Experimental and Numerical Study of Electrospray Pyrolysis Process for Continuous Production of TiO2 Particles
Abstract
:1. Introduction
2. Experiment Section
2.1. Materials
2.2. Experimental Procedure
2.2.1. Conventional Electrohydrodynamic Process
2.2.2. Electrospray Pyrolysis Process
3. Numerical Simulation
3.1. Governing Equations
3.2. Geometry and Mesh
3.3. Modeling Strategy and Conditions
4. Results and Discussion
4.1. Experimental Results
4.2. Simulation of Electrospray Pyrolysis
4.3. Effect of Key Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, X.; Zhu, W.W.; Liu, Q.Y.; Yuan, H.; Li, W.W.; Wu, L.J.; Li, Q.; Yu, H.Q. Impairment of biofilm formation by TiO2 photocatalysis through quorum quenching. Environ. Sci. Technol. 2016, 50, 11895–11902. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Sun, H.; Huang, X.; Shi, W.; Yan, C. Fabrication of TiO2/high-crystalline g-C3N4 composite with enhanced visible-light photocatalytic performance for tetracycline degradation. J. Chem. Technol. Biotechnol. 2020, 95, 2684–2693. [Google Scholar]
- Wang, H.; Chu, J.; Ou, H.; Zhao, R.; Han, J. Analysis of TiO2 photocatalysis in a pulsed discharge system for phenol degradation. J. Electrost. 2009, 67, 886–889. [Google Scholar] [CrossRef]
- Liu, X.L.; Guo, W.L.; Ma, J.J. Hydrothermal preparation of B-doped TiO2 and photodegradation of salicylic acid under visible light. Adv. Mat. Res. 2012, 557, 1592–1595. [Google Scholar]
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Tsai, S.C.; Song, Y.L.; Tsai, C.S.; Yang, C.C.; Chiu, W.Y.; Lin, H.M. Ultrasonic spray pyrolysis for nanoparticles synthesis. J. Mater. Sci. 2004, 39, 3647–3657. [Google Scholar] [CrossRef]
- Wang, J.; Feng, F.; Wang, C.; Yan, W.C.; Shi, W. Experimental and numerical study of the ultrasonic atomization pyrolysis process toward mass production of photocatalysts. Ind. Eng. Chem. Res. 2020, 59, 11777–11789. [Google Scholar] [CrossRef]
- Wang, J.; Wu, J.; Yuan, S.; Yan, W.C. CFD simulation of ultrasonic atomization pyrolysis reactor: The influence of droplet behaviors and solvent evaporation. Int. J. Chem. React. Eng. 2021, 19, 167–178. [Google Scholar] [CrossRef]
- Ardekani, S.R.; Aghdam, A.S.R.; Nazari, M.; Bayat, A.; Yazdani, E.; Saievar-Iranizad, E. A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter. J. Anal. Appl. Pyrolysis 2019, 141, 104631. [Google Scholar] [CrossRef]
- Nie, X.B.; Wang, Y.; Ran, X.; Wu, J.C.; Wei, R.; Yan, W.C. Preparation of Nanoparticle-Loaded Microbubbles via an Electrohydrodynamic Atomization Process. Appl. Sci. 2022, 12, 3621. [Google Scholar] [CrossRef]
- Yan, W.C.; Xie, J.; Wang, C.H. Electrical field guided electrospray deposition for production of gradient particle patterns. ACS Appl. Mater. Interfaces 2018, 10, 18499–18506. [Google Scholar] [CrossRef] [PubMed]
- Davoodi, P.; Feng, F.; Xu, Q.; Yan, W.C.; Tong, Y.W.; Srinivasan, M.P.; Kumar, S.V.; Wang, C.H. Coaxial electrohydrodynamic atomization: Microparticles for drug delivery applications. J. Control. Release 2015, 205, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Davoodi, P.; Ng, W.C.; Yan, W.C.; Srinivasan, M.P.; Wang, C.H. Double-walled microparticles-embedded self-cross-linked, injectable, and antibacterial hydrogel for controlled and sustained release of chemotherapeutic agents. ACS Appl. Mater. Interfaces 2016, 8, 22785–22800. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.C.; Davoodi, P.; Tong, Y.W.; Wang, C.H. Computational study of core-shell droplet formation in coaxial electrohydrodynamic atomization process. AIChE J. 2016, 62, 4259–4276. [Google Scholar] [CrossRef]
- Yan, W.C.; Chua, Q.W.; Ong, X.J.; Sharma, V.K.; Tong, Y.W.; Wang, C.H. Fabrication of ultrasound-responsive microbubbles via coaxial electrohydrodynamic atomization for triggered release of tPA. J. Colloid Interface Sci. 2017, 501, 282–293. [Google Scholar] [CrossRef]
- Yan, W.C.; Tong, Y.W.; Wang, C.H. Coaxial electrohydrodynamic atomization toward large scale production of core-shell structured microparticles. AIChE J. 2017, 63, 5303–5319. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Shi, W.D.; Yan, W.C. Electric field assisted assembly of nanoparticle loaded microspheres toward industrial applications for organic dye removal. Sep. Purif. Technol. 2023, 306, 122565. [Google Scholar] [CrossRef]
- Nie, X.; Zhang, D.; Yan, W. Research progress of functional microbubble materials. CIESC J. 2021, 72, 3984–3996. [Google Scholar]
- Jaworek, A.T.S.A.; Sobczyk, A.T. Electrospraying route to nanotechnology: An overview. J. Electrost. 2008, 66, 197–219. [Google Scholar] [CrossRef]
- Lenggoro, I.W.; Okuyama, K.; de la Mora, J.F.; Tohge, N. Preparation of ZnS nanoparticles by electrospray pyrolysis. J. Aerosol Sci. 2000, 31, 121–136. [Google Scholar] [CrossRef]
- Okuyama, K.; Lenggoro, I.W. Preparation of nanoparticles via spray route. Chem. Eng. Sci. 2003, 58, 537–547. [Google Scholar] [CrossRef]
- Terada, Y.; Suzuki, Y.; Tohno, S. Synthesis and characterization of TiO2 powders by electrospray pyrolysis method. Mater. Res. Bull. 2012, 47, 889–895. [Google Scholar] [CrossRef] [Green Version]
- Gañán-Calvo, A.M.; Lasheras, J.C.; Dávila, J.; Barrero, A. The electrostatic spray emitted from an electrified conical meniscus. J. Aerosol Sci. 1994, 25, 1121–1142. [Google Scholar] [CrossRef]
- Wilhelm, O.; Mädler, L.; Pratsinis, S.E. Electrospray evaporation and deposition. J. Aerosol Sci. 2003, 34, 815–836. [Google Scholar] [CrossRef]
- Rezvanpour, A.; Lim, E.W.C.; Wang, C.H. Computational and experimental studies of electrohydrodynamic atomization for pharmaceutical particle fabrication. AIChE J. 2012, 58, 3329–3340. [Google Scholar] [CrossRef]
- Wang, J.; Dong, T.; Cheng, Y.; Yan, W.C. Machine Learning Assisted Spraying Pattern Recognition for Electrohydrodynamic Atomization System. Ind. Eng. Chem. Res. 2022, 61, 8495–8503. [Google Scholar] [CrossRef]
- Dong, T.; Wang, J.X.; Wang, Y.; Tang, G.H.; Cheng, Y.; Yan, W.C. Development of Machine Learning Based Droplet Diameter Prediction Model for Electrohydrodynamic Atomization Systems. Chem. Eng. Sci. 2022, 268, 118398. [Google Scholar] [CrossRef]
- Shi, W.D.; Wang, J.; You, S.; Yan, W.C. Numerical simulation of particle focusing dynamics of DNA-laden fluids in a microtube. Chem. Eng. Sci. 2019, 209, 115213. [Google Scholar] [CrossRef]
- Zeleny, J. Instability of electrified liquid surfaces. Phys. Rev. 1917, 10, 1–6. [Google Scholar] [CrossRef]
- Xie, J.; Jiang, J.; Davoodi, P.; Srinivasan, M.P.; Wang, C.H. Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials. Chem. Eng. Sci. 2015, 125, 32–57. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Density of gas (kg/m3) | 1.25 |
Density of precursor solution (kg/m3) | 948 |
Viscosity of gas (Pa•s) | 1.732 × 10−5 |
Conductivity of precursor solution (S/m) | 1.2 × 10−5 |
Vacuum dielectric constant (F/m) | 8.85 × 10−12 |
Relative permittivity of the precursor solution | 24.5 |
Relative permittivity of gas | 1.00 |
Surface tension of precursor solution (N/m) | 0.022 |
Solution flow rate (mL/h) | 1 |
Nozzle voltage (V) | 6000–9000 |
Ring voltage (V) | 500 |
Distance from nozzle to ring (m) | 0.04 |
Droplet charge (C) | 1.84 × 10−13 |
Particle release time step at the inlet (s) | 1 × 10−4 |
Average droplet size (m) | 9.92 × 10−6 |
Description | Types |
---|---|
Reactor wall | |
Nozzle | Wall; ϕ = ϕnozzle |
Inlet | Velocity inlet; u = Q/A |
Collection substrate | Adhere; Grounded |
The number of droplets released at the entrance | One per release time step |
Metal ring | Grounded or 500 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, R.; Wang, J.; Li, W.; Wu, J.; Yan, W. Experimental and Numerical Study of Electrospray Pyrolysis Process for Continuous Production of TiO2 Particles. Processes 2023, 11, 291. https://doi.org/10.3390/pr11010291
Wei R, Wang J, Li W, Wu J, Yan W. Experimental and Numerical Study of Electrospray Pyrolysis Process for Continuous Production of TiO2 Particles. Processes. 2023; 11(1):291. https://doi.org/10.3390/pr11010291
Chicago/Turabian StyleWei, Ran, Jian Wang, Wangliang Li, Jichuan Wu, and Weicheng Yan. 2023. "Experimental and Numerical Study of Electrospray Pyrolysis Process for Continuous Production of TiO2 Particles" Processes 11, no. 1: 291. https://doi.org/10.3390/pr11010291
APA StyleWei, R., Wang, J., Li, W., Wu, J., & Yan, W. (2023). Experimental and Numerical Study of Electrospray Pyrolysis Process for Continuous Production of TiO2 Particles. Processes, 11(1), 291. https://doi.org/10.3390/pr11010291