Cytotoxicity Assessment and Nutritional Profiling of Bio-Active Compounds Obtained from Food Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Reagents and Standards
2.3. Compositional Analysis
2.4. Determination of Fatty Acid Composition
2.5. Extraction Procedure
2.6. Determination of Phenol Content
2.7. Determination of Flavonoid Content
2.8. Determination of Antioxidant Activity through DPPH Method
2.9. Determination of Antioxidant Activity through ABTS Method
2.10. Determination of Antioxidant Activity through FRAP Method
2.11. Cytotoxicity Evaluation by LDH and MTT
2.12. Statistical Analyzes
3. Results and Discussions
3.1. Chemical Composition of Sunflower Meals
3.2. Fatty Acids Profile of Sunflower Meals
3.3. Amount of Phenolic Compounds and Flavonoid Compounds
3.4. Comparison of the Antioxidant Activity of Selected By-Products
3.5. Cytotoxicity Assessment by LDH and MTT
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The state of food security and nutrition in the world. In Safeguarding against Economic Slowdowns and Downturns; FAO: Rome, Italy, 2019. [Google Scholar]
- Grasso, S.; Pintado, T.; Pérez-Jiménez, J.; Ruiz-Capillas, C.; Herrero, A.M. Potential of a Sunflower Seed By-Product as Animal Fat Replacer in Healthier Frankfurters. Foods 2020, 9, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgado, P.R.; Molina Ortiz, S.E.; Petruccelli, S.; Mauri, A.N. Functional food ingredients based on sunflower protein concentrates naturally enriched with antioxidant phenolic compounds. J. Am. Oil Chem. Soc. 2012, 89, 825–836. [Google Scholar] [CrossRef]
- Lai, W.T.; Khong, N.M.; Lim, S.S.; Hee, Y.Y.; Sim, B.I.; Lau, K.Y.; Lai, O.M. A review: Modified agricultural by-products for the development and fortification of food products and nutraceuticals. Trends Food Sci. Technol. 2017, 59, 148–160. [Google Scholar] [CrossRef]
- Torres-León, C.; Ramírez-Guzman, N.; Londoño-Hernandez, L.; Martinez-Medina, G.A.; Díaz-Herrera, R.; Navarro-Macias, V.; Alvarez-Pérez, O.B.; Picazo, B.; Villarreal-Vázquez, M.; Ascacio-Valdes, J.; et al. Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Front. Sustain. Food Syst. 2018, 2, 52. [Google Scholar] [CrossRef]
- Leyva-López, N.; Lizárraga-Velázquez, C.E.; Hernández, C.; Sánchez-Gutiérrez, E.Y. Exploitation of Agro-Industrial Waste as Potential Source of Bioactive Compounds for Aquaculture. Foods 2020, 9, 843. [Google Scholar] [CrossRef]
- Guaadaoui, A.; Benaicha, S.; Elmajdoub, N.; Bellaoui, M.; Hamal, A. What is a bioactive compound? A combined definition for a preliminary consensus. Int. J. Nutr. Food Sci. 2014, 3, 174–179. [Google Scholar] [CrossRef]
- Yegorov, B.; Turpurova, T.; Sharabaeva, E.; Bondar, Y. Prospects of using by-products of sunflower oil production in compound feed industry. J. Food Sci. Technol. 2019, 13, 106–113. [Google Scholar] [CrossRef]
- Gullón, P.; Gullón, B.; Astray, G.; Carpena, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Valorization of By-Products from Olive Oil Industry and Added-Value Applications for Innovative Functional Foods. Food Res. Int. 2020, 137, 109683. [Google Scholar] [CrossRef]
- Kreps, F.; Vrbiková, L.; Schmidt, Š. Industrial Rapeseed and Sunflower Meal as Source of Antioxidants. Int. J. Eng. Res. Appl. 2004, 4, 45–54. [Google Scholar]
- Leonardis, A.D.; Macciola, V.; Rocco, A.D. Oxidative stabilization of cold-pressed sunflower oil using phenolic compounds of the same seeds. J. Sci. Food Agric. 2003, 83, 523–528. [Google Scholar] [CrossRef]
- Weisz, G.M.; Kammerer, D.R.; Carle, R. Identification and quantification of phenolic compounds from sunflower (Helianthus annuus L.) kernels and shells by HPLC-DAD/ESI-MSn. Food Chem. 2009, 115, 758–765. [Google Scholar] [CrossRef]
- Kotecka-Majchrzak, K.; Sumara, A.; Fornal, E.; Montowska, M. Oilseed proteins—Properties and application as a food ingredient. Trends Food Sci. Technol. 2020, 106, 160–170. [Google Scholar] [CrossRef]
- Romanić, R.S.; Lužaić, T.Z. Dehulling effectiveness of high-oleic and linoleic sunflower oilseeds using air-jet impact dehuller: A comparative study. Food Sci. Technol. 2022, 42, 1–7. [Google Scholar] [CrossRef]
- Mihai, A.L.; Negoiță, M.; Horneț, G.-A.; Belc, N. Valorization Potential of Oil Industry By-Products as Sources of Essential Fatty Acids. Processes 2022, 10, 2373. [Google Scholar] [CrossRef]
- AACC. Method 44–15.02 Moisture–Air-Oven Methods, 11th ed.; AACC International Approved Methods: St. Paul, MN, USA, 2010. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005.
- SR EN ISO 6865; Animal Feeding Stuffs—Determination of Crude Fibre Content—Method with Intermediate Filtration. International Organization for Standardization: Geneva, Switzerland, 2002. (In Romanian)
- Mihai, A.L.; Negoita, M.; Belc, N. Evaluation of fatty acid profile of oils/fats by GC-MS through two quantification approaches. Rom. Biotechnol. Lett. 2019, 24, 973–985. [Google Scholar] [CrossRef]
- Corbu, V.M.; Gheorghe, I.; Marinaș, I.C.; Geană, E.I.; Moza, M.I.; Csutak, O.; Chifiriuc, M.C. Demonstration of Allium sativum Extract Inhibitory Effect on Biodeteriogenic Microbial Strain Growth, Biofilm Development, and Enzymatic and Organic Acid Production. Molecules 2021, 26, 7195. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Culetu, A.; Fernandez-Gomez, B.; Ullate, M.; Del Castillo, M.D.; Andlauer, W. Effect of theanine and polyphenols enriched fractions from decaffeinated tea dust on the formation of Maillard reaction products and sensory attributes of breads. Food Chem. 2016, 197, 14–23. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Tihăuan, B.-M.; Axinie, M.; Marinaș, I.-C.; Avram, I.; Nicoară, A.-C.; Grădișteanu-Pîrcălăbioru, G.; Dolete, G.; Ivanof, A.-M.; Onisei, T.; Cășărică, A.; et al. Evaluation of the Putative Duplicity Effect of Novel Nutraceuticals Using Physico-Chemical and Biological In Vitro Models. Foods 2022, 11, 1636. [Google Scholar] [CrossRef]
- Matta, H.; Gopalakrishnan, R.; Choi, S.; Prakash, R.; Natarajan, V.; Prins, R.; Gong, S.; Chitnis, S.D.; Kahn, M.; Han, X.; et al. Development and characterization of a novel luciferase based cytotoxicity assay. Sci. Rep. 2018, 8, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tihăuan, B.M.; Berca, L.M.; Adascalului, M.; Sanmartin, A.M.; Silvia Nica, S.; Cimponeriu, D. Experimental in vitro cytotoxicity evaluation of plant bioactive compounds and phytoagents: A review. Rom. Biotechnol. Lett. 2020, 25, 1832–1842. [Google Scholar]
- Tiwary, B.K.; Bihani, S.; Kumar, A.; Chakraborty, R.; Ghosh, R. The in vitro cytotoxic activity of ethno-pharmacological important plants of Darjeeling district of West Bengal against different human cancer cell lines. BMC Complement. Altern. Med. 2015, 15, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Präbst, K.; Engelhardt, H.; Ringgeler, S.; Hübner, H. Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. Methods Mol. Biol. 2017, 1601, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.P.; Ghoshal, G. Sunflower protein isolates-composition, extraction and functional properties. Adv. Colloid Interface Sci. 2022, 306, 102725. [Google Scholar] [CrossRef]
- De Oliveira Filho, J.G.; Egea, M.B. Sunflower seed byproduct and its fractions for food application: An attempt to improve the sustainability of the oil process. J. Food Sci. 2021, 86, 1497–1510. [Google Scholar] [CrossRef]
- Petraru, A.; Ursachi, F.; Amariei, S. Nutritional caracteristics assessment seeds, oil and cake. Perspective of using sunflower oilcakes as a functional ingredient. Plants 2021, 10, 2487. [Google Scholar] [CrossRef]
- Codex Alimentarius. Standard for Named Vegetable Oils CXS 210-1999; Codex Alimentarius Commission: Rome, Italy, 2021; Volume 14. [Google Scholar]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the Substantiation of Health Claims Related to Oleic Acid Intended to Replace Saturated Fatty Acids (SFAs) in Foods or Diets and Maintenance of Normal Blood LDL-Cholesterol Concentrations (ID 673, 728, 729, 1302, 4334) and Maintenance. EFSA J. 2011, 9, 2043. [Google Scholar] [CrossRef]
- Mihai, A.L.; Negoiţă, M.; Horneţ, G.-A. Nutritional potential of some cold pressed vegetable oils in terms of fatty acids. Curr. Trends Nat. Sci. 2020, 9, 104–116. [Google Scholar] [CrossRef]
- Hussein, A.S.; Mahammad, A.A.; Abd-El-Messieh, S.L.; Hamieda, S.F.; Mehaya, F.M. Dielectric and physico-chemical techniques to evaluate the nutritional and quality characteristics of fino bread fortified with sunflower meal. Egypt. J. Chem. 2021, 64, 1687–1700. [Google Scholar] [CrossRef]
- Man, S.; Păucean, A.; Muste, S.; Pop, A.; Sturza, A.; Mureșan, V.; Salanță, L.C. Effect of incorporation of sunflower seed flour on the chemical and sensory characteristics of cracker biscuits. Bull. Uasvm Food Sci. Technol. 2017, 74, 95–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grasso, S.; Omoarukhe, E.; Wen, X.; Papoutsis, K.; Methven, L. The Use of Upcycled Defatted Sunflower Seed Flour as a Functional Ingredient in Biscuits. Foods 2019, 8, 305. [Google Scholar] [CrossRef] [Green Version]
- Škrbić, B.; Filipčev, B. Nutritional and sensory evaluation of wheat breads supplemented with oleic-rich sunflower seed. Food Chem. 2008, 108, 119–129. [Google Scholar] [CrossRef]
- Žilić, S.; Maksimović Dragišić, J.; Maksimović, V.; Maksimović, M.; Basić, Z.; Crevar, M.; Stanković, G. The content of antioxidants in sunflower seed and kernel. Helia 2010, 33, 75–84. [Google Scholar] [CrossRef]
- Matthäus, B. Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agric. Food Chem. 2002, 50, 3444–3452. [Google Scholar] [CrossRef]
- Faugno, S.; Piccolella, S.; Sannino, M.; Principio, L.; Crescente, G.; Baldi, G.M.; Fiorentino, N.; Pacifico, S. Can agronomic practices and cold-pressing extraction parameters affect phenols and polyphenols content in hempseed oils? Ind. Crops Prod. 2019, 130, 511–519. [Google Scholar] [CrossRef]
- Multescu, M.; Marinas, I.C.; Susman, I.E.; Belc, N. Byproducts (Flour, Meals, and Groats) from the Vegetable Oil Industry as a Potential Source of Antioxidants. Foods 2022, 11, 253. [Google Scholar] [CrossRef]
- Karamać, M.; Kosińska, A.; Estrella, I.; Hernández, T.; Dueñas, M. Antioxidant activity of phenolic compounds identified in sunflower seeds. Eur. Food Res. Technol. 2012, 235, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Jayaprakasha, G.K.; Girennavar, B.; Patil, B.S. Radical scavenging activities of Rio Red grapefruits and Sour orange fruit extracts in different in vitro model systems. Bioresour. Technol. 2008, 99, 4484–4494. [Google Scholar] [CrossRef]
- Maksimovića, Z.; Malenčićb, D.; Kovačevića, N. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresour. Technol. 2005, 96, 873–877. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M.; Goktepe, I. Effects of processing methods and extraction solvents on concentration and antioxidant activity of peanut skin phenolics. Food Chem. 2005, 90, 199–206. [Google Scholar] [CrossRef]
- Thoo, Y.Y.; Ho, S.K.; Liang, J.Y.; Ho, C.W.; Tan, C.P. Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (Morinda citrifolia). Food Chem. 2010, 120, 290–295. [Google Scholar] [CrossRef]
- Pietta, P.G. Flavonoids in medicinal plants. In Flavonoids in Health and Disease; Rice-Evans, C.A., Packer, L., Eds.; Dekker: New York, NY, USA, 1998; pp. 61–110. [Google Scholar]
- Javanmardi, J.; Stushnoff, C.; Locke, E.; Vivanco, J.M. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem. 2003, 83, 547–550. [Google Scholar] [CrossRef]
- Moffett, D.B.; Hisham, A.M.; Fowler, B.A. General considerations of dose-effect and dose-response relationships. In Handbook on the Toxicology of Metals, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume I, pp. 101–114. [Google Scholar]
- Mason, E.F.; JC Rathmell, J.C. Cell metabolism: An essential link between cell growth and apoptosis. Biochim. Biophys. Acta-Mol. Cell Res. 2011, 1813, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Kadam, D.M.; Kumar, M.; Kasara, A. Application of high energy electromagnetic radiations in elimination of anti-nutritional factors from oilseeds. LWT 2021, 151, 112085. [Google Scholar] [CrossRef]
Sample | Moisture (%) | Protein (% d.m.) | Fat (% d.m.) | Ash (% d.m.) | Crude Fiber (% d.m.) |
---|---|---|---|---|---|
WSM | 7.15 ± 0.01 a | 30.91 ± 0.27 a | 15.12 ± 0.05 a | 5.44 ± 0.02 a | 24.56 ± 0.23 a |
PSM | 4.96 ± 0.01 b | 24.18 ± 0.09 b | 44.75 ± 0.12 b | 3.61 ± 0.01 b | 19.53 ± 0.52 b |
TSM | 2.43 ± 0.01 c | 22.24 ± 0.52 c | 57.11 ± 0.07 c | 3.21 ± 0.01 c | 11.24 ± 0.12 c |
FAME Name | FAME Codification | FAME Composition (Mean ± SD), % | ||
---|---|---|---|---|
WSM | PSM | TSM | ||
myristic | C14:0 | 0.18 ± 0.02 a | 0.21 ± 0.03 a | 0.17 ± 0.01 a |
pentadecanoic | C15:0 | 0.05 ± 0.00 a | 0.04 ± 0.01 a | 0.03 ± 0.00 a |
palmitic | C16:0 | 9.63 ± 0.34 a | 7.22 ± 0.59 a | 7.28 ± 0.96 a |
palmitoleic | C16:1n7 | 0.19 ± 0.02 a | 0.14 ± 0.02 a | 0.17 ± 0.01 a |
heptadecanoic | C17:0 | 0.09 ± 0.00 a | 0.06 ± 0.01 b | 0.06 ± 0.00 b |
stearic | C18:0 | 4.83 ± 0.02 a | 3.75 ± 0.43 a | 2.53 ± 0.24 b |
oleic | C18:1n9 | 28.32 ± 1.49 a | 35.46 ± 3.10 a | 38.77 ± 3.65 a |
cis vaccenic | C18:1n11 | 0.95 ± 0.19 a | 0.58 ± 0.07 a | 0.71 ± 0.08 a |
linoleic (LA) | C18:2n6 | 52.88 ± 0.37 a | 50.19 ± 4.24 a | 45.76 ± 4.30 a |
α-linolenic (ALA) | C18:3n3 | 0.23 ± 0.06 a | 0.13 ± 0.03 a | 0.16 ± 0.01 a |
arachidic | C20:0 | 0.60 ± 0.09 a | 0.56 ± 0.14 a | 0.73 ± 0.03 a |
gondolic | C20:1n9 | 0.16 ± 0.03 a | 0.21 ± 0.06 a | 0.28 ± 0.01 a |
heneicosanoic | C21:0 | 0.02 ± 0.00 | - | - |
behenic | C22:0 | 1.28 ± 0.22 b | 0.57 ± 0.02 c | 2.47 ± 0.04 a |
tricosanoic | C23:0 | 0.10 ± 0.03 | - | - |
lignoceric | C24:0 | 0.49 ± 0.11 a | 0.87 ± 0.13 a | 0.88 ± 0.03 a |
SFA, % fat | 17.26 ± 0.83 a | 13.28 ± 1.00 b | 14.15 ± 0.60 a,b | |
MUFA, % fat | 29.62 ± 1.26 a | 36.40 ± 3.20 a | 39.93 ± 3.71 a | |
PUFA, % fat | 53.12 ± 0.43 a | 50.32 ± 4.21 a | 45.92 ± 4.31 a | |
ω-3, % fat | 0.23 ± 0.06 a | 0.13 ± 0.03 a | 0.16 ± 0.01 a | |
ω-6, % fat | 52.88 ± 0.37 a | 50.19 ± 4.24 a | 45.76 ± 4.30 a | |
ω-9, % fat | 28.48 ± 1.47 a | 35.67 ± 3.16 a | 39.03 ± 3.64 a | |
ω-6/ω-3 ratio | 229.91 | 386.08 | 286.00 | |
Fat (g/100 g product) | 14.04 ± 0.05 c | 42.53 ± 0.11 b | 55.73 ± 0.06 a | |
SFA, % product | 2.42 | 5.65 | 7.89 | |
MUFA, % product | 4.16 | 15.48 | 22.25 | |
PUFA, % product | 7.46 | 21.40 | 25.59 | |
ω-3, % product | 0.03 | 0.05 | 0.09 | |
ω-6, % product | 7.42 | 21.35 | 25.50 | |
ω-9, % product | 4.00 | 15.17 | 21.76 |
Sample | TPC (mg GAE/100 g) | TFC (mg QE/100 g) |
---|---|---|
WSM | 1686.34 ± 1.03 c | 249.85 ± 1.06 c |
PSM | 2185.53 ± 1.14 b | 260.15 ± 1.07 b |
TSM | 2496.26 ± 1.39 a | 284.64 ± 1.09 a |
Sample | DPPH | ABTS | FRAP |
---|---|---|---|
WSM | 709.48 ± 4.39 b | 1320.12 ± 8.21 c | 4417.77 ± 10.85 c |
PSM | 716.37 ± 5.75 b | 1554.15 ± 8.89 b | 6294.92 ± 12.31 b |
TSM | 736.40 ± 3.99 a | 1597.60 ± 7.96 a | 6505.87 ± 11.23 a |
DPPH | ABTS | FRAP | |
---|---|---|---|
TPC | 0.9178 | 0.9499 | 0.9559 |
TFC | 0.9991 | 0.7760 | 0.7759 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adascălului, M.; Multescu, M.; Mihai, A.L.; Bobea, S.A.; Florea, C.; Belc, N. Cytotoxicity Assessment and Nutritional Profiling of Bio-Active Compounds Obtained from Food Waste. Processes 2023, 11, 89. https://doi.org/10.3390/pr11010089
Adascălului M, Multescu M, Mihai AL, Bobea SA, Florea C, Belc N. Cytotoxicity Assessment and Nutritional Profiling of Bio-Active Compounds Obtained from Food Waste. Processes. 2023; 11(1):89. https://doi.org/10.3390/pr11010089
Chicago/Turabian StyleAdascălului, Marian, Mihaela Multescu, Adriana Laura Mihai, Sabina Andreea Bobea, Cristian Florea, and Nastasia Belc. 2023. "Cytotoxicity Assessment and Nutritional Profiling of Bio-Active Compounds Obtained from Food Waste" Processes 11, no. 1: 89. https://doi.org/10.3390/pr11010089
APA StyleAdascălului, M., Multescu, M., Mihai, A. L., Bobea, S. A., Florea, C., & Belc, N. (2023). Cytotoxicity Assessment and Nutritional Profiling of Bio-Active Compounds Obtained from Food Waste. Processes, 11(1), 89. https://doi.org/10.3390/pr11010089