Snail Shells as a Heterogeneous Catalyst for Biodiesel Fuel Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of CaO in Snail Shells
2.2. Snail Shell Preparation
2.3. Transesterification of Rapeseed Oil
2.4. Ester Yield Evaluation Using Gas Chromatography
2.5. Analysis of Response Surface
3. Results
3.1. CaO Content in Snail Shells
3.2. Optimal Reaction Condition Modeling and Determination Using Response Surface Methodology
Source | Sum of Squares | Df | Mean Square | F Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 13,981.41 | 9 | 1553.49 | 55.67 | <0.0001 | Significant |
A—Methanol-to-oil molar ratio | 358.16 | 1 | 358.16 | 12.84 | 0.0050 | |
B—Temperature | 373.23 | 1 | 373.23 | 13.38 | 0.0044 | |
C—Catalyst | 10,598.79 | 1 | 10,598.79 | 379.84 | <0.0001 | |
AB | 147.06 | 1 | 147.06 | 5.27 | 0.0446 | |
AC | 33.21 | 1 | 33.21 | 1.19 | 0.3009 | |
BC | 159.31 | 1 | 159.31 | 5.71 | 0.0380 | |
A2 | 161.40 | 1 | 161.40 | 5.78 | 0.0370 | |
B2 | 1890.44 | 1 | 1890.44 | 67.75 | <0.0001 | |
C2 | 32.22 | 1 | 32.22 | 1.15 | 0.3078 | |
Residual | 279.04 | 10 | 27.90 | |||
Lack of Fit | 263.04 | 5 | 52.61 | 16.44 | 0.0040 | Not significant |
Pure Error | 16.00 | 5 | 3.20 | |||
Cor Total | 14,260.44 | 19 | 1553.49 |
3.3. Effect of the Interaction of Independent Variables on the Effectiveness of Transesterification
3.3.1. The Effect of Methanol-to-Oil Molar Ratio and Amount of Catalyst on FAME Conversion
3.3.2. Effect of Process Duration and Methanol Content on FAME Conversion
3.3.3. Effect of Process Duration and Heterogeneous Catalyst Amount on FAME Conversion
3.4. Optimization of the Fatty Acid Methyl Ester Synthesis Process
3.5. Physical and Chemical Properties of the Obtained Fatty Acid Methyl Esters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fransen, T.; Ross, K.; Srouji, J. 5 Ways the Glasgow Climate Pact Aims to Reduce Greenhouse Gas Emissions. 2022. Available online: https://www.wri.org/insights/glasgow-climate-pact-reduce-ghg-emissions (accessed on 27 April 2022).
- Lithuanian Energy Agency. Available online: https://www.ena.lt/aei-transporte/ (accessed on 27 December 2021).
- Sendzikiene, E.; Makareviciene, V.; Janulis, P.; Makareviciute, D. Biodegradability of biodiesel fuel of animal and vegetable origin. Eur. J. Lipid Sci. Technol. 2007, 109, 493–497. [Google Scholar] [CrossRef]
- Garcia-Martin, J.F.; Barrios, C.C.; Ales-Alvarez, F.J.; Dominiguez-Saez, A.; Alvarez-Mateos, P. Biodiesel production from waste cooking oil in a oscillatory flow reactor. Performance as a fuel on a TDI diesel engine. Renew. Energy. 2018, 125, 546–556. [Google Scholar] [CrossRef]
- Karciauskiene, D.; Sendzikiene, E.; Makareviciene, V.; Zaleckas, E.; Repšienė, R.; Ambrazaitienė, D. False flax (Camelina sativa L.) as an alternative source for biodiesel production. Agriculture. 2014, 101, 161–168. [Google Scholar]
- Mohandass, R.; Ashok, K.; Selvaraju, A.; Rajagopan, S. Homogeneous Catalysts used in Biodiesel Production: A Review. Int. J. Eng. Res. Technol. (IJERT) 2016, 5, 264–268. [Google Scholar] [CrossRef]
- Hariprasath, P.; Selvamani, S.T.; Vigneshwar, M.; Palanikum, K.; Jayaperumal, D. Comparative analysis of cashew and canola oil biodiesel with homogeneous catalyst by transesterification method. Mater. Today Proc. 2019, 16, 1357–1362. [Google Scholar] [CrossRef]
- Quayson, E.; Amoah, J.; Hama, S.; Kondo, A.; Ogino, C. Immobilized lipases for biodiesel. production: Current and future greening opportunities. Renew. Sust. Energ. Rev. 2020, 134, 110355. [Google Scholar] [CrossRef]
- Pratika, R.A.; Wijaya, K.; Trisunaryanti, W. Hydrothermal treatment of SO4/TiO2 and TiO2/CaO as heterogeneous catalysts for the conversion of Jatropha oil into biodiesel. J. Environ. Chem. Eng. 2021, 9, 106547. [Google Scholar] [CrossRef]
- Dasta, P.; Singh, A.P.; Singh, A.P. Zinc oxide nanoparticle as a heterogeneous catalyst in generation of biodiesel. Mater. Today Proc. 2022, 52, 751–757. [Google Scholar] [CrossRef]
- Ilgen, O. Dolomite as a heterogeneous catalyst for transesterification of canola oil. Fuel Process. Technol. 2011, 92, 452–455. [Google Scholar] [CrossRef]
- Marín-Suárez, M.; Méndez-Mateos, D.; Guadix, A.; Guadix, E.M. Reuse of immobilized lipases in the transesterification of waste fishoil for the production of biodiesel. Renew. Energ. 2019, 140, 1–8. [Google Scholar] [CrossRef]
- Roschat, W.; Siritanon, T.; Yoosuk, B.; Promarak, V. Biodiesel production from palm oil using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst. Energy Convers. Manag. 2016, 108, 459–467. [Google Scholar] [CrossRef]
- Latchubugata, C.S.; Kondapaneni, R.V.; Patluri, K.K.; Virendra, U.; Vedantam, S. Kinetics and optimization studies using response surface methodology in biodiesel production using heterogeneous catalyst. Chem. Eng. Res. Des. 2018, 135, 129–139. [Google Scholar] [CrossRef]
- Correia, L.M.; Sousa Campelo, N.D.; Novaes, D.S.; Cavalcante, C.L.; Cecilia, J.A.; Rodrıguez-Castellon, E.; Vieira, R.S. Characterization and Application of Dolomite as Catalytic Precursor for Canola and Sunflower Oils for Biodiesel Production. Chem. Eng. J. 2015, 269, 35–43. [Google Scholar] [CrossRef]
- Shobana, R.; Vijayalakshmi, S.; Deepanraj, B.; Ranjitha, J. Biodiesel production from Capparis spinosa L seed oil using calcium oxide as a heterogeneous catalyst derived from oyster shell. Mater. Today Proc. 2021; in press. [Google Scholar] [CrossRef]
- Correia, L.M.; Saboya, R.M.A.; de Sousa Campelo, N.; Cecilia, J.A.; Rodrguez-Castelln, E.; Cavalcante, C.L.; Vieira, R.S. Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresour. Technol. 2014, 151, 207–213. [Google Scholar] [CrossRef]
- Rezaei, R.; Mohadesi, M.; Moradi, G.R. Optimization of biodiesel production using waste mussel shell catalyst. Fuel 2013, 109, 534–541. [Google Scholar] [CrossRef]
- Asikin-Mijan, N.; Lee, H.V.; Taufiq-Yap, Y.H. Synthesis and catalytic activity of hydration—Dehydration treated clamshell derived CaO for biodiesel production. Chem. Eng. Res. Des. 2015, 102, 368–377. [Google Scholar] [CrossRef]
- Sun, Y.; Sage, V.; Sun, Z. An enhanced process of using direct fluidized bed calcination of shrimp shell for biodiesel catalyst preparation. Chem. Eng. Res. Des. 2017, 12, 142–152. [Google Scholar] [CrossRef]
- Boey, P.L.; Maniam, G.P.; Abd Hamid, S. Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. Bioresour. Technol. 2009, 100, 6362–6368. [Google Scholar] [CrossRef] [Green Version]
- Massari, S.; Pastore, S. Helciculture and Snail Caviar: New Trends in the Food Sector; Monograph: Future Trends and Challenges in the Food Sector; Polish Society of Commodity Science: Cracow, Poland, 2014; pp. 79–90. [Google Scholar]
- Gaide, I.; Makareviciene, V.; Sendzikiene, E.; Kazancev, K. Natural Rocks–Heterogeneous Catalysts for Oil Transesterification in Biodiesel Synthesis. Catalysts 2021, 11, 384. [Google Scholar] [CrossRef]
- Laskar, I.B.; Rajkumari, K.; Gupta, R.; Chatterjee, S.; Paul, B.; Rokhum, S.L. Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Adv. 2018, 8, 20131. [Google Scholar] [CrossRef] [PubMed]
- Kaewdaeng, S.; Sintuya, P.; Nironsin, R. Biodiesel production using calcium oxide from river snail shell ash as catalyst. Energy Procedia. 2017, 138, 937–942. [Google Scholar] [CrossRef]
- Birla, A.; Singh, B.; Upadhyay, S.N.; Sharma, Y.C. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresour. Technol. 2012, 106, 95–100. [Google Scholar] [CrossRef]
- Trisupakitti, S.; Ketwong, C.; Senajuk, W.; Phukapak, C.; Wiriyaumpaiwong, S. Golden apple cherry snail shell as catalyst for heterogeneous transesterification of biodiesel. Braz. J. Chem. Eng. 2018, 35, 1283–1291. [Google Scholar] [CrossRef] [Green Version]
- Bailer, J.; Hödl, P.; de Hueber, K.; Mitelbach, M.; Plank, C.; Schindlbauer, H. Handbook of Analytical Methods for Fatty Acid Methyl Esters Used as Biodiesel Fuel Substitutes; Fichte, Research Institute for Chemistry and Technology of Petroleum Products, University of Technology: Vienna, Austria, 1994; pp. 36–38. [Google Scholar]
- Montgomery, D. Design and Analysis of Experiments; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Roschat, W.; Siritanon, T.; Kaewpuang, T.; Yoosuk, B.; Promarak, V. Economical and green biodiesel production process using river snail shells-derived heterogeneous catalyst and co-solvent method. Bioresour. Technol. 2016, 209, 343–350. [Google Scholar] [CrossRef]
- Parveen, S.; Chakraborty, A.; Chanda, D.K.; Pramanik, S.; Barik, A.; Aditya, G. Microstructure Analysis and Chemical and Mechanical Characterization of the Shells of Three Freshwater Snails. ACS Omega. 2020, 5, 25757–25771. [Google Scholar] [CrossRef]
- Viriya-empikul, N.; Krasae, P.; Nualpaeng, W.; Yoosuk, B.; Faungnawakij, K. Biodiesel production over Ca-based solid catalysts derived from industrial wastes. Fuel 2012, 92, 239–244. [Google Scholar] [CrossRef]
- Gaide, I.; Makareviciene, V.; Sendzikiene, E. Effectiveness of Eggshells as Natural Heterogeneous Catalysts for Transesterification of Rapeseed Oil with Methanol. Catalysts 2022, 12, 246. [Google Scholar] [CrossRef]
- Goli, J.; Sahu, O. Development of heterogeneous alkali catalyst fromwaste chicken eggshell for biodiesel production. Renew. Energy 2018, 128, 142–154. [Google Scholar] [CrossRef]
- Correia, L.M.; Cecilia, J.A.; Rodríguez-Castellón, E.; Cavalcante, C.L.; Vieira, R.S. Relevance of the Physicochemical Properties of Calcined Quail Eggshell (CaO) as a Catalyst for Biodiesel Production. J. Chem. 2017, 2017, 5679512. [Google Scholar]
- Kumar, H.; Renita, A.A.; Anderson, A. Response surface optimization for biodiesel production from waste cooking oil utilizing eggshells as heterogeneous catalyst. Mater. Today Proc. 2021, 47, 1054–1058. [Google Scholar] [CrossRef]
- Nakatani, N.; Takamori, H.; Takeda, K.; Sakugawa, H. Transesterification of soybean oil using combusted oyster shellwaste as a catalyst. Bioresour. Technol. 2009, 100, 1510–1513. [Google Scholar] [CrossRef] [PubMed]
No | A: Methanol-to-Oil Molar Ratio, mol/mol | B: Catalyst Amount, wt% | C: Reaction Duration, h | Predicted Methyl Ester Yield, wt% | Experimental Methyl Ester Yield, wt% |
---|---|---|---|---|---|
1 | 4.00 | 2.00 | 2.00 | 29.54 | 25.00± 0.71 |
2 | 12.00 | 2.00 | 2.00 | 3.39 | 8.12 ± 0.25 |
3 | 4.00 | 8.00 | 2.00 | 21.40 | 23.12 ± 0.69 |
4 | 12.00 | 8.00 | 2.00 | 14.45 | 15.50 ± 0.34 |
5 | 4.00 | 2.00 | 8.00 | 74.81 | 79.15 ± 0.69 |
6 | 12.00 | 2.00 | 8.00 | 58.86 | 62.26 ± 0.98 |
7 | 4.00 | 8.00 | 8.00 | 86.57 | 86.70 ± 0.67 |
8 | 12.00 | 8.00 | 8.00 | 89.82 | 99.10 ± 0.64 |
9 | 2.40 | 5.00 | 5.00 | 66.65 | 67.60 ± 0.46 |
10 | 13.60 | 5.00 | 5.00 | 50.62 | 40.36 ± 0.56 |
11 | 8.00 | 0.80 | 5.00 | 31.35 | 28.87 ± 0.36 |
12 | 8.00 | 9.20 | 5.00 | 47.33 | 41.62 ± 0.69 |
13 | 8.00 | 5.00 | 0.80 | 23.66 | 24.34 ± 0.65 |
14 | 8.00 | 5.00 | 9.20 | 99.12 | 98.10 ± 0.84 |
15 | 8.00 | 5.00 | 5.00 | 68.32 | 69.45 ± 0.75 |
16 | 8.00 | 5.00 | 5.00 | 68.32 | 72.47 ± 0.69 |
17 | 8.00 | 5.00 | 5.00 | 68.32 | 71.56 ± 0.67 |
18 | 8.00 | 5.00 | 5.00 | 68.32 | 68.14 ± 0.34 |
19 | 8.00 | 5.00 | 5.00 | 68.32 | 67.47 ± 0.77 |
20 | 8.00 | 5.00 | 5.00 | 68.32 | 70.36 ± 0.63 |
Variable | Value | Variable | Value |
---|---|---|---|
Std. Dev. | 5.28 | R-Squared | 0.9804 |
Mean | 55.97 | Adj R-Squared | 0.9628 |
C.V. % | 9.44 | Pred R-Squared | 0.8555 |
PRESS | 2061.16 | Adeq Precision | 27.308 |
Methanol-to-Oil Molar Ratio, mol/mol | Snail Shells Concentration, wt% (From Oil Mass) | Reaction Duration, h | Predicted Ester Yield, wt% | Experimental Ester Yield, wt% |
---|---|---|---|---|
7.51:1 | 6.06 | 8 | 98.87 | 98.15 ± 0.35 |
Oil | Temperature, °C | Snail Shells Amount | Reaction Duration, h | Methanol-to-Oil Molar Ratio, mol/mol | Ester Yield, wt% | Reference |
---|---|---|---|---|---|---|
Waste frying oil | 60 | 2 wt% | 8 | 6.03:1 | 87.28 | [26] |
Palm olein oil | 60 | 10 wt% | 2 | 12:1 | 93.2 | [31] |
Used cooking oil | 65 | 3 wt% | 1 | 9:1 | 92.5 | [25] |
Palm oil | 65 | 0.8 wt% | 6 | 12:1 | 92.5 | [27] |
Soybean oil | 28 | 3 wt% | 7 | 6:1 | 98 | [24] |
Parameter | Units | Requirements of Standard EN 14214 | Rapeseed Oil Methyl Esters |
---|---|---|---|
Ester content | % | min 96.5 | 98.15 ± 0.35 |
Density at 15 °C | kgm−3 | min 860 max 900 | 883 ± 2.50 |
Viscosity at 40 °C | mm2s−1 | min 3.50 max 5.00 | 4.78 ± 0.02 |
Acid value | mg KOHg−1 | max 0.5 | 0.25 ± 0.01 |
Sulfur content | mgkg−1 | max 10 | 7.3 ± 0.21 |
Moisture content | mgkg−1 | max 500 | 305 ± 2.10 |
Iodine value | g J2100−1g−1 | max 120 | 114 ± 0.15 |
Linolenic acid methyl esters content | % | max 12.0 | 9.5 ± 0.10 |
Monoglyceride content | % | max 0.8 | 0.51 ± 0.09 |
Diglyceride content | % | max 0.2 | 0.10 ± 0.02 |
Triglyceride content | % | max 0.2 | 0.05 ± 0.01 |
Free glycerol content | % | max 0.2 | 0.02 ± 0 |
Total glycerol content | % | max 0.25 | 0.21 ± 0.11 |
Methanol content | % | max 0.2 | 0.05 ± 0.01 |
Phosphorus content, ppm | 10 | 7.1 ± 0.09 | |
Metals II (Ca/Mg) | mg kg−1 | max 5 | 4 ± 0.12 |
Oxidation stability 110 °C | H | min 8 | 8.3 ± 0.1 |
Cetane number | - | min 51 | 53.8 ± 0.15 |
Cold filter plugging point | °C | −5 °C (in summer) −32 °C (in winter) | −9.5 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaide, I.; Makareviciene, V.; Sendzikiene, E.; Kazancev, K. Snail Shells as a Heterogeneous Catalyst for Biodiesel Fuel Production. Processes 2023, 11, 260. https://doi.org/10.3390/pr11010260
Gaide I, Makareviciene V, Sendzikiene E, Kazancev K. Snail Shells as a Heterogeneous Catalyst for Biodiesel Fuel Production. Processes. 2023; 11(1):260. https://doi.org/10.3390/pr11010260
Chicago/Turabian StyleGaide, Ieva, Violeta Makareviciene, Egle Sendzikiene, and Kiril Kazancev. 2023. "Snail Shells as a Heterogeneous Catalyst for Biodiesel Fuel Production" Processes 11, no. 1: 260. https://doi.org/10.3390/pr11010260
APA StyleGaide, I., Makareviciene, V., Sendzikiene, E., & Kazancev, K. (2023). Snail Shells as a Heterogeneous Catalyst for Biodiesel Fuel Production. Processes, 11(1), 260. https://doi.org/10.3390/pr11010260