A Systematic Review on the Synthesis of Silicon Carbide: An Alternative Approach to Valorisation of Residual Municipal Solid Waste
Abstract
:1. Introduction
2. Structure of Silicon Carbide
3. Synthesis of Silicon Carbide
3.1. Microwave Sintering
3.2. DC Arc Discharge Plasma
3.3. Detonation Technique
3.4. Calcination Approach
3.5. Pyrolysis Technique
3.6. Molten Salt Synthesis Strategy
3.7. Sputtering Approach
3.8. Solvothermal Synthesis
3.9. Replica Technique
3.10. Siliconising Method
3.11. Solid State Approach
3.12. Carbothermal Reduction
3.13. Chemical Vapour Deposition
3.14. Sol-Gel Technique
3.15. Other Synthesis Techniques
3.15.1. Synthesis of Nanoparticles of SiC
3.15.2. Synthesis of Nanowhiskers of SiC
3.15.3. Synthesis of Nanowires of SiC
3.15.4. Synthesis of Nanofibres of SiC
3.15.5. Synthesis of SiC Using Polycarbosilane
3.15.6. Synthesis of SiC Using In Situ Reaction Synthesis
4. Purification Approaches of Silicon Carbide
4.1. Thermal Treatment
4.2. Acid Leaching
4.3. Floatation
5. Properties of Silicon Carbide
5.1. Biomimetic Properties of Silicon Carbide
5.2. Surface Properties of SiC
5.3. Thermal Properties of SiC
5.4. Electrical Properties of SiC
6. Applications of SiC
6.1. Wastewater Treatment-Based Applications of SiC
6.2. Composite-Based Applications
6.3. SiC Used for Energy Applications
6.4. Medical Applications of SiC
6.5. Applications of Non-Stoichiometric SiC
7. Conclusions and Future outlooks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ram, C.; Kumar, A.; Rani, P. Municipal solid waste management: A review of waste to energy (WtE) approaches. BioResources 2021, 16, 4275–4320. [Google Scholar] [CrossRef]
- Hossain, R.; Sahajwalla, V. Molecular recycling: A key approach to tailor the waste recycling for high-value nano silicon carbide. J. Clean. Prod. 2021, 316, 128344. [Google Scholar] [CrossRef]
- Basov, D.N.; Averitt, R.D.; Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater 2017, 16, 1077–1088. [Google Scholar] [CrossRef] [PubMed]
- Acheson, E.G. Carborundum: Its history, manufacture and uses. J. Franklin Inst. 1893, 136, 194–203. [Google Scholar] [CrossRef]
- Wang, D.; Li, Z.; Zhang, H.; Sun, J.; Tang, Y.; Huang, L. Plasmonic Au activates anchored Pt-Si bond in Au-Pt-SiC promoting photocatalytic hydrogen production. J. Alloys Compd. 2022, 915, 165450. [Google Scholar] [CrossRef]
- Deshpande, A.; Chen, Y.; Narayanasamy, B.; Yuan, Z.; Chen, C.; Luo, F. Design of a high-efficiency, high specific-power three-level t-type power electronics building block for aircraft electric-propulsion drives. IEEE J. Emerg. Sel. 2020, 8, 407–416. [Google Scholar] [CrossRef]
- Francis, A.M.; Holmes, J.; Chiolino, N.; Barlow, M.; Abbasi, A.; Mantooth, H.A. High-Temperature Operation of Silicon Carbide CMOS Circuits for Venus Surface Application. Addit. Conf. 2016, 2016, 000242–000248. [Google Scholar] [CrossRef]
- Choi, W.-Y.; Yang, M.-K. High-efficiency design and control of zeta inverter for single-phase grid-connected applications. Energies 2019, 12, 974. [Google Scholar] [CrossRef] [Green Version]
- La Via, F.; Severino, A.; Anzalone, R.; Bongiorno, C.; Litrico, G.; Mauceri, M.; Schoeler, M.; Schuh, P.; Wellmann, P. From thin film to bulk 3C-SiC growth: Understanding the mechanism of defects reduction. Mater. Sci. Semicond. Process. 2018, 78, 57–68. [Google Scholar] [CrossRef]
- Nishino, S.; Powell, J.A.; Will, H.A. Production of large-area single-crystal wafers of cubic SiC for semiconductor devices. Appl. Phys. Lett. 1983, 42, 460–462. [Google Scholar] [CrossRef]
- Pak, A.; Ivashutenko, A.; Zakharova, A.; Vassilyeva, Y. Cubic SiC nanowire synthesis by DC arc discharge under ambient air conditions. Surf. Coat. Technol. 2020, 387, 125554. [Google Scholar] [CrossRef]
- Langenderfer, M.; Bohannan, E.; Watts, J.; Fahrenholtz, W.; Johnson, C.E. Relating detonation parameters to the detonation synthesis of silicon carbide. J. Appl. Phys. 2022, 131, 175902. [Google Scholar] [CrossRef]
- Wang, Q.; Yokoji, M.; Nagasawa, H.; Yu, L.; Kanezashi, M.; Tsuru, T. Microstructure evolution and enhanced permeation of SiC membranes derived from allylhydridopolycarbosilane. J. Membr. Sci. 2020, 612, 118392. [Google Scholar] [CrossRef]
- Nishioka, K.; Komori, J.; Maeda, K.; Ota, Y.; Kaneko, H.; Sato, K. Formation of silicon carbide using volcanic ash as starting material and concentrated sunlight as energy resource. Int. J. Photoenergy 2015, 2015, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Majid, A.; Rani, N.; Malik, M.F.; Ahmad, N.; Najam-al-Hassan; Hussain, F.; Shakoor, A. A review on transition metal doped silicon carbide. Ceram. Int. 2019, 45, 8069–8080. [Google Scholar] [CrossRef]
- Kimoto, T. Bulk and epitaxial growth of silicon carbide. Prog. Cryst. Growth Charact. Mater. 2016, 62, 329–351. [Google Scholar] [CrossRef]
- Pizzagalli, L. Accurate values of 3C, 2H, 4H, and 6H SiC elastic constants using DFT calculations and heuristic errors corrections. Philos. Mag. Lett. 2021, 101, 242–252. [Google Scholar] [CrossRef]
- Sobayel, M.K.; Chowdhury, M.S.; Hossain, T.; Alkhammash, H.I.; Islam, S.; Shahiduzzaman, M.; Akhtaruzzaman, M.; Techato, K.; Rashid, M.J. Efficiency enhancement of CIGS solar cell by cubic silicon carbide as prospective buffer layer. Sol. Energy 2021, 224, 271–278. [Google Scholar] [CrossRef]
- Metzger, W.K.; Grover, S.; Lu, D.; Colegrove, E.; Moseley, J.; Perkins, C.L.; Li, X.; Mallick, R.; Zhang, W.; Malik, R.; et al. Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat. Energy 2019, 4, 837–845. [Google Scholar] [CrossRef]
- Yaghoubi, A.; Singh, R.; Melinon, P. Predicting the primitive form of rhombohedral silicon carbide (9R-SiC): A pathway toward polytypic heterojunctions. Cryst. Growth Des. 2018, 18, 7059–7064. [Google Scholar] [CrossRef]
- Anisimov, A.N.; Babunts, R.A.; Breev, I.D.; Soltamov, V.A.; Mokhov, E.N.; Baranov, P.G. High-temperature spin manipulation on color centers in rhombic silicon carbide polytype 21R-SiC. JETP Lett. 2020, 112, 774–779. [Google Scholar] [CrossRef]
- Moshtaghioun, B.M.; Poyato, R.; Cumbrera, F.L.; de Bernardi-Martin, S.; Monshi, A.; Abbasi, M.H.; Karimzadeh, F.; Dominguez-Rodriguez, A. Rapid carbothermic synthesis of silicon carbide nano powders by using microwave heating. J. Eur. Ceram. Soc. 2012, 32, 1787–1794. [Google Scholar] [CrossRef]
- Zhan, H.; Zhang, N.; Wu, D.; Wu, Z.; Bi, S.; Ma, B.; Liu, W. Controlled synthesis of β-SiC with a novel microwave sintering method. Mater. Lett. 2019, 255, 126586. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Y.; Wei, S.; Si, Y.; Wang, H.; Zhang, R.; Wang, G.; Song, L.; Fan, B. Microwave heating and mechanism for seed-induced synthesis of SiC. Mater. Today Commun. 2022, 31, 103846. [Google Scholar] [CrossRef]
- Pak, A.Y.; Larionov, K.; Korchagina, A.; Yakich, T.Y.; Nalivaiko, A.Y.; Gromov, A. Silicon carbide obtaining with DC arc-discharge plasma: Synthesis, product characterization and purification. Mater. Chem. Phys. 2021, 271, 124938. [Google Scholar] [CrossRef]
- Langenderfer, M.J.; Fahrenholtz, W.G.; Chertopalov, S.; Zhou, Y.; Mochalin, V.N.; Johnson, C.E. Detonation synthesis of silicon carbide nanoparticles. Ceram. Int. 2020, 46, 6951–6954. [Google Scholar] [CrossRef]
- Tan, R.; Zhou, J.; Yao, Z.; Wei, B.; Li, Z. A low-cost lightweight microwave absorber: Silicon carbide synthesized from tissue. Ceram. Int. 2021, 47, 2077–2085. [Google Scholar] [CrossRef]
- Rajarao, R.; Sahajwalla, V. A cleaner, sustainable approach for synthesising high purity silicon carbide and silicon nitride nanopowders using macadamia shell waste. J. Clean. Prod. 2016, 133, 1277–1282. [Google Scholar] [CrossRef]
- Sun, K.; Wang, T.; Chen, Z.; Lu, W.; He, X.; Gong, W.; Tang, M.; Liu, F.; Huang, Z.; Tang, J.; et al. Clean and low-cost synthesis of high purity beta-silicon carbide with carbon fiber production residual and a sandstone. J. Clean. Prod. 2019, 238. [Google Scholar] [CrossRef]
- Alweendo, S.T.; Johnson, O.T.; Shongwe, M.B.; Kavishe, F.P.L.; Borode, J.O. Synthesis, optimization and characterization of silicon carbide (SiC) from Rice Husk. Procedia Manuf. 2019, 35, 962–967. [Google Scholar] [CrossRef]
- Wang, T.; Gong, W.; He, X.; Kou, Z.; Tan, G.; Zhou, S.; Yu, H.; Fan, M.; Kung, H.H. Synthesis of highly nanoporous β-silicon carbide from corn stover and sandstone. ACS Sustain. Chem. Eng. 2020, 8, 14896–14904. [Google Scholar] [CrossRef]
- Masoudifar, S.; Bavand-Vandchali, M.; Golestani-Fard, F.; Nemati, A. Molten salt synthesis of a SiC coating on graphite flakes for application in refractory castables. Ceram. Int. 2016, 42, 11951–11957. [Google Scholar] [CrossRef]
- Li, W.; Jia, Q.; Liu, X.; Zhang, J. Large scale synthesis and photoluminescence properties of necklace-like SiC/SiOx heterojunctions via a molten salt mediated vapor reaction technique. Ceram. Int. 2017, 43, 2950–2955. [Google Scholar] [CrossRef]
- Akshara, P.C.; Rajaram, G.; Krishna, M.G. Single composite target magnetron sputter deposition of crystalline and amorphous SiC thin films. Mater. Res. Express 2018, 5, 036410. [Google Scholar] [CrossRef]
- Li, H.X.; Li, G.Y.; Hu, T.J.; Li, X.D.; Yang, Y.Q. Preparation of amorphous silicon carbide nanostructures via solvothermal method. Appl. Mech. Mater. 2014, 597, 49–52. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Wang, R.J.; Liu, G.W.; Shao, H.C.; Zhang, K.; Shi, Z.Q.; Qiao, G.J. Preparation of silicon carbide reticulated porous ceramics by organic foam impregnation. Mater. Sci. Forum 2015, 814, 574–578. [Google Scholar] [CrossRef]
- Frolova, M.G.; Titov, D.D.; Lysenkov, A.S.; Kravchuk, K.S.; Istomina, E.I.; Istomin, P.V.; Kim, K.A.; Kargin, Y.F. Properties of silicon carbide fibers obtained by silicification of carbon fabric with SiO vapours. Ceram. Int. 2020, 46, 18101–18105. [Google Scholar] [CrossRef]
- Mas’Udah, K.W.; Diantoro, M.; Fuad, A. Synthesis and structural analysis of silicon carbide from silica rice husk and activated carbon using solid-state reaction. J. Physics: Conf. Ser. 2018, 1093, 012033. [Google Scholar] [CrossRef] [Green Version]
- Ugraskan, V.; Isik, B.; Yazici, O.; Cakar, F. Surface characterization and synthesis of boron carbide and silicon carbide. Solid State Sci. 2021, 118, 106636. [Google Scholar] [CrossRef]
- Zhong, Y.; Shaw, L.L.; Manjarres, M.; Zawrah, M.F. Synthesis of silicon carbide nanopowder using silica fume. J. Am. Ceram. Soc. 2010, 93, 3159–3167. [Google Scholar] [CrossRef]
- Ceballos-Mendivil, L.G.; Cabanillas-López, R.E.; Tánori-Córdova, J.C.; Murrieta-Yescas, R.; Pérez-Rábago, C.A.; Villafán-Vidales, H.I.; Arancibia-Bulnes, C.A.; Estrada, C.A. Synthesis of silicon carbide using concentrated solar energy. Sol. Energy 2015, 116, 238–246. [Google Scholar] [CrossRef]
- Luo, Y.; Zheng, S.; Ma, S.; Liu, C.; Ding, J.; Wang, X. Novel two-step process for synthesising β-SiC whiskers from coal fly ash and water glass. Ceram. Int. 2018, 44, 10585–10595. [Google Scholar] [CrossRef]
- Echeverria, C.A.; Pahlevani, F.; Lim, S.; Sahajwalla, V. Synthesis and characterization of biomorphic 1D-SiC nanoceramics from novel macroalga precursor material. J. Clean. Prod. 2021, 312, 127808. [Google Scholar] [CrossRef]
- Leong, T.J.; Khalid, K.A.A.; Mohamed, K. Low temperature synthesis of silicon carbide nanowires on cathode for thermionic energy converter. Mater. Today Proc. 2019, 7, 704–709. [Google Scholar] [CrossRef]
- Najafi, A.; Golestani-Fard, F.; Rezaie, H.R.; Saeb, S.P. Sol-Gel synthesis and characterization of SiC–B4C nano powder. Ceram. Int. 2021, 47, 6376–6387. [Google Scholar] [CrossRef]
- Lee, C.C.; Kahar, S.M.; Voon, C.H. Microwave synthesis of silicon carbide nanowhiskers: Effect of molar ratio. Mater. Today Proc. 2021, 37, 119–121. [Google Scholar] [CrossRef]
- Ebadzadeh, T.; Marzban-Rad, E. Microwave hybrid synthesis of silicon carbide nanopowders. Mater. Charact. 2009, 60, 69–72. [Google Scholar] [CrossRef]
- Ding, J.; Deng, C.; Yuan, W.; Zhu, H.; Zhang, X. Novel synthesis and characterization of silicon carbide nanowires on graphite flakes. Ceram. Int. 2014, 40, 4001–4007. [Google Scholar] [CrossRef]
- Czosnek, C.; Bućko, M.M.; Janik, J.F.; Olejniczak, Z.; Bystrzejewski, M.; Łabędź, O.; Huczko, A. Preparation of silicon carbide SiC-based nanopowders by the aerosol-assisted synthesis and the DC thermal plasma synthesis methods. Mater. Res. Bull. 2015, 63, 164–172. [Google Scholar] [CrossRef]
- Kong, Y.; Zhong, Y.; Shen, X.; Gu, L.; Cui, S.; Yang, M. Synthesis of monolithic mesoporous silicon carbide from resorcinol–formaldehyde/silica composites. Mater. Lett. 2013, 99, 108–110. [Google Scholar] [CrossRef]
- Wei, J. Synthesis of nanoporous silicon carbide ceramics by thermal evaporation process. Appl. Surf. Sci. 2010, 256, 6626–6629. [Google Scholar] [CrossRef]
- Niu, J.; Wang, J. An approach to the synthesis of silicon carbide nanowires by simple thermal evaporation of ferrocene onto silicon wafers. Eur. J. Inorg. Chem. 2007, 25, 4006–4010. [Google Scholar] [CrossRef]
- Nussupov, K.K.; Beisenkhanov, N.B.; Seitov, B.Z.; Bakranova, D.I.; Keyinbay, S. The formation of SiC films by magnetron sputtering. Phys. Sci. Technol. 2018, 5, 23–28. [Google Scholar] [CrossRef]
- Eom, J.-H.; Kim, Y.-W.; Song, I.-H.; Kim, H.-D. Microstructure and properties of porous silicon carbide ceramics fabricated by carbothermal reduction and subsequent sintering process. Mater. Sci. Eng. A 2007, 464, 129–134. [Google Scholar] [CrossRef]
- Larpkiattaworn, S.; Ngernchuklin, P.; Khongwong, W.; Pankurddee, N.; Wada, S. The influence of reaction parameters on the free Si and C contents in the synthesis of nano-sized SiC. Ceram. Int. 2006, 32, 899–904. [Google Scholar] [CrossRef]
- Wu, S.; Kousaka, H.; Kar, S.; Li, D.; Su, J. Friction and wear performance of bearing ball sliding against diamond-like carbon coatings. Mater. Res. Express 2017, 4, 015602. [Google Scholar] [CrossRef]
- Ko, S.-M.; Koo, S.-M.; Cho, W.-S.; Hwnag, K.-T.; Kim, J.-H. Synthesis of SiC nano-powder from organic precursors using RF inductively coupled thermal plasma. Ceram. Int. 2012, 38, 1959–1963. [Google Scholar] [CrossRef]
- Omidi, Z.; Ghasemi, A.; Bakhshi, S.R. Synthesis and characterization of SiC ultrafine particles by means of sol-gel and carbothermal reduction methods. Ceram. Int. 2015, 41, 5779–5784. [Google Scholar] [CrossRef]
- Guo, X.; Song, H.; Li, Y.; Wang, P.; Liu, S. Fabrication of 4H–SiC nanoparticles using femtosecond pulsed laser ablation in deionized water. Opt. Mater. 2022, 132, 112817. [Google Scholar] [CrossRef]
- Borowik, Ł.; Chevalier, N.; Mariolle, D.; Martinez, E.; Bertin, F.; Chabli, A.; Barbé, J.-C. Controlled synthesis of SiC nanoparticles from surface silicon contamination. Thin Solid Films 2012, 527, 133–136. [Google Scholar] [CrossRef]
- Pang, Z.-Y.; Li, X.; Zhang, X.-Q.; Li, J.-J.; Wang, S.-J.; Xiong, X.-L.; Li, G.-S.; Xu, Q.; Zhou, Z.-F.; Zou, X.-L.; et al. Molten salt electrosynthesis of silicon carbide nanoparticles and their photoluminescence property. Trans. Nonferrous Met. Soc. China 2022, 32, 3790–3800. [Google Scholar] [CrossRef]
- Yang, G.; Wu, R.; Chen, J.; Song, F.; Pan, Y. Growth of silicon carbide whiskers in FexSiy flux. Mater. Chem. Phys. 2007, 106, 236–239. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, C.; Yu, C.; Wang, X.; Ding, J.; Zhu, H. Preparation of in situ grown silicon carbide whiskers onto graphite for application in Al2O3-C refractories. Ceram. Int. 2018, 44, 13944–13950. [Google Scholar] [CrossRef]
- Kahar, S.M.; Voon, C.H.; Lee, C.C.; Hashim, U.; Md Arshad, M.K.; Lim, B.Y.; Gopinath, S.B.; Rahman, W. Synthesis of SiC nanowhiskers from graphite and silica by microwave heating. Mater. Sci.-Pol. 2016, 34, 770–779. [Google Scholar] [CrossRef] [Green Version]
- Kahar, S.M.; Voon, C.H.; Lee, C.C.; Gopinath, S.C.B.; Md Arshad, M.K.; Lim, B.Y.; Foo, K.L.; Hashim, U. Synthesis of silicon carbide nanowhiskers by microwave heating: Effect of heating duration. Mater. Res. Express 2017, 4, 015005. [Google Scholar] [CrossRef]
- Voon, C.H. Synthesis of silicon carbide nanowhiskers by microwave heating: Effect of heating temperature. Inf. MIDEM 2017, 47, 101–112. [Google Scholar]
- Meng, G.W.; Zhang, L.D.; Qin, Y.; Mo, C.M.; Phillipp, F. Synthesis of β-SiC nanowires with SiO2 wrappers. Nanostructured Mater. 1999, 12, 1003–1006. [Google Scholar] [CrossRef]
- Hu, P.; Dong, S.; Zhang, X.; Gui, K.; Chen, G.; Hu, Z. Synthesis and characterization of ultralong SiC nanowires with unique optical properties, excellent thermal stability and flexible nanomechanical properties. Sci. Rep. 2017, 7, 3011. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Li, W.; Qu, B.; Liu, X.; Wang, R.; Zhuo, D.; Wu, L. Synthesis of high-purity SiC nanowires via catalyst-free pyrolysis of SiO2/Si and sponge-like graphene oxide. ACS Omega 2020, 5, 25319–25325. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, Z.; Huang, J.; Yan, M.; Zhang, M.; Zhang, L.; Li, X.; Feng, Z. Graphene-based SiC nanowires with nanosheets: Synthesis, growth mechanism and photoluminescence properties. Crystengcomm 2020, 22, 4074–4078. [Google Scholar] [CrossRef]
- Kao, K.; Jiang, M.; Ding, L.; Lin, W.; Chen, J. Catalytic synthesis of SiC nanowires in an open system. J. Am. Ceram. Soc. 2019, 102, 3070–3075. [Google Scholar] [CrossRef]
- Wang, P.; Liu, F.; Wang, H.; Li, H.; Gou, Y. A review of third generation SiC fibers and SiCf/SiC composites. J. Mater. Sci. Technol. 2019, 35, 2743–2750. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, X.; Yu, J.; Mummery, P. Effect of heat treatment on microstructure and mechanical properties of PIP-SiC/SiC composites. Mater. Sci. Eng. A 2013, 559, 808–811. [Google Scholar] [CrossRef]
- Luo, Z.; Cao, H.; Ren, H.; Zhou, X. Tension-tension fatigue behavior of a PIP SiC/SiC composite at elevated temperature in air. Ceram. Int. 2016, 42, 3250–3260. [Google Scholar] [CrossRef]
- Masripah; Zulys, A.; Setiawan, J. Synthesis of silicon carbide fiber as semiconductor substrate for Betavoltaic cell. J. Physics: Conf. Ser. 2018, 1025, 012129. [Google Scholar] [CrossRef]
- Li, F.; Cui, W.; Zhang, J.; Du, S.; Chen, Z.; Zhang, S.; Chen, K.; Liu, G. Synthesis, characterization and growth mechanism of SiC fibers. Mater. Chem. Phys. 2022, 291, 126703. [Google Scholar] [CrossRef]
- Istomina, E.I.; Istomin, P.V.; Nadutkin, A.V.; Kargin, Y.F.; Lysenkov, A.S. Preparation of a SiC Fiber textile material. Inorg. Mater. 2018, 54, 787–793. [Google Scholar] [CrossRef]
- Nair, S.G.; Subramania Siva, M.; Thomas, D.; Sreejith, K.J.; Prabhakaran, P.V.; Devasia, R. Liquid polycarbosilane as a potential chemical liquid vapour deposition precursor for SiC. Ceram. Int. 2019, 45, 17442–17446. [Google Scholar] [CrossRef]
- Krishnan, G.S.; Ramcharan, T.; Rao, R.R.; Naveen, S. Polymer-derived silicon carbide micro powders through selective solvent precipitation of high molecular weight polycarbosilane. Ceram. Int. 2021, 47, 17502–17509. [Google Scholar] [CrossRef]
- Cheng, Q.-M.; Interrante, L.V.; Lienhard, M.; Shen, Q.; Wu, Z. Methylene-bridged carbosilanes and polycarbosilanes as precursors to silicon carbide—from ceramic composites to SiC nanomaterials. J. Eur. Ceram. Soc. 2005, 25, 233–241. [Google Scholar] [CrossRef]
- Hu, S.; Yuan, J.; Wu, L.; Dai, H.; Ai, Y.; Deng, Y. Preparation and characterization of SiC fibers from PCS by electrospinning, curing and calcination process**. Chemistryselect 2021, 6, 11630–11637. [Google Scholar] [CrossRef]
- Lodhe, M.; Babu, N.; Selvam, A.; Balasubramanian, M. Synthesis and characterization of high ceramic yield polycarbosilane precursor for SiC. J. Adv. Ceram. 2015, 4, 307–311. [Google Scholar] [CrossRef] [Green Version]
- Colombo, P.; Paulson, T.E.; Pantano, C.G. Synthesis of silicon carbide thin films with polycarbosilane (PCS). J. Am. Ceram. Soc. 2005, 80, 2333–2340. [Google Scholar] [CrossRef]
- Zhang, G.-J.; Ohji, T. In situ reaction synthesis of silicon carbide-boron nitride composites. J. Am. Ceram. Soc. 2004, 84, 1475–1479. [Google Scholar] [CrossRef]
- Makarov, I.S.; Golova, L.K.; Mironova, M.V.; Vinogradov, M.I.; Bermeshev, M.V.; Berkovich, A.K.; Kulichikhin, V.G. Structural and morphological features of carbon—silicon-carbide fibers based on cellulose and triethoxyvinylsilane. Fibre Chem. 2018, 50, 79–84. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Shi, L.; Jiang, W.; Chen, L. Rapid fabrication of Ti3SiC2–SiC nanocomposite using the spark plasma sintering-reactive synthesis (SPS-RS) method. Scr. Mater. 2007, 56, 241–244. [Google Scholar] [CrossRef]
- Du, X.; Gao, T.; Li, D.; Wu, Y.; Liu, X. A novel approach to synthesize SiC particles by in situ reaction in Al–Si–C alloys. J. Alloy. Compd. 2014, 588, 374–377. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Kim, U.-S.; Hwang, K.-T.; Cho, W.-S.; Kim, K.-J. Recovery of metallurgical silicon from slurry waste. J. Korean Ceram. Soc. 2011, 48, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Santhosh, N.; Kempaiah, U.N.; Sajjan, G.; Gowda, A.C. Fatigue Behaviour of silicon carbide and fly ash dispersion strengthened high performance hybrid al 5083 metal matrix composites. J. Miner. Mater. Charact. Eng. 2017, 05, 274–287. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S.T.; Johra, F.T.; Jung, W.-G. Fabrication of silicon carbide from recycled silicon wafer cutting sludge and its purification. Appl. Sci. 2018, 8, 1841. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Li, T.; Zhao, L.; Zhang, S. Study on purification technology of silicon carbide crystal growth powder. Materials 2022, 15, 8190. [Google Scholar] [CrossRef] [PubMed]
- Boussaa, S.A.; Kheloufi, A.; Zaourar, N.B.; Bouachma, S. Iron and aluminium removal from algerian silica sand by acid leaching. Acta Phys. Pol. A 2017, 132, 1082–1086. [Google Scholar] [CrossRef]
- Lai, H.; Huang, L.; Xiong, H.; Gan, C.; Xing, P.; Li, J.; Luo, X. Hydrometallurgical purification of metallurgical grade silicon with hydrogen peroxide in hydrofluoric acid. Ind. Eng. Chem. Res. 2016, 56, 311–318. [Google Scholar] [CrossRef]
- Li, H.-C.; Chen, W.-S. Recovery of silicon carbide from waste silicon slurry by using flotation. Energy Procedia 2017, 136, 53–59. [Google Scholar] [CrossRef]
- Xu, M.; Girish, Y.R.; Rakesh, K.P.; Wu, P.; Manukumar, H.M.; Byrappa, S.M.; Udayabhanu; Byrappa, K. Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications. Mater. Today Commun. 2021, 28, 102533. [Google Scholar] [CrossRef]
- Chakrabarti, O.P.; Maiti, H.S.; Majumdar, R. Biomimetic synthesis of cellular SiC based ceramics from plant precursor. Bull. Mater. Sci. 2004, 27, 467–470. [Google Scholar] [CrossRef] [Green Version]
- Saini, I.; Sharma, A.; Dhiman, R.; Chandak, N.; Aggarwal, S.; Sharma, P.K. Functionalized SiC nanocrystals for tuning of optical, thermal, mechanical and electrical properties of polyvinyl alcohol. Thin Solid Film. 2017, 628, 176–183. [Google Scholar] [CrossRef]
- Saini, I.; Sharma, A.; Dhiman, R.; Ram, S.; Sharma, P.K. Structural and thermal characterization of polyvinylalcohol grafted SiC nanocrystals. Mater. Res. Express 2017, 4, 075015. [Google Scholar] [CrossRef]
- Alvari, M.D.; Kakroudi, M.G.; Salahimehr, B.; Alaghmandfard, R.; Asl, M.S.; Mohammadi, M. Microstructure, mechanical properties, and oxidation behavior of hot-pressed ZrB2–SiC–B4C composites. Ceram. Int. 2020, 47, 9627–9634. [Google Scholar] [CrossRef]
- Huseynov, E.M.; Naghiyev, T.G. Study of thermal parameters of nanocrystalline silicon carbide (3C-SiC) using DSC spectroscopy. Appl. Phys. A 2021, 127, 1–4. [Google Scholar] [CrossRef]
- Huseynov, E.M.; Naghiyev, T.G.; Aliyeva, U.S. Thermal parameters investigation of neutron-irradiated nanocrystalline silicon carbide (3C–SiC) using DTA, TGA and DTG methods. Phys. B Condens. Matter. 2020, 577, 411788. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Smith, D.S.; Yu, W.; France, D.M.; Singh, D.; Routbort, J.L. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids. Nanotechnology 2010, 21, 215703. [Google Scholar] [CrossRef]
- See, A.; Hassan, J.; Hashim, M.; Wahab, Z.A.; Halim, D.N.F.A.; Abdullah, M.S.; Azis, R.S. Dielectric behavior of β-SiC nano-powders in air between 30 and 400 °C. J. Mater. Sci. Mater. Electron. 2016, 27, 6623–6629. [Google Scholar] [CrossRef] [Green Version]
- Pourchez, J.; Forest, V.; Boumahdi, N.; Boudard, D.; Tomatis, M.; Fubini, B.; Herlin-Boime, N.; Leconte, Y.; Guilhot, B.; Cottier, M.; et al. In vitro cellular responses to silicon carbide nanoparticles: Impact of physico-chemical features on pro-inflammatory and pro-oxidative effects. J. Nanoparticle Res. 2012, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Huseynov, E.M. Neutron irradiation effects on the temperature dependencies of electrical conductivity of silicon carbide (3C-SiC) nanoparticles. Silicon 2017, 10, 995–1001. [Google Scholar] [CrossRef]
- Fraga, M.C.; Sanches, S.; Pereira, V.J.; Crespo, J.G.; Yuan, L.; Marcher, J.; de Yuso MV, M.; Rodríguez-Castellón, E.; Benavente, J. Morphological, chemical surface and filtration characterization of a new silicon carbide membrane. J. Eur. Ceram. Soc. 2017, 37, 899–905. [Google Scholar] [CrossRef]
- Dang, H.; Li, B.; Li, C.; Zang, Y.; Xu, P.; Zhao, X.; Fan, H.; Qiu, Y. One-dimensional Au/SiC heterojunction nanocomposites with enhanced photocatalytic and photoelectrochemical performances: Kinetics and mechanism insights. Electrochim. Acta 2018, 267, 24–33. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Li, X.; Dai, J.; Song, F.; Cao, X.; Lyu, X.; Crittenden, J.C. Enhanced photocatalytic activity of SiC-based ternary graphene materials: A DFT study and the photocatalytic mechanism. ACS Omega 2019, 4, 20142–20151. [Google Scholar] [CrossRef]
- Wang, H.Y.; Wang, Y.Q.; Hu, Q.F.; Li, X.J. Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array. Sens. Actuators B Chem. 2012, 166-167, 451–456. [Google Scholar] [CrossRef]
- Yang, K.; Gu, M. Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide. Compos. Part A Appl. Sci. Manuf. 2010, 41, 215–221. [Google Scholar] [CrossRef]
- Seong, H.-K.; Park, T.-E.; Lee, S.-C.; Lee, K.-R.; Park, J.-K.; Choi, H.-J. Magnetic properties of vanadium-doped silicon carbide nanowires. Met. Mater. Int. 2009, 15, 107–111. [Google Scholar] [CrossRef]
- Tian, Y.; Zheng, H.W.; Liu, X.Y.; Li, S.J.; Zhang, Y.J.; Hu, J.F.; Lv, Z.C.; Liu, Y.F.; Gu, Y.Z.; Zhang, W.F. Microstructure and magnetic properties of Mn-doped 3C-SiC nanowires. Mater. Lett. 2012, 76, 219–221. [Google Scholar] [CrossRef]
- Li, T.; Li, X.-L.; Hu, S.-X.; Wu, J. Enhanced osteoporotic effect of silicon carbide nanoparticles combine with nano-hydroxyapatite coated anodized titanium implant on healthy bone regeneration in femoral fracture. J. Photochem. Photobiol. B Biol. 2019, 197, 111515. [Google Scholar] [CrossRef]
- Attalla, R.; Ling, C.; Selvaganapathy, P. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications. Biomed. Microdevices 2016, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Su, S.-P.; Wu, C.-L.; Cheng, C.-H.; Huang, B.-J.; Wang, H.-Y.; Tsai, C.-T.; Lin, Y.-H.; Chi, Y.-C.; Shih, M.-H.; Lee, C.-K.; et al. Nonstoichiometric SiC Bus/Ring Waveguide Based All-Optical Data Format Follower and Inverter. ACS Photon. 2016, 3, 806–818. [Google Scholar] [CrossRef]
- Majid, A. A perspective on non-stoichiometry in silicon carbide. Ceram. Int. 2018, 44, 1277–1283. [Google Scholar] [CrossRef]
- Trevisan, M.; Vicente, J.; Ghidossi, R.; Vincent, A.; Moulin, P. Membrane characterisation from the support to the skin layer: Application to silicon carbide (SiC) membranes. J. Eur. Ceram. Soc. 2022, 42, 3759–3769. [Google Scholar] [CrossRef]
- Trevisan, M.; Ghidossi, R.; Moulin, P. Silicon carbide (SiC) membranes in oenology. Sep. Purif. Technol. 2022, 284, 120276. [Google Scholar] [CrossRef]
- Wang, F.; Hao, S.; Dong, B.; Ke, N.; Khan, N.Z.; Hao, L.; Yin, L.; Xu, X.; Agathopoulos, S. Porous-foam mullite-bonded SiC-ceramic membranes for high-efficiency high-temperature particulate matter capture. J. Alloy. Compd. 2022, 893, 162231. [Google Scholar] [CrossRef]
- Huang, L.; Qin, H.; Hu, T.; Xie, J.; Guo, W.; Gao, P.; Xiao, H. Fabrication of high permeability SiC ceramic membrane with gradient pore structure by one-step freeze-casting process. Ceram. Int. 2021, 47, 17597–17605. [Google Scholar] [CrossRef]
- Zhang, B.; Tong, Z.; Yu, H.; Xu, H.; Chen, Z.; Li, X.; Ji, H. Flexible and high-temperature resistant ZrO2/SiC-based nanofiber membranes for high temperature thermal insulation. J. Alloy. Compd. 2021, 872, 159618. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhou, J.; Miao, Y.; Yang, S.; Zhou, M.; Zhong, Z.; Xing, W. Lower-temperature preparation of SiC ceramic membrane using zeolite residue as sintering aid for oil-in-water separation. J. Membr. Sci. 2020, 610, 118238. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Yang, Z.; Zhao, Y.; Yang, X.; Gong, T.; Li, C. Femtosecond laser micromachining in combination with ICP etching for 4H–SiC pressure sensor membranes. Ceram. Int. 2021, 47, 6397–6408. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Wu, J.; Zhang, C.; Zhang, Q.; Tian, K. Preparation of mullite whisker reinforced SiC membrane supports with high gas permeability. Ceram. Int. 2021, 47, 8150–8160. [Google Scholar] [CrossRef]
- Luo, Z.-Y.; Han, W.; Liu, K.-Q.; Ao, W.-Q.; Si, K.-K. Influence of bonding phases on properties of in-situ bonded porous SiC membrane supports. Ceram. Int. 2020, 46, 8536–8542. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, C.; Liang, W.; Li, Y.; Bai, H.; Guo, Q.; Wang, C. Experimental investigation on micro-scale phase change material based on sodium acetate trihydrate for thermal storage. Sol. Energy 2019, 193, 413–421. [Google Scholar] [CrossRef]
- Bukhari, S.Z.A.; Ha, J.-H.; Lee, J.; Song, I.-H. Oxidation-bonded SiC membrane for microfiltration. J. Eur. Ceram. Soc. 2018, 38, 1711–1719. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, W.; Jiang, Q.; Xu, P.; Zhong, Z.; Zhang, F.; Xing, W. Preparation of non-oxide SiC membrane for gas purification by spray coating. J. Membr. Sci. 2017, 540, 381–390. [Google Scholar] [CrossRef]
- Chung, G.-S.; Jeong, J.-M. Fabrication of micro heaters on polycrystalline 3C-SiC suspended membranes for gas sensors and their characteristics. Microelectron. Eng. 2010, 87, 2348–2352. [Google Scholar] [CrossRef]
- Bukhari, S.Z.A.; Ha, J.-H.; Lee, J.; Song, I.-H. Effect of different heat treatments on oxidation-bonded SiC membrane for water filtration. Ceram. Int. 2018, 44, 14251–14257. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Q.; Jing, W.; Zhong, Z.; Xing, W. Pore structure and surface property design of silicon carbide membrane for water-in-oil emulsification. J. Membr. Sci. 2022, 648, 120347. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, B.; Shi, Y.; Zhou, J.; Wang, R.; Zeng, N. Improved Chemical Mechanical Polishing Performance in 4H-SiC Substrate by Combining Novel Mixed Abrasive Slurry and Photocatalytic Effect. Appl. Surf. Sci. 2022, 575, 151676. [Google Scholar] [CrossRef]
- Rico-Santacruz, M.; García-Muñoz, P.; Keller, V.; Batail, N.; Pham, C.; Robert, D.; Keller, N. Alveolar TiO2-β-SiC photocatalytic composite foams with tunable properties for water treatment. Catal. Today 2019, 328, 235–242. [Google Scholar] [CrossRef]
- Gao, Z.; Abbasian, J.; Arastoopour, H. Modeling and numerical simulation of concentrated solar energy storage in a packed bed of silicon carbide particles. Ind. Eng. Chem. Res. 2021, 60, 16498–16508. [Google Scholar] [CrossRef]
- Xie, H.Q.; Cai, X.Y.; Cui, K.Y.; Yi, X.B.; Lu, J.L.; Fan, Z.Q. High-performance monolayer or bilayer SiC short channel transistors with metallic 1T-phase MoS2 contact. Phys. Lett. A 2022, 436, 128070. [Google Scholar] [CrossRef]
- He, Z.; Yu, C.; Liu, Q.; Song, X.; Gao, X.; Guo, J.; Zhou, C.; Cai, S.; Feng, Z. High temperature RF performances of epitaxial bilayer graphene field-effect transistors on SiC substrate. Carbon 2020, 164, 435–441. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, Y.; Wang, H.; Zhu, S.; Wang, X.; Shen, Y.; Yang, Y. Improved 4H–SiC MESFET with bulgy channel. Micro Nanostruct. 2022, 166, 207222. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, Y.; Zhu, S.; Wang, H.; Wang, X.; Liang, H.; Yang, Y. A novel 4H–SiC MESFET with P-type doping zone and recessed buffer layer. Mater. Sci. Semicond. Process. 2022, 144, 106615. [Google Scholar] [CrossRef]
- Baierhofer, D.; Thomas, B.; Staiger, F.; Marchetti, B.; Förster, C.; Erlbacher, T. Defect reduction in SiC epilayers by different substrate cleaning methods. Mater. Sci. Semicond. Process. 2021, 140, 106414. [Google Scholar] [CrossRef]
- Yang, X.; Yang, X.; Kawai, K.; Arima, K.; Yamamura, K. Novel SiC wafer manufacturing process employing three-step slurryless electrochemical mechanical polishing. J. Manuf. Process. 2021, 70, 350–360. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, Y.; Tu, R.; Xu, Q.; Hu, M.; Wang, C.; Sun, Q.; Li, B.-W.; Zhang, S.; Wang, C.; et al. Laser CVD growth of graphene/SiC/Si nano-matrix heterostructure with improved electrochemical capacitance and cycle stability. Carbon 2021, 175, 377–386. [Google Scholar] [CrossRef]
- Yang, C.; Wei, B.; He, K.; Xu, P.; Xie, X.; Tong, K.; Zeng, C.; Wang, Y.; Wang, X.; Liu, J.; et al. Simple and rapid conversion of silicon carbide to nanodiamonds at ambient pressure. J. Mater. Sci. Technol. 2021, 94, 230–238. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Deng, C.; Yu, C.; Ding, J.; Zhu, H. Controllable synthesis of Si@SiC plate@Si3N4 whisker with core-shell structure and their electrochemical performances. Powder Technol. 2021, 377, 324–335. [Google Scholar] [CrossRef]
- Sri Maha Vishnu, D.; Sure, J.; Kim, H.K.; Kumar, R.V.; Schwandt, C. Solid state electrochemically synthesised β-SiC nanowires as the anode material in lithium ion batteries. Energy Storage Mater. 2020, 26, 234–241. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H. Sequential-template synthesis of hollowed carbon polyhedron@SiC@Si for lithium-ion battery with high capacity and electrochemical stability. Appl. Surf. Sci. 2020, 514, 145920. [Google Scholar] [CrossRef]
- Singla, S.; Kang, A.S.; Sidhu, T. Characterization and electrochemical corrosion behaviour of FSPed WE43/nano-SiC surface composite. Mater. Today Proc. 2020, 26, 3138–3144. [Google Scholar] [CrossRef]
- Zhuo, L.; Zhang, Q.; Zhang, Y.; Zhao, Z.; Liang, S.; Chen, Q.; Wang, H.; Zhang, J. Tailoring the microstructure and properties of tungsten-copper composites by minor addition of SiC particles for nuclear fusion reactor application. J. Nucl. Mater. 2020, 538, 152220. [Google Scholar] [CrossRef]
- Istomina, E.I.; Istomin, P.V.; Nadutkin, A.V.; Grass, V.E.; Lysenkov, A.S. Synthesis of C/SiC core-shell fibres through siliconization of carbon fibres with SiO gas in semi-closed reactor. Ceram. Int. 2021, 47, 22587–22593. [Google Scholar] [CrossRef]
- Seshadri, A.; Phillips, B.; Shirvan, K. Impact of nuclear environment on hydrothermal corrosion and silica transport for CVD SiC in light water reactors. J. Nucl. Mater. 2021, 556, 153155. [Google Scholar] [CrossRef]
- Jarman, J.D.; Fahrenholtz, W.G.; Hilmas, G.E.; Watts, J.L.; King, D.S. Characterization of fusion welded ceramics in the SiC-ZrB2-ZrC system. J. Eur. Ceram. Soc. 2021, 41, 2255–2262. [Google Scholar] [CrossRef]
- Jarman, J.D.; Fahrenholtz, W.G.; Hilmas, G.E.; Watts, J.L.; King, D.S. Mechanical properties of fusion welded ceramics in the SiC-ZrB2 and SiC-ZrB2-ZrC systems. J. Eur. Ceram. Soc. 2022, 42, 2107–2117. [Google Scholar] [CrossRef]
- Lv, X.; Ye, F.; Cheng, L.; Zhang, L. 3D printing “wire-on-sphere” hierarchical SiC nanowires/SiC whiskers foam for efficient high-temperature electromagnetic wave absorption. J. Mater. Sci. 2022, 109, 94–104. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Mei, D.; Wu, Q.; Zhou, H. A novel thermally autonomous methanol steam reforming microreactor using SiC honeycomb ceramic as catalyst support for hydrogen production. Int. J. Hydrogen Energy 2021, 46, 25878–25892. [Google Scholar] [CrossRef]
- Xiong, C.; Li, T.; Zhao, T.; Khan, M.; Wang, J.; Ji, X.; Li, H.; Liu, W.; Shang, Y. Preparation of C/C–SiC composite by low temperature compression molding–liquid silicon infiltration and its application in automobile brake. Ceram. Int. 2016, 42, 1057–1062. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, X.; Zhong, W.; Wen, Y.; Yan, Q. The wet braking and recovery behaviors of the P/M pad mated with C/C–SiC disc for high-speed trains. Wear 2021, 468–469, 203609. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, Q.; Peng, T.; Zhang, X.; Wen, Y. The braking behaviors of Cu-Based powder metallurgy brake pads mated with C/C–SiC disk for high-speed train. Wear 2020, 448–449, 203237. [Google Scholar] [CrossRef]
- Jiang, L.; Jiang, Y.; Yu, L.; Yang, H.; Li, Z.; Ding, Y.; Fu, G. Fabrication, microstructure, friction and wear properties of SiC3D/Al brake disc−graphite/SiC pad tribo-couple for high-speed train. T. Nonferr. Metal. Soc. 2019, 29, 1889–1902. [Google Scholar] [CrossRef]
Properties | Unit/Condition | Types of Silicon Carbide | References | |||
---|---|---|---|---|---|---|
Cubic | Hexagonal | |||||
3C | 2H | 4H | 6H | |||
Bandgap | eV | 2.360 | 3.300 | 3.263 | 3.023 | [11] |
Lattice constant a | Å | 3.083 | 3.076 | 3.070–3.081 | 3.081 | |
Lattice constant c | Å | 7.551 | 5.048 | 10.05–10.08 | 15.117 | |
Lattice constant c/na | - | 0.817 | 0.821 | - | 0.818 | |
Si/C | - | 1.046 | - | 1.001 | 1.022 | [12] |
Carbon vacancies | 1020 cm−3 | 33.6 | - | 7.3 | 16.3 | |
Jagodzinskii notation | h | hc | hcc | c | ||
Critical breakdown field strength | MV·cm−1 | >1.5 | - | 2–3 | 2–3 | |
Saturation rate | 107 cm·s−1 | 2.7 | - | 2 | 2 | |
Dielectric constant | Static | 9.72 | - | 9.66 | 9.66 | [13] |
High Frequency | 6.52 | - | 6.52 | 6.70 | ||
Infrared refractive index | 2.55 | - | 2.55–2.59 | 2.55–2.59 | ||
Optical photon energy | meV | 102.8 | - | 104.2 | 104.2 | |
Radiant recombinant coefficient | 10−12 cm3·s−1 | - | - | 1.5 | - | |
Phonon Energy | meV | - | - | 46.7–104.3 | 36.3–104.7 | |
Space group | - | F43m | P63mc | P63mc | P63mc | [14] |
Hexagonality | % | 0 | 100 | 50 | 33 | |
Density | g·cm−3 | 3.215 | 3.219 | 3.215 | 3.212 | |
Thermal conductivity | W·cm−1k−1 | 3.6 | - | 4.9 | 4.9 | |
Electron Mobility | cm2·V−1s 30 °C | ≤1000 | - | ≤850 | ≤450 | |
Hole Mobility | cm2·V−1s 30 °C | ≤40 | ≤120 | ≤100 | ||
Electrical resistivity | Ω cm | 102–103 |
Process Condition | Methodology | Form of SiC | Yield (%) | Diameter (nm)/ Particle Size (µm) | References | |
---|---|---|---|---|---|---|
1 | 1200 °C; 0.1 h | Beta | 98.5 | 15–30 nm | [22] | |
2 | 1650 °C; 1 h | Microwave sintering | Beta | 75.7 | - | [23] |
3 | 220 Å; 3–8 × 10−3 h | Powder | - | - | [24] | |
4 | 1600 °C; 2 h | SiC | - | - | [27] | |
5 | 800 °C | Beta | - | 80 µm | [28] | |
6 | 1300–1600 °C; 1–3 h | SiC | - | - | [29] | |
7 | 1500 °C; 2 h | Nanowhiskers | 69.2 | - | [30] | |
8 | 1800 °C | Replica | Nanorods | - | - | [36] |
9 | 1400 °C | Siliconising | Textile-Beta | - | - | [37] |
10 | 1500 °C | Carbothermal redox | SiC | - | 20–30 µm | [40] |
11 | 1500 °C; 2 h | Beta | - | - | [41] | |
12 | 600 °C | Sol–Gel | Nanowires-Beta | - | 100 µm | [44] |
13 | 1400 °C | Nanopowders | - | 20–40 µm | [45] | |
14 | 1400 °C; 0.5 h | Nanowires | - | - | [46] | |
15 | 1500 °C; 1 h | Strands-Beta | - | 8.2–300 nm | [47] | |
16 | 1400 °C; 3 h | Beta | - | - | [48] | |
17 | 1650 °C; 1 h | SiC | - | 10 nm | [49] | |
18 | 1500 °C; 5 h | Mesoporous | - | - | [50] | |
19 | 1500 °C; 1 h | Thermal evaporation | Nanoporous | - | 50–200 nm | [51] |
20 | 1700 °C; 1 h | Nanowires | - | 20 nm, 2 µm | [52] | |
21 | 1100 °C; 2 h | Sputtering approach | Nanoclusters | - | 165 µm | [53] |
22 | 1800–1950 °C | Carbothermal reduction | Porous—40–55% | - | 0.003–30 µm | [54] |
23 | 1250–1350 °C | Nanostructured | - | - | [55] | |
24 | 750–1500 °C; 2 h | CVD | Coatings | - | - | [56] |
Applications | Process Condition | Particle Size (nm)/Porosity (%) | Thickness (μm)/Diameter (mm) | Parameters | References | |
---|---|---|---|---|---|---|
1 | Membrane Technology | 1600–2000 °C 1 h, Ar | 500–50000 nm; 40–47% | - | 0.18–0.25 H2O/Powder | [117] |
2 | Membrane Technology (Oenology) | - | 250 nm | 3 mm | 0–14 (PH resistance) 2–72 hL·h−1 (Permeate flow) | [118] |
3 | Membrane Technology (Ceramic foam) | 4–10.3 MPa 27 Pa (Pressure Drop) | 6–15 × 104 nm | - | <10 µm (Pores) 69.2–84.1% (Foaming agent) 70.2–94.6% (Particulate filtration ɳ) | [119] |
4 | Membrane Technology (Filtration) | 0.47–5.44 MPa | 5.52–36.09 nm | - | 50% (Pore channels) 5.67 × 105 L·m−2h−1bar−1 (Max. H2O permeability) 96.1% (Removal rate) | [120] |
5 | Membrane Technology (High-temperature insulation) | 1300–1400 °C | - | - | 0.217 W·m−1k−1 (Thermal conductivity) | [121] |
6 | Membrane Technology (Oil water separation) | 1000 °C, 38–45 MPa | 400 nm, 46% | - | 3700 L·m−2h−1bar−1 (Pure H2O permeance) >90% (High rejection rate/Oil droplets) | [122] |
7 | Membrane Technology (Pressure sensor) | - | 150–820 nm | - | 1% (High size accuracy), 87.4 °C (Step side wall) | [123] |
8 | Membrane Technology (Gas permeability) | 1450 °C, 2 h, 8 wt% 23.83–25.55 MPa | 42.72–43.88 % | - | 95.22% (Strength retention rate) 6.18 × 10−9 m2 (Darcian permeability) | [124] |
900–1150 °C, 24h 22–33.6 MPa | - | - | 47.5%, 900 °C (Hot modulus of rupture) 57.4%, Glass bonded support | [125] | ||
32.15–38.77 MPa | 9.93–34.92 nm, 22–120% | - | 5.817 × 10−12 m2 (Gas permeability) | [126] | ||
9 | Membrane Technology (Water filtration) | 1000 °C, 3h | 78 nm | - | 700 Lmhbar−1 (H2O membrane permeance) | [127] |
10 | Membrane Technology (Spray coating) | - | 2310 nm | - | 0.12 mg·m−3(Dust concentration) 99.95% (Filtration efficiency) 105.2 L·m−2h−1bar−1 (Gas filtration permeability) | [128] |
11 | Membrane Technology (Gas sensors) | 500 °C | - | - | 312 mW (Power) 3174.64 ppm·°C−1 (Resistance to K) | [129] |
12 | Membrane Technology (Microfiltration) | 1100 °C, 1 h | 93 nm | - | >210 L·m−2h−1bar−1 (H2O membrane permeance) | [130] |
13 | Membrane Technology (Water in oil emulsification) | 170 °C | 980–1160 nm, 26–48% | - | - | [131] |
14 | Photocatalytic Technology | - | 0.489 nm | - | 694 nm·h−1 (Material removal rate) | [132] |
15 | Photocatalytic Technology (Composite foams) | 400–700 °C | - | - | 16–24 wt% (TiO2) | [133] |
16 | Photocatalytic Technology (Energy storage) | - | 0.113–0.738 nm | - | 1.109 μm·h−1 (Material removal rate) | [134] |
17 | Field effect transistors (Channel transistor) | - | 4.1 nm | - | 1457, 1132, 980 µA·µ−1m−1 (P-type) 229, 35, 21 µA·µ−1m−1 (N-type) | [135] |
18 | Field effect transistors (Epitaxial bilayer) | 25–200 °C | - | - | 40 GHz (Max. oscillation frequency) | [136] |
19 | Metal semiconductor field effect transistor with bulgy channel | - | - | - | 63.76% (Breakdown voltage) 72.85% (Max. output power density) 4.42% (Cutoff frequency) | [137] |
20 | Metal semiconductor field effect transistor with p-type doing | - | - | - | 30% (Bulgy channel), 78% (Breakdown voltage) 137% (Max. output power density) 18% (Characteristic frequency) | [138] |
21 | Cleaning method | - | 12,000 nm | 150 mm | 150 mm (4H-SiC) | [139] |
22 | Electrochemical (Mechanical polishing) | - | - | - | 14.54 µm·h−1 (Material removal rate) 4.5X (>Electrochemical) 290X (>Mechanical) | [140] |
23 | Electrochemical capacitance | - | - | - | 3.1 Ω (Low charge transfer resistance) 3.2 mF·cm−2 (Areal capacitance value) 100 mV·s−1 (Cycle voltammetry cycle) 50 mV·s−1 (Scan rate) | [141] |
24 | Catalyst | 20 min | - | - | 62 µm·h−1 (Material removal rate) 163.33 to 25.45 nm (Surface roughness) | [142] |
25 | Electrochemical performance | - | - | - | 5 wt% catalyst, 200 F·g−1 at 0.5–3 A·g−1 (Specific capacitance) | [143] |
26 | Lithium–ion batteries (Anode material) | - | 400–600 nm | - | >99% (Coulombic efficiency) 1000 mA·h·g−1 (Specific capacity) 0.5 A·g−1 (Charge discharge rate) | [144] |
27 | Lithium–ion batteries with electrochemical stability | - | - | - | 98.06% (Coulombic efficiency) 748.2 mA·hg−1 (Initial discharge capacity) 0.1 A·g−1 (Charge discharge rate) 816.3 mA·hg−1 (Reverse capacity) at 100 cycle 1.0 A·g−1 (Charge discharge rate) | [145] |
28 | Electrochemical corrosion | - | 8170–22,420 nm | - | 0.44 gm·cm−2 hr−1 (Degradation rate) | [146] |
29 | Nuclear fusion reactor (Composite) | 1323 MPa | - | - | (Infiltrated Tungsten Copper) 2 wt%–SiC 0.373 (Highest particle–particle contiguity) | [147] |
1380 °C, 3 h, 9:1 (Si:SiO2) | 600–800 nm | - | 34% (Conversion rate of carbon to SiC) >94% (SiO gas) | [148] | ||
30 | Light water reactor | 300 °C, 15 MPa | - | - | 5.1 MeV (Irradiated Chemical Vapour Deposition) | [149] |
31 | Fusion ceramic welds | 1450 °C | - | - | 160–200 Å, 36.9 1.3 Vol% SiC | [150] |
1700 °C, 600 MPa | - | - | 3–4 MPa·m0.5 (Before welding) 2–2.5 MPa.m0.5 (After welding), 40–60% (Strength) | [151] | ||
32 | 3D printing | 600 °C | - | - | Room Temp, 4 GHz, −57 db, 3 GHz, −15 db 2.7–3.9 GHz (Max. Electromagnetic wave absorption bandwidth) −16–64 db (Min. electromagnetic wave reflection coefficient) | [152] |
33 | Catalyst (Hydrogen production) | - | - | - | 2248.5 μL·h−1g−1 (Photoreaction rate) 2.1 (Individual platinum loading) | [153] |
34 | Automobile brakes | 120–153 MPa | 6% | - | 2.3 g·cm−3 (Density), 0.33 (SFC) | [154] |
35 | High-speed trains (Brake pads) | - | - | - | 33 stops at 14 m/s, 93.1% (Coefficient of friction) 8 stops at 55 m/s, 98.9% (Coefficient of friction) | [155] |
- | - | - | 0.443 at 37 m/s, 0.486 at 55 m/s, 0.460 at 69 m/s, 0.469 (HMFC), 0.895 (SC), 0.147–0.338 cm3·MJ−1 | [156] | ||
1.25 MPa | - | - | 200–350 Km·h−1 | [157] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thulasiraman, A.V.; Ganesapillai, M. A Systematic Review on the Synthesis of Silicon Carbide: An Alternative Approach to Valorisation of Residual Municipal Solid Waste. Processes 2023, 11, 283. https://doi.org/10.3390/pr11010283
Thulasiraman AV, Ganesapillai M. A Systematic Review on the Synthesis of Silicon Carbide: An Alternative Approach to Valorisation of Residual Municipal Solid Waste. Processes. 2023; 11(1):283. https://doi.org/10.3390/pr11010283
Chicago/Turabian StyleThulasiraman, Adhithiya Venkatachalapati, and Mahesh Ganesapillai. 2023. "A Systematic Review on the Synthesis of Silicon Carbide: An Alternative Approach to Valorisation of Residual Municipal Solid Waste" Processes 11, no. 1: 283. https://doi.org/10.3390/pr11010283
APA StyleThulasiraman, A. V., & Ganesapillai, M. (2023). A Systematic Review on the Synthesis of Silicon Carbide: An Alternative Approach to Valorisation of Residual Municipal Solid Waste. Processes, 11(1), 283. https://doi.org/10.3390/pr11010283