Optimization of the Cultivation Conditions of the Green Algae Dunaliella salina by Using Simplex Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organism and Medium
2.2. Biomass and Cell Number
2.3. Inoculation and Cultivation Conditions
2.4. Experiment Set-Up Downhill Simplex
2.5. Adjusting pH
2.6. Adjusting Salinity
2.7. Specific Growth Rate of D. salina
3. Results
3.1. Single Observation Experiments
3.1.1. Salinity
3.1.2. pH
3.2. Downhill Simplex
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matos, P.; Novelli, E.; Tribuzi, G. Use of algae as food ingredient: Sensory acceptance and commercial products. Front. Food Sci. Technol. 2022, 2, 1–8. [Google Scholar] [CrossRef]
- Ullmann, J.; Grimm, D. Algae and their potential for a future bioeconomy, landless food production, and the socio-economic impact of an algae industry. Org. Agric. 2021, 11, 261–267. [Google Scholar] [CrossRef]
- Aniket, K.; Roshan, D. Algae Products Market. 2022. Available online: https://www.alliedmarketresearch.com/algae-products-market (accessed on 15 September 2022).
- Pourkarimi, S.; Hallajisani, A.; Alizadehdakhel, A.; Nouralishahi, A.; Golzary, A. Factors affecting production of beta-carotene from Dunaliella salina microalgae. Biocatal. Agric. Biotechnol. 2020, 29, 101771. [Google Scholar] [CrossRef]
- Polle, J.E.; Roth, R.; Ben-Amotz, A.; Goodenough, U. Ultrastructure of the green alga Dunaliella salina strain CCAP19/18 (Chlorophyta) as investigated by quick-freeze deep-etch electron microscopy. Algal Res. 2020, 49, 101953. [Google Scholar] [CrossRef]
- Castellanos-Huerta, I.; Gómez-Verduzco, G.; Tellez-Isaias, G.; Ayora-Talavera, G.; Bañuelos-Hernández, B.; Petrone-García, V.M.; Fernández-Siurob, I.; Garcia-Casillas, L.A.; Velázquez-Juárez, G. Dunaliella salina as a Potential Biofactory for Antigens and Vehicle for Mucosal Application. Processes 2022, 10, 1776. [Google Scholar] [CrossRef]
- Tafreshi, A.H.; Shariati, M. Dunaliella biotechnology: Methods and applications. J. Appl. Microbiol. 2009, 107, 14–35. [Google Scholar] [CrossRef]
- Xu, Y.; Ibrahim, I.M.; Wosu, C.I.; Ben-Amotz, A.; Harvey, P.J. Potential of New Isolates of Dunaliella Salina for Natural β-Carotene Production. Biology 2018, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Novoveská, L.; Ross, M.E.; Stanley, M.S.; Pradelles, R.; Wasiolek, V.; Sassi, J.-F. Microalgal Carotenoids: A Review of Production, Current Markets, Regulations, and Future Direction. Mar. Drugs 2019, 17, 640. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Balbuena, E.; Miller, B.; Eroglu, A. The Role of β-Carotene in Colonic Inflammation and Intestinal Barrier Integrity. Front. Nutr. 2021, 8, 660. [Google Scholar] [CrossRef]
- Anand, R.; Mohan, L.; Bharadvaja, N. Disease Prevention and Treatment Using β-Carotene: The Ultimate Provitamin A. Rev. Bras. Farm. 2022, 32, 491–501. [Google Scholar] [CrossRef]
- Çelebi, H.; Bahadır, T.; Şimşek, I.; Tulun, Ş. Use of Dunaliella salina in Environmental Applications. In Proceedings of the 1st International Electronic Conference on Biological Diversity, Ecology and Evolution, Online, 15–31 March 2021. [Google Scholar] [CrossRef]
- Roy, U.; Nielsen, B.; Milledge, J. Antioxidant Production in Dunaliella. Appl. Sci. 2021, 11, 3959. [Google Scholar] [CrossRef]
- Deutsche Gesellschaft für Ernährung e.V. 2020. Available online: https://www.dge.de/wissenschaft/referenzwerte/vitamin-a-b-carotin/ (accessed on 2 October 2022).
- Worldometer. 2022. Available online: https://www.worldometers.info/world-population/ (accessed on 5 October 2022).
- Wolf, L.; Cummings, T.; Müller, K.; Reppke, M.; Volkmar, M.; Weuster-Botz, D. Production of β-carotene with Dunaliella salina CCAP19/18 at physically simulated outdoor conditions. Eng. Life Sci. 2020, 21, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Harvey, P.J.; Ben-Amotz, A. Towards a sustainable Dunaliella salina microalgal biorefinery for 9-cis β-carotene production. Algal Res. 2020, 50, 102002. [Google Scholar] [CrossRef]
- Zarandi-Miandoab, L.; Hejazi, M.-A.; Bagherieh-Najjar, M.-B.; Chaparzadeh, N. Statistical Optimization of The Four Key Factors on β-Carotene Production by Dunaliella salina Under Laboratory Conditions Using Response Surface Methodology. Iran. J. Pharm. Res. 2019, 18, 1566–1579. [Google Scholar] [CrossRef]
- Morowvat, M.H.; Ghasemi, Y. Culture medium optimization for enhanced β-carotene and biomass production by Dunaliella salina in mixotrophic culture. Biocatal. Agric. Biotechnol. 2016, 7, 217–223. [Google Scholar] [CrossRef]
- Paniagua-Michel, J. Microalgal Nutraceuticals. In Handbook of Marine Microalgae; Academic Press: Cambridge, MA, USA, 2015; pp. 255–267. [Google Scholar] [CrossRef]
- Wu, Z.; Duangmanee, P.; Zhao, P.; Juntawong, N.; Ma, C. The Effects of Light, Temperature, and Nutrition on Growth and Pigment Accumulation of Three Dunaliella salina Strains Isolated from Saline Soil. Jundishapur J. Microbiol. 2016, 9, e26732. [Google Scholar] [CrossRef] [Green Version]
- Ying, K.; Gilmour, D.J.; Shi, Y.; Zimmerman, W.B. Growth Enhancement of Dunaliella salina by Microbubble Induced Airlift Loop Bioreactor (ALB)—The Relation between Mass Transfer and Growth Rate. J. Biomater. Nanobiotechnol. 2013, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Munir, N.; Imtiaz, A.; Sharif, N.; Naz, S. Optimization of growth conditions of different algal strains and determination of their lipid contents. J. Anim. Plant Sci. 2015, 25, 546–553. [Google Scholar]
- Lüders, S.; David, F.; Steinwand, M.; Jordan, E.; Hust, M.; Dübel, S.; Franco-Lara, E. Influence of the hydromechanical stress and temperature on growth and antibody fragment production with Bacillus megaterium. Appl. Microbiol. Biotechnol. 2011, 91, 81–90. [Google Scholar] [CrossRef]
- [Latest] Global Carotenoids Market Size/Share Worth USD 2.1 Billion by 2030 at a 3.5 CAGR: Custom Market Insights (Analysis, Outlook, Leaders, Report, Trends, Forecast, Segmentation, Growth, Growth Rate, Value, Analysis, Outlook), GlobeNewswire. 2022. Available online: https://www.globenewswire.com/en/news-release/2022/11/08/2551182/0/en/Latest-Global-Carotenoids-Market-Size-Share-Worth-USD-2-1-Billion-by-2030-at-a-3-5-CAGR-Custom-Market-Insights-Analysis-Outlook-Leaders-Report-Trends-Forecast-Segmentation-Growth-G.html (accessed on 10 October 2022).
- Martínez-Cámara, S.; Ibañez, A.; Rubio, S.; Barreiro, C.; Barredo, J.-L. Main Carotenoids Produced by Microorganisms. Encyclopedia 2021, 1, 1223–1245. [Google Scholar] [CrossRef]
- Staff, B.P. The Global Market for Carotenoids, BCC Res. 2022. Available online: https://www.bccresearch.com/market-research/food-and-beverage/the-global-market-for-carotenoids.html (accessed on 10 October 2022).
- Astaxanthin Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2022–2027, IMARC. n.d. Available online: https://www.imarcgroup.com/astaxanthin-market (accessed on 12 October 2022).
- Beta Carotene Market Analysis by Source (Fruits & Vegetables, Algae, Synthetic, Yeast, Fungi, and Bacteria); by Product Type (Synthetic, and Natural); by Form (Powder, and Liquid); and by End User (Food & Beverages, Pharmaceuticals, Cosmetics, Animal Feed, Res. Nester. n.d. Available online: https://www.researchnester.com/reports/beta-carotene-market/267 (accessed on 14 October 2022).
- Richmond, A. Handbook of Microalgal Culture; Blackwell Science, Blackwell Publishing Company, Iow: Hoboken, NJ, USA, 2004. [Google Scholar]
- Storhas, W. Bioverfahrensentwicklung, 2nd ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Almhanna, N.; Huebner, H.; Buchholz, R. Optimization of Parameters Growth Conditions of Yeast Biomass during Single Cell Protein Production by Using Simplex Method. Chem. Eng. Trans. 2010, 21, 475–480. [Google Scholar] [CrossRef]
- Walters, F. Sequential Simplex Optimization—An Update. Anal. Lett. 1999, 32, 193–212. [Google Scholar] [CrossRef]
- Rao, S.S. Engineering Optimization Theory and Practice, 4th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2009; pp. 694–702. [Google Scholar]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.5920&rep=rep1&type=pdf (accessed on 17 October 2022). [CrossRef]
- Jesus, S.S. Modeling Growth of Microalgae Dunaliella Salina under Different Nutritional Conditions. Am. J. Biochem. Biotechnol. 2010, 6, 279–283. [Google Scholar] [CrossRef] [Green Version]
- Farhat, N.; Rabhi, M.; Falleh, H.; Jouini, J.; Abdelly, C.; Smaoui, A. Optimization of Salt Concentrations for A Higher Carotenoid Production in Dunaliella Salina (Chlorophyceae)1. J. Phycol. 2011, 47, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Kirst, G.O. Salinity Tolerance of Eukaryotic Marine Algae. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1990, 41, 21–53. [Google Scholar] [CrossRef]
- Oren, A. A hundred years of Dunaliella research: 1905–2005. Saline Syst. 2005, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Borowitzka, M.A. Commercial production of microalgae: Ponds, tanks, and fermenters. Biotechnology 1999, 35, 313–321. [Google Scholar] [CrossRef]
- Dubinsky, Z.; Rotem, J. Relations between algal populations and the pH of their media. Oecologia 1974, 16, 53–60. [Google Scholar] [CrossRef]
- Hejazi, M.A.; de Lamarliere, C.; Rocha, J.M.S.; Vermuë, M.; Tramper, J.; Wijffels, R.H. Selective extraction of carotenoids from the microalga Dunaliella salina with retention of viability. Biotechnol. Bioeng. 2002, 79, 29–36. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Temperature | 26.99 °C |
Total dissolved solids | 31.7 g/L |
Dissolved oxygen | 6.40 mg/L |
Conductivity meter | 52.8 mS/cm |
Salinity | 34.8 ppt |
Seawater Specific gravity | 22.7 σt |
Component | Stock Solution (g/L dH2O) | Quantity Used (mL) | Concentration in Final Medium mol/L |
---|---|---|---|
NaNO3 | 75 | 1 | 8.82 × 10−4 |
NaH2PO4 H2O | 5 | 1 | 3.62 × 10−5 |
Trace elements (chelated) | In Table 3 | 1 | - |
Vitamin mix | In Table 4 | 1 | - |
Stock Solution (g/L dH2O) | Quantity Used | Concentration in Final Medium mol/L | |
---|---|---|---|
Na2 EDTA 2H2O | - | 4.36 g | 1.17 × 10−5 |
FeCl3 6H2O | - | 3.15 g | 1.17 × 10−5 |
Na2MoO4 2H2O | 6.3 | 1 mL | 2.6 × 10−8 |
CuSO4 5H2O | 9.8 | 1 mL | 3.93 × 10−8 |
ZnSO4 7H2O | 22.0 | 1 mL | 7.65 × 10−8 |
CoCl2 6H2O | 10.0 | 1 mL | 4.20 × 10−5 |
MnCl2 4H2O | 180.0 | 1 mL | 9.10 × 10−7 |
Stock Solution (g/L dH2O) | Quantity Used | Concentration in Final Medium mol/L | |
---|---|---|---|
Cyanocobalamin (Vitamin B12) | 1.0 | 1 mL | 3.69 × 10−10 |
Thiamine HCl (Vitamin B1) | - | 200 mg | 2.96 × 10−7 |
Biotin (Vitamin H) | 1 | 1 mL | 2.05 × 10−9 |
pH | Salinity g/L |
---|---|
4 | 50 |
7 | 100 |
9 | 50 |
11 | 100 |
6.5 | 62.5 |
4.5 | 112.5 |
7.88 | 65.625 |
7.38 | 28.125 |
7.09 | 82.094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mhanna, N.; Pistorius, M.; Al Sammarraie, L. Optimization of the Cultivation Conditions of the Green Algae Dunaliella salina by Using Simplex Method. Processes 2023, 11, 292. https://doi.org/10.3390/pr11010292
Al-Mhanna N, Pistorius M, Al Sammarraie L. Optimization of the Cultivation Conditions of the Green Algae Dunaliella salina by Using Simplex Method. Processes. 2023; 11(1):292. https://doi.org/10.3390/pr11010292
Chicago/Turabian StyleAl-Mhanna, Najah, Michael Pistorius, and Lanah Al Sammarraie. 2023. "Optimization of the Cultivation Conditions of the Green Algae Dunaliella salina by Using Simplex Method" Processes 11, no. 1: 292. https://doi.org/10.3390/pr11010292
APA StyleAl-Mhanna, N., Pistorius, M., & Al Sammarraie, L. (2023). Optimization of the Cultivation Conditions of the Green Algae Dunaliella salina by Using Simplex Method. Processes, 11(1), 292. https://doi.org/10.3390/pr11010292