, 27, 1933. [Google Scholar] [CrossRef]
- Nutter, J.; Fernandez, M.V.; Jagus, R.J.; Agüero, M.V. Development of an aqueous ultrasound-assisted extraction process of bioactive compounds from beet leaves: A proposal for reducing losses and increasing biomass utilization. J. Sci. Food Agric. 2021, 101, 1989–1997. [Google Scholar] [CrossRef]
- Martín-García, B.; Pasini, F.; Verardo, V.; Díaz-De-cerio, E.; Tylewicz, U.; Gómez-Caravaca, A.M.; Caboni, M.F. Optimization of Sonotrode Ultrasonic-Assisted Extraction of Proanthocyanidins from Brewers’ Spent Grains. Antioxidants 2019, 8, 282. [Google Scholar] [CrossRef]
- Fernandes, F.A.; Heleno, S.A.; Pinela, J.; Carocho, M.; Prieto, M.A.; Ferreira, I.C.F.R.; Barros, L. Recovery of Citric Acid from Citrus Peels: Ultrasound-Assisted Extraction Optimized by Response Surface Methodology. Chemosensors 2022, 10, 257. [Google Scholar] [CrossRef]
- Da Rocha, C.B.; Noreña, C.P.Z. Microwave-Assisted Extraction and Ultrasound-Assisted Extraction of Bioactive Compounds from Grape Pomace. Int. J. Food Eng. 2020, 16, 20190191. [Google Scholar] [CrossRef]
- Giordano, M.; Pinela, J.; Dias, M.I.; Calhelha, R.C.; Stojković, D.; Soković, M.; Tavares, D.; Cánepa, A.L.; Ferreira, I.C.F.R.; Caleja, C.; et al. Ultrasound-Assisted Extraction of Flavonoids from Kiwi Peel: Process Optimization and Bioactivity Assessment. Appl. Sci. 2021, 11, 6416. [Google Scholar] [CrossRef]
- Jimenez, A.; Feng, C.-H. Optimizing Procedures of Ultrasound-Assisted Extraction of Waste Orange Peels by Response Surface Methodology. Molecules 2022, 27, 2268. [Google Scholar] [CrossRef]
- Li, J.; Pettinato, M.; Casazza, A.A.; Perego, P. A Comprehensive Optimization of Ultrasound-Assisted Extraction for Lycopene Recovery from Tomato Waste and Encapsulation by Spray Drying. Processes 2022, 10, 308. [Google Scholar] [CrossRef]
- Elik, A.; Yanik, D.K.; Gogus, F. Microwave-assisted extraction of carotenoids from carrot juice processing waste using flaxseed oil as a solvent. Lwt-Food Sci. Technol. 2020, 123, 109100. [Google Scholar] [CrossRef]
- Tran, T.M.K.; Akanbi, T.; Kirkman, T.; Nguyen, M.H.; Vuong, Q.V. Maximising Recovery of Bioactive Compounds from Coffee Pulp Waste Using Microwave-assisted Extraction. Eur. J. Eng. Technol. Res. 2022, 7, 1–6. [Google Scholar] [CrossRef]
- Kurtulbaş, E.; Sevgen, S.; Samli, R.; Şahin, S. Microwave-assisted extraction of bioactive components from peach waste: Describing the bioactivity degradation by polynomial regression. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Ibrahim, N.H.; Mahmud, M.S.; Nurdin, S. Microwave-assisted extraction of β-sitosterol from cocoa shell waste. IOP Conf. Ser. Mater. Sci. Eng. 2020, 991, 012106. [Google Scholar] [CrossRef]
- Doulabi, M.; Golmakani, M.T.; Ansari, S. Evaluation and optimization of microwave-assisted extraction of bioactive compounds from eggplant peel by-product. J. Food Process. Preserv. 2020, 44, e14853. [Google Scholar] [CrossRef]
- Martínez-Abad, A.; Ramos, M.; Hamzaoui, M.; Kohnen, S.; Jiménez, A.; Garrigós, M.C. Optimisation of Sequential Microwave-Assisted Extraction of Essential Oil and Pigment from Lemon Peels Waste. Foods 2020, 9, 1493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bian, S.; Hu, J.; Liu, G.; Peng, S.; Chen, H.; Jiang, Z.; Wang, T.; Ye, Q.; Zhu, H. Natural Deep Eutectic Solvent-Based Microwave-Assisted Extraction of Total Flavonoid Compounds from Spent Sweet Potato (Ipomoea batatas L.) Leaves: Optimization and Antioxidant and Bacteriostatic Activity. Molecules 2022, 27, 5985. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez García, S.L.; Raghavan, V. Microwave-Assisted Extraction of Phenolic Compounds from Broccoli (Brassica oleracea) Stems, Leaves, and Florets: Optimization, Characterization, and Comparison with Maceration Extraction. Recent Prog. Nutr. 2022, 2, 11. [Google Scholar] [CrossRef]
- Shang, X.-c.; Zhang, Y.-q.; Zheng, Y.-f.; Li, Y. Temperature-responsive deep eutectic solvents as eco-friendly and recyclable media for microwave extraction of flavonoid compounds from waste onion (Allium cepa L.) skins. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Lombardelli, C.; Liburdi, K.; Benucci, I.; Esti, M. Tailored and synergistic enzyme-assisted extraction of carotenoid-containing chromoplasts from tomatoes. Food Bioprod. Process. 2020, 121, 43–53. [Google Scholar] [CrossRef]
- Xu, K.; Wu, C.; Kou, X.; Fan, G.; Li, T.; Sun, W.; Suo, A. Enzyme-assisted extraction of apricot polysaccharides: Process optimization, structural characterization, rheological properties and hypolipidemic activity. J. Food Meas. Charact. 2022, 16, 2699–2709. [Google Scholar] [CrossRef]
- Catalkaya, G.; Kahveci, D. Optimization of enzyme assisted extraction of lycopene from industrial tomato waste. Sep. Purif. Technol. 2019, 219, 55–63. [Google Scholar] [CrossRef]
- Lombardelli, C.; Benucci, I.; Mazzocchi, C.; Esti, M. A Novel Process for the Recovery of Betalains from Unsold Red Beets by Low-Temperature Enzyme-Assisted Extraction. Foods 2021, 10, 236. [Google Scholar] [CrossRef]
- Dominguez-Rodriguez, G.; Marina, M.L.; Plaza, M. Enzyme-assisted extraction of bioactive non-extractable polyphenols from sweet cherry (Prunus avium L.) pomace. Food Chem. 2021, 339, 128086. [Google Scholar] [CrossRef]
- Akyuz, A.; Ersus, S. Optimization of enzyme assisted extraction of protein from the sugar beet (Beta vulgaris L.) leaves for alternative plant protein concentrate production. Food Chem. 2021, 335, 127673. [Google Scholar] [CrossRef]
- Saad, N.; Louvet, F.; Tarrade, S.; Meudec, E.; Grenier, K.; Landolt, C.; Ouk, T.S.; Bressollier, P. Enzyme-Assisted Extraction of Bioactive Compounds from Raspberry (Rubus idaeus L.) Pomace. J. Food Sci. 2019, 84, 1371–1381. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Merma, P.R.; Cornejo-Figueroa, M.H.; Crisosto-Fuster, A.D.R.; Strieder, M.M.; Chañi-Paucar, L.O.; Náthia-Neves, G.; Rodríguez-Papuico, H.; Rostagno, M.A.; A. Meireles, M.A.; Alcázar-Alay, S.C. Phenolic Compounds Recovery from Pomegranate (Punica granatum L.) By-Products of Pressurized Liquid Extraction. Foods 2022, 11, 1070. [Google Scholar] [CrossRef] [PubMed]
- Battistella Lasta, H.F.; Lentz, L.; Gonçalves Rodrigues, L.G.; Mezzomo, N.; Vitali, L.; Salvador Ferreira, S.R. Pressurized liquid extraction applied for the recovery of phenolic compounds from beetroot waste. Biocatal. Agric. Biotechnol. 2019, 21, 101353. [Google Scholar] [CrossRef]
- Allcca-Alca, E.E.; León-Calvo, N.C.; Luque-Vilca, O.M.; Martínez-Cifuentes, M.; Pérez-Correa, J.R.; Mariotti-Celis, M.S.; Huamán-Castilla, N.L. Hot Pressurized Liquid Extraction of Polyphenols from the Skin and Seeds of Vitis vinifera L. cv. Negra Criolla Pomace a Peruvian Native Pisco Industry Waste. Agronomy 2021, 11, 866. [Google Scholar] [CrossRef]
- Cea Pavez, I.; Lozano-Sánchez, J.; Borrás-Linares, I.; Nuñez, H.; Robert, P.; Segura-Carretero, A. Obtaining an Extract Rich in Phenolic Compounds from Olive Pomace by Pressurized Liquid Extraction. Molecules 2019, 24, 3108. [Google Scholar] [CrossRef] [Green Version]
- García, P.; Fredes, C.; Cea, I.; Lozano-Sánchez, J.; Leyva-Jiménez, F.J.; Robert, P.; Vergara, C.; Jimenez, P. Recovery of Bioactive Compounds from Pomegranate (Punica granatum L.) Peel Using Pressurized Liquid Extraction. Foods 2021, 10, 203. [Google Scholar] [CrossRef]
- Guzmán-Lorite, M.; Marina, M.L.; García, M.C. Pressurized liquids vs. high intensity focused ultrasounds for the extraction of proteins from a pomegranate seed waste. Innov. Food Sci. Emerg. Technol. 2022, 77, 102958. [Google Scholar] [CrossRef]
- Paini, J.; Benedetti, V.; Ail, S.S.; Castaldi, M.J.; Baratieri, M.; Patuzzi, F. Valorization of Wastes from the Food Production Industry: A Review Towards an Integrated Agri-Food Processing Biorefinery. Waste Biomass Valoriz. 2021, 13, 31–50. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Munir, M.A.; Naderipour, A.; Qureshi, M.I.; Bekhit, A.E.; Liu, Z.W.; Aadil, R.M. Pulsed electric field: A potential alternative towards a sustainable food processing. Trends Food Sci. Technol. 2021, 111, 43–54. [Google Scholar] [CrossRef]
- Carpentieri, S.; Soltanipour, F.; Ferrari, G.; Pataro, G.; Donsì, F. Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food By-Products as Promising Ingredients for the Food Industry. Antioxid 2021, 10, 1417. [Google Scholar] [CrossRef]
- Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A.G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M.A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. Int. J. Env. Res. Public Health 2021, 18, 9153. [Google Scholar] [CrossRef] [PubMed]
- Ranjha, M.M.A.N.; Irfan, S.; Lorenzo, J.M.; Shafique, B.; Kanwal, R.; Pateiro, M.; Arshad, R.N.; Wang, L.; Nayik, G.A.; Roobab, U.; et al. Sonication, a Potential Technique for Extraction of Phytoconstituents: A Systematic Review. Processes 2021, 9, 1406. [Google Scholar] [CrossRef]
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front. Nutr. 2020, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Zhang, Z.; Sun, D.-W.; Sivagnanam, S.P.; Tiwari, B.K. Combination of emerging technologies for the extraction of bioactive compounds. Crit. Rev. Food Sci. Nutr. 2020, 60, 1826–1841. [Google Scholar] [CrossRef] [PubMed]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Yin, C.; Fan, X.; Fan, Z.; Shi, D.; Gao, H. Optimization of enzymes-microwave-ultrasound assisted extraction of Lentinus edodes polysaccharides and determination of its antioxidant activity. Int. J. Biol. Macromol. 2018, 111, 446–454. [Google Scholar] [CrossRef]
- Encalada, A.M.I.; Perez, C.D.; Flores, S.K.; Rossetti, L.; Fissore, E.N.; Rojas, A.M. Antioxidant pectin enriched fractions obtained from discarded carrots (Daucus carota L.) by ultrasound-enzyme assisted extraction. Food Chem. 2019, 289, 453–460. [Google Scholar] [CrossRef]
- Luo, X.H.; Bai, R.L.; Zhen, D.S.; Yang, Z.B.; Huang, D.N.; Mao, H.L.; Li, X.F.; Zou, H.T.; Xiang, Y.; Liu, K.L.; et al. Response surface optimization of the enzyme-based ultrasound-assisted extraction of acorn tannins and their corrosion inhibition properties. Ind. Crops Prod. 2019, 129, 405–413. [Google Scholar] [CrossRef]
- Görgüç, A.; Özer, P.; Yılmaz, F.M. Microwave-assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: Comparative optimization study and identification of metabolomics using LC/Q-TOF/MS. J. Food Process. Preserv. 2019, 44, e14304. [Google Scholar] [CrossRef]
- Sun, H.; Li, C.; Ni, Y.; Yao, L.; Jiang, H.; Ren, X.; Fu, Y.; Zhao, C. Ultrasonic/microwave-assisted extraction of polysaccharides from Camptotheca acuminata fruits and its antitumor activity. Carbohydr. Polym. 2019, 206, 557–564. [Google Scholar] [CrossRef]
- Yang, J.S.; Mu, T.H.; Ma, M.M. Optimization of ultrasound-microwave assisted acid extraction of pectin from potato pulp by response surface methodology and its characterization. Food Chem. 2019, 289, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Dobroslavić, E.; Elez Garofulić, I.; Šeparović, J.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Pressurized Liquid Extraction as a Novel Technique for the Isolation of Laurus nobilis L. Leaf Polyphenols. Molecules 2022, 27, 5099. [Google Scholar] [CrossRef] [PubMed]
- Karmee, S.K.; Lin, C.S.K. Valorisation of food waste to biofuel: Current trends and technological challenges. Sustain. Chem. Process. 2014, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Tsegaye, B.; Jaiswal, S.; Jaiswal, A. Food Waste Biorefinery: Pathway towards Circular Bioeconomy. Foods 2021, 10, 1174. [Google Scholar] [CrossRef]
- Truzzi, E.; Chaouch, M.A.; Rossi, G.; Tagliazucchi, L.; Bertelli, D.; Benvenuti, S. Characterization and Valorization of the Agricultural Waste Obtained from Lavandula Steam Distillation for Its Reuse in the Food and Pharmaceutical Fields. Molecules 2022, 27, 1613. [Google Scholar] [CrossRef]
- Zaccardelli, M.; Roscigno, G.; Pane, C.; Celano, G.; Di Matteo, M.; Mainente, M.; Vuotto, A.; Mencherini, T.; Esposito, T.; Vitti, A.; et al. Essential oils and quality composts sourced by recycling vegetable residues from the aromatic plant supply chain. Ind. Crops Prod. 2021, 162, 113255. [Google Scholar] [CrossRef]
- Gong, C.; Singh, A.; Singh, P.; Singh, A. Anaerobic Digestion of Agri-Food Wastes for Generating Biofuels. Indian J. Microbiol. 2021, 61, 427–440. [Google Scholar] [CrossRef]
- Isah, S.; Ozbay, G. Valorization of Food Loss and Wastes: Feedstocks for Biofuels and Valuable Chemicals. Front. Sustain. Food Syst. 2020, 4, 82. [Google Scholar] [CrossRef]
- Capanoglu, E.; Nemli, E.; Tomas-Barberan, F. Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. J. Agric. Food. Chem. 2022, 70, 6787–6804. [Google Scholar] [CrossRef]
- Hafid, H.S.; Omar, F.N.; Abdul Rahman, N.A.; Wakisaka, M. Innovative conversion of food waste into biofuel in integrated waste management system. Crit. Rev. Environ. Sci. Technol. 2021, 52, 3453–3492. [Google Scholar] [CrossRef]
- Sánchez-Borrego, F.J.; Álvarez-Mateos, P.; García-Martín, J.F. Biodiesel and Other Value-Added Products from Bio-Oil Obtained from Agrifood Waste. Processes 2021, 9, 797. [Google Scholar] [CrossRef]
- Kazemi Shariat Panahi, H.; Dehhaghi, M.; Guillemin, G.J.; Gupta, V.K.; Lam, S.S.; Aghbashlo, M.; Tabatabaei, M. Bioethanol production from food wastes rich in carbohydrates. Curr. Opin. Food Sci. 2022, 43, 71–81. [Google Scholar] [CrossRef]
- Arapoglou, D.; Varzakas, T.; Vlyssides, A.; Israilides, C. Ethanol production from potato peel waste (PPW). Waste Manag. 2010, 30, 1898–1902. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, E.H.; Mazzei, R.; Bazzarelli, F.; Piacentini, E.; Giannakopoulos, V.; Roberts, M.R.; Giorno, L. Agri-Food Industry Waste as Resource of Chemicals: The Role of Membrane Technology in Their Sustainable Recycling. Sustainability 2022, 14, 1483. [Google Scholar] [CrossRef]
- Lopes, F.C.; Ligabue-Braun, R. Agro-Industrial Residues: Eco-Friendly and Inexpensive Substrates for Microbial Pigments Production. Front. Sustain. Food Syst. 2021, 5, 589414. [Google Scholar] [CrossRef]
- Benucci, I.; Lombardelli, C.; Mazzocchi, C.; Esti, M. Natural colorants from vegetable food waste: Recovery, regulatory aspects, and stability-A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2715–2737. [Google Scholar] [CrossRef]
- Marathe, S.J.; Jadhav, S.B.; Bankar, S.B.; Dubey, K.K.; Singhal, R.S. Improvements in the extraction of bioactive compounds by enzymes. Curr. Opin. Food Sci. 2019, 25, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Hadj Saadoun, J.; Bertani, G.; Levante, A.; Vezzosi, F.; Ricci, A.; Bernini, V.; Lazzi, C. Fermentation of Agri-Food Waste: A Promising Route for the Production of Aroma Compounds. Foods 2021, 10, 707. [Google Scholar] [CrossRef]
- Tiwari, S.; Upadhyay, N.; Singh, A.K.; Meena, G.S.; Arora, S. Organic solvent-free extraction of carotenoids from carrot bio-waste and its physico-chemical properties. J. Food Sci. Technol. 2019, 56, 4678–4687. [Google Scholar] [CrossRef]
- Goula, A.M.; Ververi, M.; Adamopoulou, A.; Kaderides, K. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrason. Sonochem. 2017, 34, 821–830. [Google Scholar] [CrossRef]
- Fernando, G.S.N.; Wood, K.; Papaioannou, E.H.; Marshall, L.J.; Sergeeva, N.N.; Boesch, C. Application of an Ultrasound-Assisted Extraction Method to Recover Betalains and Polyphenols from Red Beetroot Waste. Acs Sustain. Chem. Eng. 2021, 9, 8736–8747. [Google Scholar] [CrossRef]
- Kehili, M.; Kammlott, M.; Choura, S.; Zammel, A.; Zetzl, C.; Smirnova, I.; Allouche, N.; Sayadi, S. Supercritical CO2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato ( Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food Bioprod. Process. 2017, 102, 340–349. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Zha, X.; Mei, Y.; Xia, J.; Jiao, Z. Supercritical carbon dioxide extraction of β-carotene and α-tocopherol from pumpkin: A Box–Behnken design for extraction variables. Anal. Methods 2017, 9, 294–303. [Google Scholar] [CrossRef]
- Ghada, B.; Pereira, E.; Pinela, J.; Prieto, M.A.; Pereira, C.; Calhelha, R.C.; Stojković, D.; Sokóvić, M.; Zaghdoudi, K.; Barros, L.; et al. Recovery of Anthocyanins from Passion Fruit Epicarp for Food Colorants: Extraction Process Optimization and Evaluation of Bioactive Properties. Molecules 2020, 25, 3203. [Google Scholar] [CrossRef]
- Mitrea, L.; Călinoiu, L.-F.; Martău, G.-A.; Szabo, K.; Teleky, B.-E.; Mureșan, V.; Rusu, A.-V.; Socol, C.-T.; Vodnar, D.-C. Poly(vinyl alcohol)-Based Biofilms Plasticized with Polyols and Colored with Pigments Extracted from Tomato By-Products. Polymers 2020, 12, 532. [Google Scholar] [CrossRef] [Green Version]
- Mourtzinos, I.; Prodromidis, P.; Grigorakis, S.; Makris, D.P.; Biliaderis, C.G.; Moschakis, T. Natural food colourants derived from onion wastes: Application in a yoghurt product. Electrophoresis 2018, 39, 1975–1983. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, S.; Ghoshal, G.; Ramamurthy, P.C.; Parihar, P.; Singh, J.; Singh, A. Valorization of Agri-Food Industry Waste for the Production of Microbial Pigments: An Eco-Friendly Approach. In Advances in Agricultural and Industrial Microbiology: Volume 1: Microbial Diversity and Application in Agroindustry; Nayak, S.K., Baliyarsingh, B., Mannazzu, I., Singh, A., Mishra, B.B., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 137–167. [Google Scholar]
- Kantifedaki, A.; Kachrimanidou, V.; Mallouchos, A.; Papanikolaou, S.; Koutinas, A.A. Orange processing waste valorisation for the production of bio-based pigments using the fungal strains Monascus purpureus and Penicillium purpurogenum. J. Clean. Prod. 2018, 185, 882–890. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, S.; Mandal, T.; Dasgupta Mandal, D. Production kinetics of β-carotene from Planococcus sp. TRC1 with concomitant bioconversion of industrial solid waste into crystalline cellulose rich biomass. Process Biochem. 2020, 92, 202–213. [Google Scholar] [CrossRef]
- Teran Hilares, R.; de Souza, R.A.; Marcelino, P.F.; da Silva, S.S.; Dragone, G.; Mussatto, S.I.; Santos, J.C. Sugarcane bagasse hydrolysate as a potential feedstock for red pigment production by Monascus ruber. Food Chem. 2018, 245, 786–791. [Google Scholar] [CrossRef]
- da Silva, A.C.; Jorge, N. Bioactive compounds of oils extracted from fruits seeds obtained from agroindustrial waste. Eur. J. Lipid Sci. Technol. 2016, 119, 1600024. [Google Scholar] [CrossRef]
- Sandhu, H.K.; Sinha, P.; Emanuel, N.; Kumar, N.; Sami, R.; Khojah, E.; Al-Mushhin, A.A.M. Effect of Ultrasound-Assisted Pretreatment on Extraction Efficiency of Essential Oil and Bioactive Compounds from Citrus Waste By-Products. Separations 2021, 8, 244. [Google Scholar] [CrossRef]
- Hilali, S.; Fabiano-Tixier, A.S.; Ruiz, K.; Hejjaj, A.; Nouh, F.A.; Idlimam, A.; Bily, A.; Mandi, L.; Chemat, F. Green Extraction of Essential Oils, Polyphenols, and Pectins from Orange Peel Employing Solar Energy: Toward a Zero-Waste Biorefinery. Acs Sustain. Chem. Eng. 2019, 7, 11815. [Google Scholar] [CrossRef]
- Boluda-Aguilar, M.; Lopez-Gomez, A. Production of bioethanol by fermentation of lemon (Citrus limon L.) peel wastes pretreated with steam explosion. Ind. Crops Prod. 2013, 41, 188–197. [Google Scholar] [CrossRef]
- Chi, P.T.L.; Hung, P.V.; Thanh, H.L.; Phi, N.T.L. Valorization of Citrus Leaves: Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oils. Waste Biomass Valoriz. 2020, 11, 4849–4857. [Google Scholar] [CrossRef]
- Kovalcik, A.; Pernicova, I.; Obruca, S.; Szotkowski, M.; Enev, V.; Kalina, M.; Marova, I. Grape winery waste as a promising feedstock for the production of polyhydroxyalkanoates and other value-added products. Food Bioprod. Process. 2020, 124, 1–10. [Google Scholar] [CrossRef]
- Osorio, L.L.; Flórez-López, E.; Grande-Tovar, C.D. The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef]
- de la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Ed.; Chapter 12; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 253–271. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.P.; Torres, C.; Oliveira, A.M.P.; Pereira, J.E.; Amaral, J.S.; Poeta, P. Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 2018, 92, 516–522. [Google Scholar] [CrossRef]
- Mourtzinos, I.; Goula, A. Polyphenols in Agricultural Byproducts and Food Waste, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 23–44. [Google Scholar] [CrossRef]
- Barrales, F.M.; Silveira, P.; Barbosa, P.d.P.M.; Ruviaro, A.R.; Paulino, B.N.; Pastore, G.M.; Macedo, G.A.; Martinez, J. Recovery of phenolic compounds from citrus by-products using pressurized liquids—An application to orange peel. Food Bioprod. Process. 2018, 112, 9–21. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S.; Kadiroğlu, P.; Kola, O.; Kesen, S.; Uçar, B.; Çetiner, B. Bioactive compounds and antioxidant potential in tomato pastes as affected by hot and cold break process. Food Chem. 2017, 220, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Farcas, A.; Dretcanu, G.; Pop, T.D.; Enaru, B.; Socaci, S.; Diaconeasa, Z. Cereal Processing By-Products as Rich Sources of Phenolic Compounds and Their Potential Bioactivities. Nutrients 2021, 13, 3934. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabi, N.A.; Ponmurugan, K.; Maran Jeganathan, P. Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrason. Sonochem. 2017, 34, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C.; Perestrelo, R.; Câmara, J.S. Bioactive Compounds and Antioxidant Activity from Spent Coffee Grounds as a Powerful Approach for Its Valorization. Molecules 2022, 27, 7504. [Google Scholar] [CrossRef]
- Daliri, E.B.M.; Oh, D.H.; Lee, B.H. Bioactive peptides. Foods 2017, 6, 32. [Google Scholar] [CrossRef]
- Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef]
- Gorguc, A.; Gencdag, E.; Yilmaz, F.M. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments-A review. Food Res. Int. 2020, 136, 109504. [Google Scholar] [CrossRef]
- Yu, M.; He, S.; Tang, M.; Zhang, Z.; Zhu, Y.; Sun, H. Antioxidant activity and sensory characteristics of Maillard reaction products derived from different peptide fractions of soybean meal hydrolysate. Food Chem. 2018, 243, 249–257. [Google Scholar] [CrossRef]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Liu, Y.; Qi, G.; Brand, D.; Zheng, S.G. Role of Vitamin A in the Immune System. J. Clin. Med. 2018, 7, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cante, R.C.; Gallo, M.; Varriale, L.; Garella, I.; Nigro, R. Recovery of Carotenoids from Tomato Pomace Using a Hydrofluorocarbon Solvent in Sub-Critical Conditions. Appl. Sci. 2022, 12, 2822. [Google Scholar] [CrossRef]
- Torres-León, C.; Ramírez-Guzman, N.; Londoño-Hernandez, L.; Martinez-Medina, G.A.; Díaz-Herrera, R.; Navarro-Macias, V.; Alvarez-Pérez, O.B.; Picazo, B.; Villarreal-Vázquez, M.; Ascacio-Valdes, J.; et al. Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Front. Sustain. Food Syst. 2018, 2, 52. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Jõudu, I.; Bhat, R.; Beatriz, M.; Oliveira, P.; Alves, R.C. Bioactives from Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, P.; Subramanian, J.; Singh, A. Green extraction of bioactive components from carrot industry waste and evaluation of spent residue as an energy source. Sci. Rep. 2022, 12, 16607. [Google Scholar] [CrossRef]
- Ordóñez-Santos, L.E.; Pinzón-Zarate, L.X.; González-Salcedo, L.O. Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm fruit (Bactris gasipaes) by-products with sunflower oil using response surface methodology. Ultrason. Sonochem. 2015, 27, 560–566. [Google Scholar] [CrossRef]
- Turner, N.D.; Lupton, J.R. Dietary fiber. Adv. Nutr. 2011, 2, 151–152. [Google Scholar] [CrossRef] [Green Version]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef]
- Soliman, G.A. Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients 2019, 11, 1155. [Google Scholar] [CrossRef] [Green Version]
- Guan, Z.-W.; Yu, E.-Z.; Feng, Q. Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules 2021, 26, 6802. [Google Scholar] [CrossRef]
- Dahl, W.J.; Stewart, M.L. Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber. J. Acad Nutr. Diet 2015, 115, 1861–1870. [Google Scholar] [CrossRef] [PubMed]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.M.; Tou, J.C. A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef] [PubMed]
- Pop, C.; Suharoschi, R.; Pop, O.L. Dietary Fiber and Prebiotic Compounds in Fruits and Vegetables Food Waste. Sustainability 2021, 13, 7219. [Google Scholar] [CrossRef]
- Serna-Cock, L.; García-Gonzales, E.; Torres-León, C. Agro-industrial potential of the mango peel based on its nutritional and functional properties. Food Rev. Int. 2016, 32, 364–376. [Google Scholar] [CrossRef]
- Martinez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Perez-Alvarez, J.A.; Viuda-Martos, M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem. 2012, 135, 1520–1526. [Google Scholar] [CrossRef]
- Happi Emaga, T.; Robert, C.; Ronkart, S.N.; Wathelet, B.; Paquot, M. Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Bioresour. Technol. 2008, 99, 4346–4354. [Google Scholar] [CrossRef]
- Moczkowska, M.; Karp, S.; Niu, Y.; Kurek, M.A. Enzymatic, enzymatic-ultrasonic and alkaline extraction of soluble dietary fibre from flaxseed–A physicochemical approach. Food Hydrocoll. 2019, 90, 105–112. [Google Scholar] [CrossRef]
- Sang, J.; Li, L.; Wen, J.; Gu, Q.; Wu, J.; Yu, Y.; Xu, Y.; Fu, M.; Lin, X. Evaluation of the structural, physicochemical and functional properties of dietary fiber extracted from newhall navel orange by-products. Foods 2021, 10, 2772. [Google Scholar] [CrossRef]
- Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Abderrahim, S.; Clark, J.H.; Koutinas, A.A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F.; et al. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 2013, 6, 426–464. [Google Scholar] [CrossRef]
- Quilter, M.G.; Hurley, J.C.; Lynch, F.J.; Murphy, M.G. The production of isoamyl acetate from amyl alcohol by Saccharomyces cerevisiae. J. Inst. Brew. 2003, 109, 34–40. [Google Scholar] [CrossRef]
- Martínez, O.; Sánchez, A.; Font, X.; Barrena, R. Valorization of sugarcane bagasse and sugar beet molasses using Kluyveromyces marxianus for producing value-added aroma compounds via solid-state fermentation. J. Clean. Prod. 2017, 158, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Martinez, O.; Sanchez, A.; Font, X.; Barrena, R. Enhancing the bioproduction of value-added aroma compounds via solid-state fermentation of sugarcane bagasse and sugar beet molasses: Operational strategies and scaling-up of the process. Bioresour. Technol. 2018, 263, 136–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szymczak, T.; Cybulska, J.; Podleśny, M.; Frąc, M. Various Perspectives on Microbial Lipase Production Using Agri-Food Waste and Renewable Products. Agriculture 2021, 11, 540. [Google Scholar] [CrossRef]
- Ahmad, F.; Khan, S.T. Potential Industrial Use of Compounds from By-Products of Fruits and Vegetables. In Health and Safety Aspects of Food Processing Technologies; Malik, A., Erginkaya, Z., Erten, H., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 273–307. [Google Scholar] [CrossRef]
- Matwiejczuk, N.; Galicka, A.; Brzoska, M.M. Review of the safety of application of cosmetic products containing parabens. J. Appl. Toxicol. 2020, 40, 176–210. [Google Scholar] [CrossRef] [PubMed]
- Castrica, M.; Rebucci, R.; Giromini, C.; Tretola, M.; Cattaneo, D.; Baldi, A. Total phenolic content and antioxidant capacity of agri-food waste and by-products. Ital. J. Anim. Sci. 2019, 18, 336–341. [Google Scholar] [CrossRef]
- Marcillo-Parra, V.; Tupuna-Yerovi, D.S.; Gonzalez, Z.; Ruales, J. Encapsulation of bioactive compounds from fruit and vegetable by-products for food application-A review. Trends Food Sci. Technol. 2021, 116, 11–23. [Google Scholar] [CrossRef]
- Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chem. 2019, 272, 494–506. [Google Scholar] [CrossRef]
- Santos, S.S.; Rodrigues, L.M.; Costal, S.C.; Madrona, G.S. Antioxidant compounds from blackberry (Rubus fruticosus) pomace: Microencapsulation by spray-dryer and pH stability evaluation. Food Packag. Shelf Life 2019, 20, 100177. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Sampaio, F.C.; de Faria, J.T.; Pitangui, C.G.; Lovaglio, F.; Casazza, A.A.; Converti, A.; Perego, P. Optimization of spray drying microencapsulation of olive pomace polyphenols using Response Surface Methodology and Artificial Neural Network. Lwt-Food Sci. Technol. 2018, 93, 220–228. [Google Scholar] [CrossRef]
- de Araujo, J.S.F.; de Souza, E.L.; Oliveira, J.R.; Gomes, A.C.A.; Kotzebue, L.R.V.; da Silva Agostini, D.L.; de Oliveira, D.L.V.; Mazzetto, S.E.; da Silva, A.L.; Cavalcanti, M.T. Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. Int. J. Biol. Macromol. 2020, 143, 991–999. [Google Scholar] [CrossRef]
- Abrahão, F.R.; Rocha, L.C.R.; Santos, T.A.; Carmo, E.L.d.; Pereira, L.A.S.; Borges, S.V.; Pereira, R.G.F.A.; Botrel, D.A. Microencapsulation of bioactive compounds from espresso spent coffee by spray drying. LWT 2019, 103, 116–124. [Google Scholar] [CrossRef]
- Costa, A.M.M.; Moretti, L.K.; Simoes, G.; Silva, K.A.; Calado, V.; Tonon, R.V.; Torres, A.G. Microencapsulation of pomegranate (Punica granatum L.) seed oil by complex coacervation: Development of a potential functional ingredient for food application. LWT-Food Sci. Technol. 2020, 131, 109519. [Google Scholar] [CrossRef]
- Šeregelj, V.; Pezo, L.; Šovljanski, O.; Lević, S.; Nedović, V.; Markov, S.; Tomić, A.; Čanadanović-Brunet, J.; Vulić, J.; Šaponjac, V.T.; et al. New concept of fortified yogurt formulation with encapsulated carrot waste extract. LWT 2021, 138, 110732. [Google Scholar] [CrossRef]
- Papillo, V.A.; Locatelli, M.; Travaglia, F.; Bordiga, M.; Garino, C.; Coisson, J.D.; Arlorio, M. Cocoa hulls polyphenols stabilized by microencapsulation as functional ingredient for bakery applications. Food Res. Int. 2019, 115, 511–518. [Google Scholar] [CrossRef]
- Alves, V.L.C.D.; Rico, B.P.M.; Cruz, R.M.S.; Vicente, A.A.; Khmelinski, I.; Vieira, M.C. Preparation and characterization of a chitosan film with grape seed extract-carvacrol microcapsules and its effect on the shelf-life of refrigerated Salmon (Salmo salar). LWT-Food Sci. Technol. 2018, 89, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Gheonea, I.; Aprodu, I.; Circiumaru, A.; Rapeanu, G.; Bahrim, G.E.; Stanciuc, N. Microencapsulation of lycopene from tomatoes peels by complex coacervation and freeze-drying: Evidences on phytochemical profile, stability and food applications. J. Food Eng. 2021, 288, 110166. [Google Scholar] [CrossRef]
Agri-Food Waste (Amount) | Targets | Extraction Conditions | Extraction Efficiency | Ref. |
---|---|---|---|---|
Supercritical fluid extraction | ||||
Agave salmiana bagasse (10 g) | Antioxidants and saponins | CO2, 60 °C, 300 bar, 10 % v/v ethanol, 1.7 g/min, 60 min | Increase in the antioxidant activity in the US-assisted extraction from 11.54 ± 0.06 to 17.61 ± 0.75 μmol of Trolox equivalents/g | [12] |
Avocado peel and seeds (-) | Catechin, quercetin | CO2, 80 °C, 250 bar, ethanol ratio of 1:1.5 S:L, 30 min | Integral biorefineries of avocado seed and peel allow profit margins of 47% and 43%, respectively | [18] |
Capsicum annuum waste (20 g) | Phenolics, flavonoids, fatty acids, and carotenoids | CO2, 40 and 60 °C, 200 and 250 bar, with and without ethanol, 3 g/min, 30 min | Yield 9.38–10.08%, phenols (12.30–23.94 mg/g), flavonoids (0.6–1.52 mg/g), and carotenoids (0.27–2.01 mg/g) | [13] |
Carrot peels (50 g) | Carotenoid | CO2, 59 °C, 349 bar, 15% v/v ethanol, 15 g/min, 80 min | Carotenoid recovery was (86.1%) with 97 % purity | [10] |
Grape seeds (17 g) | Triacylglycerols | CO2, 40–60 °C, up 400 bar, 1.8–2.8 g/min | Oil yield in the range of 12.0–12.7%, as compared to 12.3% obtained by a conventional n-hexane extraction | [19] |
Mandarin peel (100 g) | Limonene, hesperidin | CO2, 130–220 °C, 100–300 bar, 33 g/min, 90 min | Limonene (13.16 and 30.65% at 100 and 300 bar), hesperidin (0.16–15.07 mg/g) | [20] |
Mango peel (5 g) | Carotenoids | CO2, 60 °C, 250 bar, 15% w/w ethanol, 6.7 g/min, 180 min | Carotenoids (1.9 mg all-trans-β-carotene equivalent/g dried mango peel) | [11] |
Melon seeds (5 g) | Phytosterols | CO2, 33 °C, 200 bar, 11 g/min, 3 h | β-sitosterol (304 mg/kg) and stigmasterol (121 mg/kg) | [21] |
Pomegranate seed (100 g) | Seed oil | CO2, 60 °C, 320 bar 133 g/min, 180 min | Oil (85.4% of punicic acid) | [17] |
Subcritical water extraction | ||||
Citrus peel (3 g) | Hesperidin, narirutin | Water, 110–190 °C, 10 MPa, 3–15 min | Hesperidin (6.96 mg/g peel dw), narirutin (8.76 mg/g peel dw) | [22] |
Grape pomace (50–60 g) | Phenolic compounds | Water, 130–190 °C, 100 bar, 10 mL/min | 29 g of phenolic compounds (p-hydroxyphenyl, guaiacyl, and syringyl)/100 g extract | [23] |
Kiwifruit peel (2% S:S ratio) | Phenolic compounds | Water, 160 °C, S:S ratio (2%), pH 2, 20 min | TPC (51.2 mg GAE/g dw), TFC (22.5 mg QE/g dw) | [24] |
Onion peel (2 wt % onion skins into 600 mL of H2O) | Phenolic compounds | Water, 170–230 °C, 30 bar, 400 rpm/30 min | 63–75 mg GAE/g, 23–26 QE/g | [16] |
Onion skin (4 g) | Phenolic compounds | Water, 105–180 °C, 5 MPa, 2.5 mL/min | Quercetin (15 mg/g onion skin) and quercetin-4-glucoside (8 mg/g onion skin) | [25] |
Peach palm (4 g) | Phenolic compounds, sugars | Water, 130 °C, 100 bar, 1 mL/min, 90 min | Soluble sugar (15 g/100 g), TPC (921 mg/100 g) | [26] |
Shellfish waste (1 g) | Protein hydrolysates | Water, 200 °C, heating rate of 6 °C/min | 8.5 g protein/100 g dw (improved extraction yield of up to 65%) | [27] |
Vine-canes (40 g) | Phenolic compounds | Water, 250 °C, 50 min | 181 mg GAE/g dw, 203 mg TE/g dw | [28] |
Vine co-products: cane, wood, and root (5 g) | Stilbenes | Water, 160 °C, 100 bar, 5 min | Cane (3.62 g/kg dw), wood (9.32 g/kg dw), and root (12.1 g/kg dw) | [29] |
Pulsed electric fields | ||||
Apple pomace (28.7 g) | Phenolic compounds | E = 2, 3 kV/cm, U = 17, 100 kJ/kg, 40 °C | PEF performed with EtOH:H2O (70:30, v/v) showed the highest content of phlorizin (753.84 ± 26.38 µg/g fresh apple pomace) | [30] |
Banana peels (-) | Phenolic compounds | E = 1.3–6.45 kV/cm | Increase the TPC and antioxidant activity | [31] |
Jackfruit waste (1:20 w/v solid-to-solvent ratio) | Pectin polysaccharide | E = 5–15 kV/cm | No significant effect on pectin yield | [32] |
Lemon peels (30 g) | Phenolic compounds | E = 7 kV/cm, U = 7.6 kJ/kg | Increase the efficiency of phenolic compounds (hesperidin and eriocitrin) extraction by 300% | [33] |
Potato peels (5 g) | Phenolic compounds | E = 0.25–3 kV/ cm, U = 1–20 kJ/kg | PEF showed higher TPC yield (10%) and antioxidant activity (9%) compared to conventional solid–liquid extraction with same extraction protocol but without the application of the PEF pre-treatment) | [34] |
Pomegranate peels (30 g) | Ellagic acid | E = 10 kV/cm | PEF selectively extracted and enhanced the recovery of ellagic acid (≈740 μg/g dm) | [35] |
Pomelo peels (1 g) | Naringenin | E = 2–10 kV/cm | Increase the extraction yield of naringenin | [36] |
Olive pomace (850 g) | Phenolic compounds | E = 1–6.5 kV/cm, U = 0.9–51.1 kJ/kg, 50 pulses spaced at 3 s, 20–27.5 °C | PEF allowed a 28.8% increased recovery yield of polyphenols (~3 mg GAE/L) compared to untreated | [37] |
Tomato peels (10 g) | Lycopene | E = 5 kV/cm, U = 5 kJ/kg, 20 ± 2 °C | Enhance the extraction rate (27–37%), the lycopene yields (12–18%) and the antioxidant power (18–18.2%) | [38] |
Ultrasound-assisted extraction | ||||
Apple leaves (10 g) | Phloretin | 400 W, 20 kHz, 14.4 min, <25 °C | The phloretin concentration ranged from 292 to 726 µg/g | [39] |
Apple pomace (1:10 (w/v) S:L ratio) | Phenolic compounds | 45 min, 45 °C | Increase the TPC, antioxidant activity, and recovery of interesting antioxidant compounds (quercetin derivatives, chlorogenic acid, phloridzin) | [40] |
Beet leaves (1:20 (w/v) S:L ratio) | Bioactive compounds | 90 W, 16 min | Yields were 14.9 mg/g polyphenols, 949.1 µg/g betaxanthins, and 562.2 µg/g beta-cyanins | [41] |
Brewers’ spent grains (1:30 (w/v) S:L ratio) | Proanthocyanidins | 400 w, 75 % acetone, 55 min, 25 °C | High recovery of proanthocyanidins (1023 µg/g dw) | [42] |
Citrus peel (1 g) | Citric acid | 119–141 W, 5.8–35.5 min, 0–7 % (v/v) ethanol | Recovery of 6.4 g and 3.4 g of citric acid per 100 g of dry orange and lime peels, respectively | [43] |
Grape pomace (280 g) | Phenolic compounds | 450 W, 15 min, 20 °C | Increased the TPC (6.68 ± 0.05 mg of gallic acid) and antioxidant activity (ABTS: 23.84 ± 0.57 μmol of Trolox equivalents/g and DPPH: 33.27 ± 2.00 μmol of Trolox equivalents/g) | [44] |
Kiwi peel (1.5 g) | Flavonoids | 5–500 W, 20 kHz, 1–45 min, 25 °C | 46% extract weight and 1.51 mg/g dw of flavonoids | [45] |
Orange peels (10 g) | Bioactive compounds | 40 kHz,85 min, 55 °C, 61% methanol | The spectra of extracts showed a similar fingerprint of hesperidin | [46] |
Tomato peels (72 mL/g, L:S ratio) | Lycopene | 20 kHz, 20 min, 65 °C, | Lycopene recovery of 1536 µg/g | [47] |
Microwave-assisted extraction | ||||
Carrot juice waste (flaxseed oil + waste ~ 20 g) | Carotenoids | 170 W, 9.46 min, 8:1 g/g oil-to-waste ratio | Carotenoid recovery of 77.48%. The enriched flaxseed oil showed high phenolic content (214.05 ± 1.61 μg GAE/g oil) and antioxidant activity (inhibition % of DPPH = 70.67 ± 0.85) | [48] |
Coffee pulp (-) | Phenolic compounds, flavonoids, chlorogenic acid, and caffeine | 1000 W, 85 min, 1:100 g/100 mL sample-to-solvent ratio, 42.5 % (v/v) aqueous ethanol solution | Extraction yields of TPC, flavonoids, chlorogenic acid, and caffeine were 38.68, 27.00, 6.95, and 5.47 (mg/g dw), respectively. The extract showed high antioxidant capacities (ABTS, DPPH, and FRAP assays as 87.95, 9.3, 65.31 (mg TE/g DW), respectively) | [49] |
Peach waste (1000 mg) | Phenolic compounds and anthocyanins | 500 W, 90 s, 80 % ethanol (v/v) | TPC of 19.35 mg GAE/g fresh plant matter and total anthocyanin 1.12 mg cyn-3-glu/g fresh plant matter) yields | [50] |
Cocoa shell waste (100 g) | β-Sitosterol | 500 W, 10 min, 70 °C | The maximum yield obtained was 13% higher than the yield of conventional maceration (3546.1 mg/ 100 g) | [51] |
Eggplant peel (-) | Phenolic compounds, flavonoids, anthocyanins | 269.82 W, 7.98 min, 5.01 mL/g L:S ratio | The maximum extraction yield (3.27%), TPC (1,049.84 µg GAE/mL), TFC (130.40 µg QE/mL), and total anthocyanin content (6.99 mg/L) | [52] |
Lemon peel waste (-) | Essential oil (limonene, β-pinene, and γ-terpinene) and pigment | 500 W, 50 min, 80 °C, 80% (v/v) ethanol, 1:10 L:S ratio | The extraction yields of lemon essential oil and pigment were around 2 wt.% and 6 wt.%, respectively | [53] |
Spent sweet potato leaves (0.1 g) | Flavonoids | 470 W, 21 min, 54 °C, 70 mg/mL S:L ratio | The yield of TFC was 40.21 ± 0.23 mg rutin equivalents/g | [54] |
Broccoli stems, leaves and florets (2.5 g) | Phenolic compounds (vanillic, sinapic, caffeic, chlorogenic, ferulic, gallic, neochlorogenic, and p-coumaric acids) | Stems: 2.45 GHz, 74.54% methanol, 15.9 min, 74.45 °C Leaves: 2.45 GHz, 80% methanol, 10 min, 73.27 °C Florets: 2.45 GHz, 80% methanol, 18.9 min, 75 °C | MAE increased the phenolic yield up to 45.70% (1940.35 ± 0.794 µg GAE/g dw), for broccoli leaves, 133.57% (657.062 ± 0.771 µg GAE/g dw) for broccoli florets, and 65.30% for broccoli stems (225.273 ± 0.897 µg GAE/g dw), in less time compared with maceration extraction | [55] |
Spent onion skins (-) | Flavonoids (quercetin, kaempferol, luteolin, and quercetin-3-O-β-D-glucoside) | 554 W, 16 min, 76 °C, 14 mg/mL S:L ratio | TFC extraction yields of 47.83 ± 0.21 mg/g | [56] |
Enzyme-assisted extraction | ||||
Unsold tomato (-) | Carotenoids and carotenoid-containing chromoplasts | Enzymatic mix: polygalacturonase, pectin lyase, cellulose, xylanase, 25 U/g for 180 min, 45−55 °C at pH 5–5.5 | Recovery yield of 4.30 ± 0.08 mg lycopene/ kg tomato)/U as carotenoid-containing chromoplasts and 5.43 ± 0.04 mg lycopene/ kg tomato)/U as total carotenoids | [57] |
Apricot pulp (-) | Polysaccharides (sodium glycocholate and sodium taurocholate) | 5 mL/mg liquid-material ratio, 3% enzyme dosage and incubation time 1.5 h, pH 4.5 | The yield, sodium glycocholate and sodium taurocholate binding rates were 21.90%, 39.08% and 43.80%, respectively | [58] |
Tomato peel and seed (4 g) | Lycopene-rich oleoresins | Enzymatic reaction: 40 °C, 5 h, 0.2 mL/g enzyme:substrate ratio, 5 mL/g solvent:substrate ratio, extraction time 1 h, 1 enzyme:enzyme ratio | Celluclast:Pectinex-ethyl acetate combination yielded the highest content of phenolic compounds (oleoresin with a concentration of 11.5 mg) | [59] |
Beetroot cell wall (200 g) | Betalains | Enzymatic mix (cellulase 37%, xylanase 35%, pectinase 28%), 25 U/g total dose of enzymatic mix, 25 °C, 240 min, pH 5.5 | Betaxanthins and betacyanins yield 10 and 15 mg/mL U, respectively | [60] |
Sweet cherry pomace (15 g) | Non-extractable polyphenols | 0.38 g/mL S:L ratio, 70 °C, pH 10, 40 min for Depol (90 µL/g of sample) and Promod (140 µL/g of sample) enzymes and 18.4 min for Pectinase enzyme (2 µL/g of sample) | The extracts obtained by acid hydrolysis (1.87 ± 0.05 mg GAE/g of extraction residue) and Promod enzyme (1.75 ± 0.20 mg GAE/g of extraction residue) followed by alkaline hydrolysis (1.46 ± 0.20 mg GAE/g of extraction residue) and enzymatic hydrolysis with Depol enzyme (1.33 ± 0.13 mg GAE/g of extraction residue) were the richest in terms of phenolic content | [61] |
Sugar beet leaves | Protein | 54.25 °C, 81.35 min, 27.65 mL/g solvent/solid ratio | EAE increased the protein yield by 43.27% and reached a 79.01% yield | [62] |
Raspberry pomace (9 g) | Lipophilic compounds (phytosterols) and polyphenols | 1.2 units of thermostable alkaline protease/100 g pomace press-cake, 60 °C, 2 h hydrolysis, pH 9 | The recovery of polyphenols and antioxidant activity was, respectively, 48% and 25% higher than the obtained by extraction with methanol/acetone/water mixture | [63] |
Pressurized liquid extraction | ||||
Pomegranate peel and carpelar (6 g) | Phenolic compounds (α, β punicalagin, and ellagic acid) | 60 °C, 80 bar, flow rate of 1 mL/min, 76 min, 10 solvent-to-feed ratio | The highest content of α, β-punicalagins, and ellagic acid obtained was 194.96 mg/100 g and 24.91 mg/100 g, respectively, representing 45% of TPC | [64] |
Beetroot leaves and stems (5 g) | Phenolic compounds (ferulic acid, vitexin and sinapaldehyde) | 40 °C, 7.5, 10 and 12.5 MPa, flow rate of 3 mL/min | The highest TPC was obtained for beetroot leaves and varied from 7 ± 1 to 252 ± 2 mg GAE/g extract | [65] |
Vitis vinifera L. cv. negra criolla pomace (5 g) | Phenolic compounds (flavanols and phenolic acids) | 10 atm, 5 min with 250 s of nitrogen purge Flavanols: 20% ethanol, 160 °C Phenolic acids: 60% ethanol, 160 °C | PLE recovered ~2.5 and ~1.5 more polyphenols from skins (6.93 µg/g dw) and seeds (45.34 µg/g dw), respectively, compared to conventional extraction | [66] |
Olive pomace (5 g) | Phenolic compounds (phenolic alcohols, secoiridoids, flavonoids, and lignans) | Clean-step with n-hexane as the solvent and 1500 psi at room temperature to remove the lipophilic fraction from the olive pomace. Ethanol (0 to 100%), 40 to 176 °C, 1500 psi, 20 min | PLE showed higher TPC than conventional extraction (1659 mg/kg dw and 281.7 mg/kg dw, respectively) | [67] |
Pomegranate peel (3.75 g) | Phenolic compounds (phenolic acids, flavonoids, and hydrolysable tannins) | 200 °C, ethanol 77%, 1500 psi, 20 min | TPC of 164.3 ± 10.7 mg GAE/g dw | [68] |
Pomegranate seed (1.75 g of waste and 7 g of sand, 1:4 ratio) | Protein and phenolic compounds | Ethanol (0 to 100 %), 28 to 170 °C, 1 to 5 cycles, 3 to 12 min, pH 6.5 to 11, 103 bar | Higher extraction yield by PLE (15.3 ± 0.9 g proteins/100 g pomegranate seed waste) at a cost of a longer extraction time and the co-extraction of phenolic compounds | [69] |
Agri-Food Waste | Encapsulated Bioactive Compound | Wall Materials/Encapsulation Method | Main Findings | Ref. |
---|---|---|---|---|
Encapsulated bioactive compounds from agri-food wastes | ||||
Blackberry pomace | Anthocyanins (Antioxidant activity) | Maltodextrin/Spray-drying | Microencapsulation with maltodextrin was efficient in reducing the degradation of anthocyanins against increased pH, increased stability, protected the colour of the samples, and longer half-life were achieved (2–7 times greater than extracts) | [164] |
Espresso spent coffee | Phenolic compounds, caffeine (Antioxidant activity) | Maltodextrin, whey protein isolate, gum Arabic, and inulin (1:1 proportion)/Spray-drying | The encapsulates obtained carried and protected considerable amounts of antioxidants present in the coffee extracts The whey protein isolate was the most efficient material in the maintenance of antioxidant activity | [167] |
Olive pomace | Phenolic compounds (Antioxidant activity) | Maltodextrin/Spray-drying | Maltodextrin-based microcapsules showed good stability under storage conditions, high recovery of polyphenols, and remarkable antioxidant activity | [165] |
Orange peel oil | Phenolic compounds (Antioxidant and antibacterial activity) | Maltodextrin, gelatin/Freeze-drying | High encapsulation efficiency (75.75%) and encapsulation yield (90.19%). All encapsulated oil samples showed antioxidant and antibacterial properties. The presence of gelatin in the microencapsulated systems positively influenced their properties, especially the thermo-oxidative stability | [166] |
Pomegranate seeds | Polyunsaturated fatty acids | Whey protein isolate, gum Arabic/Complex coacervation | Microcapsules produced with polymer concentration (5%) and wall material: oil ratio of 2.75 showed the highest punicic acid content and oil retention | [168] |
Food applications of encapsulated bioactive compounds | ||||
Carrot waste | β-Carotene (Antioxidant activity) | Sodium alginate/Electrostatic extrusion | Yoghurt fortification with concentrations of 2.5 and 5 g/100 g of carrot wastes beads provided a part of the β-carotene recommended daily intake. The microbiological and physicochemical properties of the fortified yoghurts were well-maintained during the storage period. The encapsulated carotenoids improved the antioxidant activity of the yoghurt (4.21 and 9.36 μmol of Trolox equivalents/180 g of yoghurt) | [169] |
Cocoa hulls | Phenolic compounds (Antioxidant activity) | Maltodextrin, gum arabic/Spray-drying | The best-performing extract (water/ethanol 50:50), contained 93.3 mg of total polyphenols/g of dry extract. The microencapsulation using an 80:20 ratio of maltodextrins to the dry extract allowed obtaining the most stable powder, with a total polyphenol content unaffected by the baking process, and an antioxidant activity stable up to 90 days | [170] |
Grape seeds | Phenolic compounds, carvacrol (Antioxidant and antimicrobial activity) | Chitosan/Ionic gelation | The microcapsules affected the physicochemical properties of the developed films, increasing their thickness, moisture content, and colour parameters when compared with the unmodified chitosan films. The carvacrol microcapsules showed stable antimicrobial and antioxidant activity, protecting the salmon samples from environmental degradation | [171] |
Tomato peel | Lycopene (Antioxidant activity) | Whey protein isolate, acacia gum/Complex coacervation and freeze-drying | The sample powder displayed 27.34 ± 0.18 mg lycopene/g dw and antioxidant activity of 2.15 ± 0.02 mMol Trolox/g dw. Retention of 63% in lycopene was found after storage at 4 °C in the dark for 14 days. An inhibitory effect against α-amylase of 79.89 ± 1.74% was identified. The powder was used for functionalization in dressing samples, showing an increased antioxidant activity | [172] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berenguer, C.V.; Andrade, C.; Pereira, J.A.M.; Perestrelo, R.; Câmara, J.S. Current Challenges in the Sustainable Valorisation of Agri-Food Wastes: A Review. Processes 2023, 11, 20. https://doi.org/10.3390/pr11010020
Berenguer CV, Andrade C, Pereira JAM, Perestrelo R, Câmara JS. Current Challenges in the Sustainable Valorisation of Agri-Food Wastes: A Review. Processes. 2023; 11(1):20. https://doi.org/10.3390/pr11010020
Chicago/Turabian StyleBerenguer, Cristina V., Carolina Andrade, Jorge A. M. Pereira, Rosa Perestrelo, and José S. Câmara. 2023. "Current Challenges in the Sustainable Valorisation of Agri-Food Wastes: A Review" Processes 11, no. 1: 20. https://doi.org/10.3390/pr11010020
APA StyleBerenguer, C. V., Andrade, C., Pereira, J. A. M., Perestrelo, R., & Câmara, J. S. (2023). Current Challenges in the Sustainable Valorisation of Agri-Food Wastes: A Review. Processes, 11(1), 20. https://doi.org/10.3390/pr11010020