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Abstract: The operation of reforming catalysts in a fixed bed reactor undergoes a high level of
interaction between the operating parameters and the reaction mechanism. Understanding such
an interaction reduces the catalyst deactivation rate. In the present work, three kinds of nanocata-
lysts (i.e., Pt/HY, Pt-Zn/HY, and Pt-Rh/HY) were synthesized. The catalysts’ performances were
evaluated for n-heptane reactions in the fixed bed reactor. The operating conditions applied were
the following: 1 bar pressure, WHSV of 4, hydrogen/n-heptane ratio of 4, and the reaction tem-
peratures of 425, 450, 475, 500, and 525 ◦C. The optimal reaction temperature for all three types of
nanocatalysts to produce high-quality isomers and aromatic hydrocarbons was 500 ◦C. Accordingly,
the nanocatalyst Pt-Zn/HY provided the highest catalytic selectivity for the desired hydrocarbons.
Moreover, the Pt-Zn/HY-nanocatalyst showed more resistance against catalyst deactivation in com-
parison with the other two types of nanocatalysts (Pt/HY and Pt-Rh/HY). This work offers more
understanding for the application of nanocatalysts in the reforming process in petroleum refineries
with high performance and economic feasibility.

Keywords: fixed bed reactor; catalytic reforming; reaction temperature; bimetallic catalyst performance

1. Introduction

The catalyst deactivation process is the main problem in catalytic reforming units [1].
Among the three general types of catalyst deactivation modes (i.e., coke formation, sintering,
and poisoning), coke formation is the chief deactivation type in the reforming process [2–4].
All commercial catalysts in reforming units are significantly sensitive to coke formation
problems due to the nature of reforming chemical reactions [5–8]. Therefore, many studies
have worked to improve the catalyst resistance against deactivation using various additives
as reaction promotors. Nanocatalysts are a modified category of catalysts that have a high
available reaction surface area as well as unique structural specifications [9,10].

The quality of heavy naphtha can be enhanced if saturated normal hydrocarbons of a
low octane rating are converted to their aromatic and isomer compounds [11–14]. The poor
efficiency of traditional catalysts in the reforming process requires the production of new
high-performance catalysts. Nanocatalysts are a new category of catalysts in which noble
metals work on the initiation and promotion of active sites for the catalyst and provide
high resistance against deactivation [10,15]. Often, nanocatalysts figure prominently in
research activities due to their ability to control the reaction mechanism and the high
yield of the desired products. Actually, the main requirements for catalysts in catalytic
reforming reactions are to exhibit high efficiency for the aromatization and isomerization
reactions of n-paraffin [16–22]. Thus, the modification of classical catalysts or nanocatalysts
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by the incorporation of metals other than platinum will greatly affect reforming reactions.
Lin et al. [23], Dong et al. [24], and Králik et al. [25] showed that the favorable activity,
selectivity, and lifetime of catalysts are deeply dependent on the catalyst’s composition,
total surface area, crystalline structure, type of promotor, and metal dispersion.

From an industrial point of view, catalytic reforming contains different kinds of
chemical reactions, like the dehydrocyclization reactions of normal-paraffins, isomerization
reactions of normal-paraffins and naphthenes, cracking reactions, dealkylation reactions,
and dehydrogenation reactions [26–30]. All of these reactions are considerably affected
by the nature of the applied catalyst and feedstock specifications. Accordingly, to achieve
these reactions successfully over nanocatalysts, the influence of each performance variable
(e.g., activity, selectivity, and stability) must be evaluated [31–34]. Xu et al. [35] synthesized
a Pt/KL zeolite nanocatalyst using the atomic layer deposition method. The authors found
that the prepared nanocatalyst provided high activity in the n-heptane catalytic reforming
reaction. It was noted that the toluene selectivity recorded a value of 67.3% with low
methane gas. Keshavarz and Salabat [36] synthesized mono- and bimetallic Pt–Re/Al2O3
nanocatalysts for n-heptane reforming using different surfactants. The authors indicated
that the nanocatalysts’ activity significantly depended on the catalyst synthesis process.
Kianpoor et al. [37] evaluated the activity of a prepared Au–Pt bimetallic nanocatalyst
using purified naphtha as a feedstock for a reforming reaction. The operating conditions
were a temperature of 485 ◦C, a weight hour space velocity (WHSV) between 2–6 h−1, and
an operating pressure of 5 bar. They found that the addition of Au to Pt in a ratio of 1:99
provided high naphthene conversion, high aromatics production, and low production of
benzene and cracking gases. Sukkar [38] evaluated the catalytic reforming of n-heptane
using prepared Pt/HY, Pt-Ge/HY, and Pt-Re/HY nanocatalysts. The author found that
the addition of germanium as a promotor provided the highest catalyst performance
in comparison with other types of nanocatalysts at an operating temperature of 480 ◦C.
Yan et al. [39] improved the reforming of n-octane using a synthesized Pt/KY catalyst.
They observed that the n-octane aromatization reaction provides a selectivity of 78.9%.
Furthermore, the authors noted that the addition of potassium reduces the undesired
products in the reforming process.

Designing and synthesizing an economically viable nanocatalyst that maintains high
catalytic efficiency and stability is the most critical factor for the catalytic reforming of
n-paraffin. Several improvements have been reported in the literature to prevent catalyst
deactivation by coke formation [40–44] Most studies report enhancing the acidity of the cat-
alyst and/or the use of noble metal promoters. Nevertheless, when designing nanocatalysts,
the choice of a suitable metal promoter is becoming more challenging due to the complexity
of catalytic reforming reactions [45–50]. According to a literature survey, nanocatalysts
have not been employed at industrial scale until recently due to some practical limitations;
additionally, deep studies at the pilot plant scale are required. Moreover, nanocatalysts are
usually synthesized at a high cost in comparison with classical commercial catalysts [38,46].
The development of nanocatalysts needs effective criteria to evaluate their performance,
cost, and lifetime. Therefore, the main aim of the present work is to synthesize efficient
bimetallic nanocatalysts of Pt-Zn/HY and Pt- Rh/HY for the heptane catalytic reforming
process. Additionally, this study evaluates the influence of the operating conditions on the
performance of the catalytic reforming process to produce high-octane gasoline.

2. Materials and Methods
2.1. Materials

High-purity normal heptane (99.8%) purchased from Sigma-Aldrich (USA) was used
in the present investigation as a feedstock for the reaction. Other chemicals used in the
present study include hexachloroplatinic acid (H2PtCl6) of 40% wt. Pt, obtained from
Honeywell Riedel-de-Haën™ (Germany), as well as sodium aluminate material (NaAlO2)
of 98.45% purity and sodium silicate material (Na2SiO3) of 98.27% purity from Fluka
Corporation (Germany). Moreover, zinc chloride (ZnCl2) of 99.31% purity and rhodium
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chloride (RhCl3·nH2O) of 40% Rh purity from Shanxi-Kaida Company (China) were used
in this study. Moreover, H2 gas was used in a chemical reaction, with a purity of 99.98%,
from Al-Mansour factory (Baghdad).

2.2. Synthesis of Nano Y-Zeolite

In the present work, nano-size Y-zeolite was prepared using the sol–gel technique. As
a first step, an NaOH solution and NaAlO2 were mixed together as a seed–gel mixture.
Next, an Na2SiO3 solution was prepared in a 500-mL conical flask under stirring conditions
for 30 min and aged at 25 ◦C for 30 h. Then, the first mixture was added to the second
solution and stirred for 30 min at a mixing speed of 1600 rpm [33,38]. Next, a semisolid
product was produced in an electrical furnace at an operating temperature of 100 ◦C for
24 h. This product was passed through a Buchner funnel to remove the aqueous phase.
Then, the product was washed with deionized water four times. The final product of the
prepared nano-Y-zeolite was subjected to a drying process to remove any physical water at
110 ◦C for 24 h. The produced Y-zeolite was then thermally treated by a calcination process
using a muffle furnace in an oxygen environment at 550 ◦C for 5 h.

2.3. Preparation of Pt/HY, Pt-Zn/HY, and Pt-Rh/HY Nanocatalysts

Three kinds of reforming reaction nanocatalysts were prepared (i.e., Pt/HY, Pt-Zn/HY,
and Pt-Rh/HY). The synthesized NaY zeolite was subjected to an ion-exchanging process
using 3 N of an NH4Cl solution. In this process, HY zeolite was synthesized after many
stages of treatment [14,30]. Moreover, a modified impregnation method was applied using
a sonication bath to synthesize the Pt/HY (0.3 Pt.%) nanocatalyst. Using this method,
the HY zeolite was impregnated with a solution of H2PtCl6 via a dropwise approach
under continuous mixing for 5 h at room temperature. The mixture was evaporated under
continuous mixing conditions in the sonication bath for 6 h at 110 ◦C. The product was then
subjected to drying process overnight at 110 ◦C. Furthermore, the produced nanocatalyst
was calcined with oxygen at 550 ◦C for 5 h. The final step of the Pt/HY nanocatalyst
synthesis included reduction by hydrogen at 400 ◦C for 5 h. Figure 1 summarizes the
synthesis stages of the Pt/HY nanocatalyst.
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The preparation of bimetallic nanocatalysts requires the accurate weight of metal
additions to ensure the needed percentages of each metal load. Accordingly, the synthesized
Pt/HY nanocatalyst was used as a base catalyst for the other two types of bimetallic
nanocatalysts. Then, Pt-Zn/HY and Pt-Rh/HY nanocatalysts were prepared by employing
the co-impregnation method by adding each metal salt to the base nanocatalyst. Then,
1.2 mg/mL of zinc chloride salt solution was used in the synthesis of the Pt-Zn/HY
nanocatalyst. A salt solution weighing 0.92 mg/L was added to the base nanocatalyst.
However, the Pt-Rh/HY nanocatalyst was synthesized by immersion of each 10 g of Pt/HY
nanocatalyst in 200 mL (0.3 wt%) of aqueous solution of RhCl3. The Pt-Zn/HY and Pt-
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Rh/HY nanocatalysts were dried at 110 ◦C for 24 h, followed by a calcination step with
oxygen at 500 ◦C for 5 h. The final step included the nanocatalyst reduction by H2 at
450 ◦C for 3 h. Furthermore, to ensure the concentration of each metal on the catalyst at the
required value, the chemical analysis results showed that the metal load on the catalyst
support was 0.3, 0.32, and 0.31 for platinum, zinc, and rhodium, respectively. These values
were checked with X-ray fluorescence (XRF) analysis. At this stage, the three kinds of
prepared nanocatalysts (i.e., Pt/HY, Pt-Zn/HY, and Pt-Rh/HY) were ready for catalyst
performance evaluation tests. Various types of nanocatalyst characterization devices were
used, such as scanning electron microscopy (SEM, VEGA, Czech Republic), X-ray powder
diffraction (XRD) (6000, Shimadzu, Japan), X-ray fluorescence (XRF) XRF (model type-
7000, Shimadzu), and surface analysis using the Brunauer–Emmett–Teller (BET) of N2
adsorption method.

2.4. Experimental System and Procedures

The performance of the prepared nanocatalysts was evaluated using a catalytic reform-
ing unit with n-heptane as a feedstock. Figure 2 illustrates the schematic representation
of the reaction rig. The reaction was carried out in a packed bed reactor constructed from
stainless steel with a height and inner diameter of 25 and 2 cm, respectively. The reactor was
enclosed by an electric furnace to provide the required reaction temperature at a constant
heating rate. Additionally, a preheating system was supported before the reactor to provide
an appropriate heating rate to the hydrocarbon mixture at a temperature of 140 ◦C. The
inside reactor pressure was managed using sensitive pressure gauges. A calibrated flow
meter was used to measure the volumetric flow rate of the hydrocarbon feedstock. More-
over, the reactor bulk temperature was controlled with the aid of a temperature control
apparatus containing a temperature sensor (type K). An electrical furnace was utilized to
supply the needed heating amount to the reactor at a constant distribution with constant
operating temperature.
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Figure 2. Schematic representation of the catalytic reforming rig.

Additionally, to assure the validity of the present work results, all sets of experiments
were measured twice. Accordingly, an error analysis was estimated on the system variables
(i.e., temperature, pressure, the flow rate of hydrogen gas, and the flow rate of n-heptane)
by employing statistical analysis methods. Then, the uncertainty measurement was carried
out in this system. Actually, the accuracy of the experimental results was estimated by
calculating the standard errors of deviation (SD) between the measurements, which were
recorded values of 0.01 to 1.4%. Moreover, all equipment and devices in the experimen-
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tal apparatus were carefully calibrated to minimize experimental errors [24,47]. Table 1
illustrates the estimated experimental parameter uncertainties.

Table 1. Calculated experimental work uncertainties of catalytic reforming parameters.

Parameter Uncertainty (%)

Total WHSV ±0.04

Temperature (◦C) ±0.2

Pressure (bar) ±1.4

Hydrogen Flow Rate (cm3/s) ±0.02

n-Heptane Flow Rate (cm3/s) ±0.01

The performance of prepared Pt/HY, Pt-Zn/HY, and Pt-Rh/HY nano-catalysts was
achieved in the catalytic process rig. For each kind of nanocatalyst, a mass of 10 g was
loaded into the reaction zone inside the reactor. The catalyst was activated with H2 gas
before starting each experimental run at a temperature of 450 ◦C for 1 h. The catalytic
reforming process was achieved at a pressure of 1 bar, WHSV of 4, hydrogen/n-heptane
ratio of 4, and reaction temperatures of 425, 450, 475, 500, and 525 ◦C. Table 2 summarizes
the main operating parameters of the reforming reaction of n-heptane. The reforming
products were measured using a gas chromatography device (GC-2010, FID, Shimadzu,
Japan), and nitrogen was used as a carrier gas in the analysis process. The capillary column
type (ZB-FFAP) was applied with length of 30 m, I.D. of 0.32 mm, and FD = 0.50 µm.
Moreover, the evaluation of catalyst selectivity regards the major task in determining the
performance of the catalytic reforming process. Accordingly, the estimation of the prepared
nanocatalysts’ selectivity for the n-heptane reactions is the main criterion for the catalyst’s
efficiency as a function of operating temperature or reaction time. Actually, selectivity can
be calculated as the ratio of the desired product to undesired product [6,34].

Table 2. Experimental operating conditions of the catalytic reforming process.

Operating Parameters Value

Temperature range (◦C) 425, 450, 475, 500, and 525
Pressure (bar) 1.0
Total WHSV 4.0

Hydrogen/n-Heptane ratio 4.0

3. Results and Discussion
3.1. Characterization of the Prepared Nano-Y-Zeolite

The structure of the prepared Y-zeolite was evaluated using XRD analysis, as presented
in Figure 3, which shows that the prepared Y-zeolite had a high crystalline structure
without impurities. The structural measurements showed that the SiO2/Al2O3 ratio was
3. The resulting XRD pictures of the synthesized nano-Y-zeolite were in accordance with
standard structural results [11,33,38]. Moreover, Table 3 summarizes the XRF results
of the synthesized nano Y-zeolite composition. Additionally, it is clear such results are
in accordance with XRD results. Furthermore, the morphological characteristics of the
prepared Y-zeolite were measured using high-magnification SEM, as shown in Figure 4.
The average particle size of the synthesized Y-zeolite was estimated using ImageJ software
(version 1.8) [49]. Accordingly, by the analysis of the SEM image of the produced zeolite
sample, the average particle size was determined accurately to be 48 nm. Furthermore, it
was noted that the Y-zeolite has a spherical and uniform shape. Moreover, the zeolite’s total
surface area (SA) and pore volume (PV) were evaluated to be 610 m2/g and 0.37 cm3/g,
respectively. Therefore, the high surface area was extremely effective in the n-heptane
reforming process.
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Table 3. Chemical composition of the synthesized nano NaY-zeolite.

Compound Weight%

SiO2 56.47
Al2O3 19.08
Na2O 24.10
CaO 0.210
MgO 0.083
Fe2O3 0.057

(Si/Al) ratio = 2.960
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3.2. Evaluation of the Nanocatalyst Surface Area

The catalyst’s total surface area plays a key factor in determining the reaction mecha-
nism to create the desired products. Table 4 shows the main properties of the synthesized
nanocatalysts. The nanocatalysts (i.e., Pt/HY, Pt-Zn/HY, and Pt-Rh/HY) had surface areas
of 612, 608, and 605 m2/g, respectively, indicating that the catalysts’ surface areas were
reduced slightly due the presence of the second metal on the support surface to form a
bimetallic nanocatalyst. Additionally, the results showed that the prepared nanocatalysts
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had pore volumes of 0.42, 0.411, and 0.415 cm3/g, respectively. Moreover, the nanocatalysts’
pore volumes were generally constant, with only slight changes.

Table 4. Total surface area and pore volume of the prepared nanocatalysts.

Property Pt/HY Pt-Zn/HY Pt-Rh/HY

Metal Load Wt. (%) 0.3 Pt 0.3% Pt and 0.31% Zn 0.3 % Pt and 0.32 % Rh

Surface Area (m2/g) 608 584 593

Pore Volume (cm3/g) 0.420 0.405 0.413

3.3. Evaluation of the Nanocatalysts’ Activities

In catalytic reforming processes, the catalyst’s performances (e.g., catalyst activity,
selectivity, and lifetime) are key factors in determining the produced gasoline fuel quality.
Figure 4 summarizes the number of generated iso-paraffins from the catalytic reforming
process of n-heptane at different reforming temperatures. The results in Figure 5 show that
the amount of iso-paraffin is deeply influenced by the operating temperature. The reaction
temperature that provided the highest amount of iso-paraffins was 500 ◦C. Accordingly,
at this operating temperature for the Pt-Zn/ HY-nanocatalyst, the iso-paraffin recorded
values of 9.3, 13.9, 22.4, 23.5, and 20.1% at an operating temperature of 425, 450, 475, 500,
and 525 ◦C, respectively. In addition, an increase in the operating reaction temperature
above 500 ◦C had a significant effect on the number of isomers hydrocarbons, which is
a positive indication of increasing branched hydrocarbons, which are associated with
high-octane gasoline. Branched iso-paraffin products improve the quality of gasoline and
increase the octane number dramatically [4,9,23,37]. Therefore, modern refineries focus on
increasing the number of branched hydrocarbons and reducing the number of aromatics
of hydrocarbons due to their pathogenic activity in relation to human health and the
environment. Additionally, the introduction of Zn metal in the catalyst as a bimetal can
promote the hydroisomerization activity by suppressing undesirable n-heptane reactions,
such as hydrogenolysis.
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In the catalytic reforming reactor, many mechanisms occur, depending on the catalyst
activity and the reaction kinetics. A typical Pt/Al2O3 catalyst initiates the reforming
mechanism by achieving hydrogenation and dehydrogenation reactions on the metal sites
and hydroisomerization and aromatization reactions on the acid sites [10,16]. All of these
reactions provide the final picture of the distribution of catalytic reforming products and
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catalyst performance. The formation of aromatic hydrocarbons is a highly endothermic
reaction. Then, operating under higher temperatures with low H2 partial pressures in the
reactor negatively impacts the catalyst’s performance, causing coke to form on the catalyst’s
surface. Zhou et al. [19] and Bowker et al. [26] showed that the chemical reactions, such as
hydroisomerization, cracking, and hydrogenolysis, are exothermic reactions and require
lower operating temperatures with higher H2 partial pressure.

Figure 4 illustrates the effect of the operating temperature on the distribution of iso-
paraffins over the synthesized nanocatalysts. The reformate products consisted of a high
percentage of branched isomers having high-octane gasoline. The results indicated that at
an operating temperature of 500 ◦C, the formed isomers over the Pt/HY, Pt-Zn/HY, and
Pt-Rh/HY nanocatalysts were 17.2, 15.7, and 13.8 mole%, respectively. The highest quantity
isomers were formed over the Pt-Zn/HY catalyst. Moreover, the number of produced
isomers decreased when the operating temperature rose above 500 ◦C due to cracking
reactions. An increase in temperature over 500 ◦C will produce more gaseous products due
to thermal cracking reactions [5,34].

Figure 5 shows the percentage of produced aromatic hydrocarbons (BTX) at different
operating temperatures. The number of aromatics was highly influenced by the reaction
temperature, with the highest number of aromatic hydrocarbons found at 500 ◦C for all
three types of synthesized nanocatalysts. Therefore, as the reaction temperature increased
in the reactor, the produced aromatics increased. Moreover, above 500 ◦C, the aromatic
hydrocarbons underwent a clear reduction due to increased cracking reactions of n-heptane.
Furthermore, the addition of other metals, such as Zn, in the nanocatalyst structure did not
significantly affect the dehydrocyclization activity of n-heptane. Actually, Zn improved
the reducibility of the Pt species by improving the Pt dispersion ability on the surface
of the nanocatalyst. Hence, the bimetallic nanocatalysts (i.e., Zn and Rh) increased the
number of acid sites on the catalyst. These metals also provided significant suppression
of hydrogenolysis and cracking activities. The same observation was indicated by many
authors, such as Arsentev et al. [10], Hanafi et al. [31], Keshavarz and Salabat [36].

From a thermodynamics point of view, Martínez et al. [4], Ahmedzeki et al. [8], and
Shi et al. [45] showed that the maximum quantities of the desired reforming products, such
as isomers and aromatics, are usually generated from chemical reactions at equilibrium
conditions. Then, the operating pressure and temperature, in this case, can determine
the equilibrium compositions of these compounds, and a perfect catalyst design can be
achieved. Accordingly, the maximum number of desired hydrocarbons can be produced
with minimal side reactions (cracking reactions). The present experimental results indicated
that the chemical reactions of n-heptane are quite sensitive to the reaction temperature in
the reactor. Therefore, researchers have sought the best operating temperature to enhance
the production of high-octane gasoline [1,35]. Furthermore, Martínez et al. [4] noted that
the presence of H2 in the reforming reactor is beneficial in preventing catalyst deactivation
and reducing undesirable by-product formation. Therefore, in the present investigation an
H2/H.Cs ratio with an acceptable value of 4 was applied. Actually, using high H2/H.Cs
ratios increased the energy cost. Thus, the lower boundary of H2 can be dictated by
the desired quantity for hydrocracking with low catalyst deactivation to save the energy
consumed in the reforming system.

Figure 6 shows the effect of the operating temperature on the quality of the produced
cracking gases. The three prepared nanocatalysts formed low-cracking products from
n-heptane reforming, but the operating temperature played a key role in the distribution
of cracking gases. At 500 ◦C, it was noted that the generated cracking gases for the syn-
thesized Pt/HY, Pt-Rh/HY, and Pt-Zn/HY nanocatalysts recorded values of 15.3, 11.4,
and 10.1 mole%, respectively. Accordingly, the present work was achieved at atmospheric
pressure, which represents a severe condition that produced more gaseous products. How-
ever, the use of such operating conditions indicated that the Pt-Zn/HY nanocatalyst is the
optimal catalyst, as it produced low-cracking products.
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Al-Shathr et al. [14], Zhang et al. [22], Said-Aizpuru et al. [29], and Rabe [46] indicated
that the main variables that influence the activity of the applied catalyst in the catalytic
reforming unit significantly depends on the operating temperature, hydrocarbon feed
specifications, residence time, operating pressure, and H2/HCs ratio. In the present work,
it was noted that the reaction temperature is the chief factor that determines the quality of
the produced reformate from the reaction. Moreover, the quality of the reformate from the
reactions is also fundamentally dependent on the main reaction over the catalyst, such as
hydroisomerization, aromatization, and cracking conversions. Then, from the perspective
of management, the reaction temperature is the predominant factor that controls the
product types in each reaction. Therefore, all prepared nanocatalysts (Pt/HY, Pt-Rh/HY,
and Pt-Zn/HY) work to minimize the produced cracking gases (C1-C3) and seek a high
rate of branched hydrocarbons, which are present in high-octane gasoline. In addition,
in recent years, most petroleum refineries have focused on minimizing aromatics in the
reformate due to environmental considerations [2,17,43].

On an industrial scale in a petroleum refinery, the catalytic reforming unit consists
of three major reactors that differ in size. The first is the smallest, the second is larger,
and the third is the largest. This difference in the reactor size is related to the nature of
the chemical reactions that occur in each reactor. In the first one, high-speed reactions of
hydrogenation/dehydrogenation are achieved. Furthermore, such reactions usually occur
on the metal sites with endothermic behavior. Thus, a clear temperature drop is typically
observed in this reactor. Moreover, slow reactions, such as isomerization and cyclization,
are achieved in the second and third reactors [5,22].

3.4. Evaluation of n-Heptane Conversion

Figure 7 shows the results of the n-heptane total conversion at 500 ◦C over the Pt/HY,
Pt-Zn/HY, and Pt-Rh/HY nanocatalysts at a WHSV of 4. At the initial reaction operation
of 5 h, the total conversion gave values for each nanocatalyst of 72, 86.4, and 91.3%,
respectively. The catalyst performance results with time indicated that the catalyst activity
declined significantly due to carbon deposited on the active sites. Moreover, the bimetallic
nanocatalysts showed higher stability in comparison with the monometallic nanocatalysts.
The Pt-Zn/HY catalyst was highly stable and active in producing gasoline from n-heptane.
The value of WHSV (4) provided the highest n-heptane conversion with a long lifetime,
indicating it was highly stable. In catalytic reforming units, catalyst deactivation generally
results from coke formation, poisoning, and sintering, with coking as the chief reason
for deactivation [19,26,43]. Coke is formed due to some side reactions of naphthenic
hydrocarbons [7].
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3.5. Evaluation of Catalyst Selectivity

The evaluation of the nanocatalysts’ selectivity with reaction time allows for excellent
control for the desired product distribution, including the production of iso-paraffins and
aromatics. Figure 8 shows the variation in the catalyst selectivity of the three synthesized
nanocatalysts with reaction time. The catalytic activity of the synthesized nanocatalysts
was highly influenced by Zn loading with Pt, which produced a clear improvement in the
selectivity toward the required products, with the Pt-Zn/HY nanocatalyst showing the
highest value of selectivity of about 97.5%. This value was stable over time for more than
10 h and then gradually decreased until a value of 68.7 % was achieved at 25 h. Moreover,
the other two nanocatalysts (i.e., Pt/HY and Pt-Rh/HY) gave selectivity values of 94.1%
and 82.9%, respectively, at 5 h of reaction time.
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The synthesized bimetallic Pt-Zn/HY nanocatalyst provided more stable operation
characteristics for the catalytic reforming of n-heptane over the reaction time. This behavior
was related to the influence of Zn, which is recognized for its effective stability with low
amounts of cracking gases. On the other hand, the gradual decrease in the catalysts’
selectivity is attributed to the low available nanocatalyst total surface reaction area due to
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carbon deposition on the active sites. Moreover, the reduction in the total surface area will
decrease the required number of available Lewis and Brønsted acid sites for the reaction
mechanism [17,45]. Accordingly, the comprising of the present study results with the results
of other authors, such as Keshavarz and Salabat [36] and Sukkar [38], and Singh et al. [42], it
was observed that the prepared Pt-Zn/HY nanocatalyst showed high performance toward
the n-heptane catalytic reforming reaction. Table 5 summarizes the comparison between
the present work results with that of many authors over different catalyst types.

Table 5. The comparison of the present work results with the results of many authors over different
kinds of catalysts (catalytic reforming of n-heptane).

Authors Catalyst Type Operating
Temperture

Catalyst
Selectivity%

Bowker et al. [26] Pt–Sn/γ-Al2O3 Catalyst 400 ◦C 64.2 (Conv.)
Said-Aizpuru et al. [29] Pt/γ-Al2O3-Cl Catalyst 410 ◦C 68.0

Xu et al. [35] Pt/KL Zeolite Nanocatalyst 420 ◦C 84.3
Sukkar [38] Pt-Ge/HY Nanocatalyst 480 ◦C 95.0

Shi et al. [45] Pt/Beta Zeolite-Rb Catalyst 450 ◦C 78.2
Present Work Pt-Zn/HY Nanocatalyst 500 ◦C 97.5

3.6. Reaction Mechanism over the Prepared Pt-Zn/HY Nanocatalysts

From a reaction mechanism point of view, HY-zeolite has many advantages, such as
the high total surface area and larger-pore volume in comparison with classical reforming
catalysts of Pt/Al2O3-Cl type [6,36,42]. In addition, HY-zeolite catalysts are characterized
by their high ability to resist the continents that appeared in the feedstock. On the other
hand, the main disadvantage of this type of catalyst is the high operating temperature
in comparison with industrial reforming catalysts. Actually, Y-zeolite has a 3D structural
network of hydrated aluminosilicate structures formed from the interlinked tetrahedral of
SiO4 and AlO4 [30,50]. All these specifications make the Y-zeolite able to serve efficiently
as a catalyst in different chemical reactions in the petroleum industry [13,25,39].

The use of n-heptane as a feedstock in the catalytic reforming process using the
synthesized bimetallic nanocatalysts usually obeys the bifunctional mechanism [8,23].
The commercial catalysts Pt/Al2O3 and Pt-Re/Al2O3 are bifunctional in their reaction
mechanism. As such, hydrogenation and dehydrogenation reactions occurred on the metal
sites. In these reactions, the intermediate olefins usually form from the chemical reaction of
creating paraffin. In contrast, aromatic hydrocarbons are formed from naphthene reactions.
Furthermore, the isomerization and cracking reactions were achieved on the acid sites of
the catalysts. Therefore, the n-heptane reaction included both kinds of active sites, and all
reactions occurred in typical reforming catalysts. Figure 9 summarizes the main chemical
reactions of the n-heptane conversion into products.

Additionally, benzene is produced from n-heptane on Pt sites. Moreover, the addition
of Zn and Rh to the nanocatalysts provided a more stable catalyst with a significant
conversion rate. Additionally, the results indicated higher selectivity in the direction of
the desired products, including branched and aromatic hydrocarbons. Furthermore, in
the present investigation, the prepared Pt-Zn/HY and Pt-Rh/HY nanocatalysts were more
stable against catalyst deactivation problems. In addition, limited cracking gases were
achieved under the best operating conditions. Accordingly, it can be seen that the addition
of Zn to the nanocatalyst modified the acid sites dramatically, especially providing great
resistance against coke formation. Therefore, a higher-than-normal production rate of the
desired products will occur due to the high activity and suitable operating conditions in the
reactor. All these parameters enhanced the nanocatalyst selectivity and stability over a long
lifetime. The thermodynamics of catalytic reforming process provides the chief criteria for
the evaluation of a catalyst’s performance. The reaction of n-heptane over the Pt-Zn/HY
nanocatalyst increased as the operating temperature rose to 500 ◦C, where the conversion
was 91.4%; however, for further temperature increases, the n-heptane production clearly
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decreased. Moreover, at 500 ◦C, the branched isomers and aromatics showed a selectivity
of 97.5%. Figure 10 summarizes the catalytic reforming mechanism over the prepared
Pt-Zn/HY nanocatalyst and presents the quality of the product distribution from the
reforming of n-heptane. The main desired products were isomers and aromatics, while the
undesirable products were cracking gases. Thus, the nanocatalyst can replace the classical
industrial reforming catalysts with high performance, with a low deactivation rate and a
low cost.
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Figure 10. Schematic representation of the n-heptane reactions over the bimetallic Pt-Zn/HY nanocatalyst.

4. Conclusions

The three synthesized nanocatalysts (i.e., Pt/HY, Pt-Zn/HY, and Pt- Rh/HY) showed
high performance toward n-heptane conversion in the catalytic reforming process. The
results demonstrated that a temperature of 500 ◦C provided the highest product distri-
bution of high-octane hydrocarbons, such as isomers and aromatics, with the greatest
catalyst selectivity (97.5) for the Pt-Zn/HY nanocatalyst. Moreover, it was noted that at
this operating temperature a low-value cracking gas (C1-C3) was obtained. The bimetallic
catalysts Pt-Zn/HY and Pt- Rh/HY provided a high rate of activity toward the desired
products with a low catalyst deactivation rate. Moreover, adding Zn and Rh to the nanocat-
alysts provided a more stable catalyst with a significant conversion rate. Additionally, the
bimetallic nanocatalyst Pt-Zn/HY showed high stability against coke formation with a
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long lifetime. This is attributed to the low reaction rate of unsaturated compounds that
usually initiate deactivation by fouling. A gradual decrease in the catalyst selectivity was
observed with time due to the low available catalyst total surface reaction area as a result
of coke deposition on the active sites; this caused a clear reduction in the available Lewis
and Brønsted acids. As a result, the synthesized nanocatalysts can replace the classical
industrial reforming catalysts with an enhanced performance with a low cost.
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