Accuracy of FDM PLA Polymer 3D Printing Technology Based on Tolerance Fields
Abstract
:1. Introduction
- Outline the systematic calibration procedure of a 3D printer;
- Identify the influence of the size of the build plate;
- Present a novel approach for the CAD modelling of parts based on ISO 286 to 3D-print the parts within pre-set tolerance limits;
- Successfully apply the ISO 286 standard on a desktop 3D printer;
- Combine the Linear Advance and the Hole Horizontal Expansion factors and the ISO 286 standard to reduce the dimensional inaccuracy of the 3D-printed parts to a minimum and correlated them with, e.g., the clearance fit system.
2. Materials and Methods
2.1. Hardware Properties
2.1.1. Extruder Calibration
- —new extrusion E-steps, in steps/mm;
- —default extrusion E-steps, in steps/mm;
- —the distance to be extruded, in mm;
- —the measured distance between the markers, in mm;
2.1.2. Bed Levelling
2.1.3. Axis Steps and Skew Checking
2.1.4. Residual Pressure in the Nozzle (Oozing)
2.2. Software Properties
2.2.1. Dimensional Recognition in the Ultimaker 5.1.1 Slicer Software
2.2.2. Dimensional Compensation
2.3. ISO 286-1:2010 System of Limits and Fits
- D, in mm—geometrical mean value;
- D1; D2, in mm—lower and upper range values ( mm; mm).
2.4. Noncontact Measurement Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, M.N.; Mohamad, A.R. Analysis on Dimensional Accuracy of 3D Printed Parts by Taguchi Approach. In Advances in Mechatronics, Manufacturing, and Mechanical Engineering. Lecture Notes in Mechanical Engineering; Springer: Singapore, 2021. [Google Scholar]
- Ahmad, M.N.; Ishak, M.R.; Mohammad Taha, M.; Mustapha, F.; Leman, Z. A Review of Natural Fiber-Based Filaments for 3D Printing: Filament Fabrication and Characterization. Materials 2023, 16, 4052. [Google Scholar] [CrossRef] [PubMed]
- Herbert Fritz, A.; Schulze, G. Fertigungstechnik; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Tiwary, V.K.; Arunkumar, P.; Malik, V.R. An overview on joining/welding as post-processing technique to circumvent the build volume limitation of an FDM-3D printer. Rapid Prototyp. J. 2021, 27, 808–821. [Google Scholar] [CrossRef]
- ISO 286-1:2010; Geometrical Product Specifications (GPS)—ISO Code System for Tolerances on Linear Sizes. International Organization for Standardization: Geneva, Switzerland, 2010.
- Abdelrhman, A.M. Assessment of Geometrical Dimension and Tolerance of (FDM) Part. Master’s Thesis, Curtin University of Technology Malaysia, Sarawak, Malaysia, 2008. [Google Scholar]
- Boschetto, A.; Bottini, L. Design for manufacturing of surfaces to improve accuracy in Fused Deposition Modeling. Robot Comput. Integr. Manuf. 2016, 37, 103–114. [Google Scholar] [CrossRef]
- Drozda, F.O.; Pereira, T.R.; Patterson, A.E. End-User Manufacturing with FDM/FFF: Interfaces, Tolerances, Repeatability, and Dimensional Accuracy. In Proceedings of the 2020 IISE Annual Conference and Exhibition, New Orleans, LA, USA, 1–3 November 2020. [Google Scholar]
- Pombinha, P.; Leite, M.; Carvalho, A.; Claudio, R.A.L.D.; Silva, A.; Ribeiro, A.M.R. A Study on the Effect of Layer Thickness and Infill Density on Geometric Tolerance in Fdm. In Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), Singapore, 14–17 May 2018. [Google Scholar]
- Kacmarcik, J.; Spahic, D.; Varda, K.; Porca, E.; Zaimovic-Uzunovic, N. An investigation of geometrical accuracy of desktop 3D printers using CMM. IOP Conf. Ser. Mater Sci. Eng. 2018, 393, 012085. [Google Scholar] [CrossRef]
- Schaechtl, P.; Schleich, B.; Wartzack, S. Statistical Tolerance Analysis of 3D-Printed Non-Assembly Mechanisms in Motion Using Empirical Predictive Models. Appl. Sci. 2021, 11, 1860. [Google Scholar] [CrossRef]
- Zemicik, O.; Sedlak, J. Application of Linear Optimization on Parameters of 3D FDM Print. Teh. Vjesn.-Tech. Gaz. 2019, 26, 1164–1170. [Google Scholar] [CrossRef]
- Luis-Pérez, C.J.; Buj-Corral, I.; Sánchez-Casas, X. Modeling of the Influence of Input AM Parameters on Dimensional Error and Form Errors in PLA Parts Printed with FFF Technology. Polymers 2021, 13, 4152. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Aminzadeh, A.; Rahmatabadi, D.; Rasouli, S.A. Statistical and Experimental Analysis of Process Parameters of 3D Nylon Printed Parts by Fused Deposition Modeling: Response Surface Modeling and Optimization. J. Mater. Eng. Perform. 2021, 30, 5441–5454. [Google Scholar] [CrossRef]
- Alexopoulou, V.E.; Christodoulou, I.T.; Markopoulos, A.P. Effect of Printing Speed and Layer Height on Geometrical Accuracy of FDM-Printed Resolution Holes of PETG Artifacts. Eng. Proc. 2022, 24, 11. [Google Scholar] [CrossRef]
- Mendricky, R.; Soni, R.D. Geometric Stability of Parts Produced by 3D Printing. Teh. Vjesn.-Tech. Gaz. 2022, 29, 23–29. [Google Scholar] [CrossRef]
- Šljivic, M.; Pavlovic, A.; Kraišnik, M.; Ilić, J. Comparing the accuracy of 3D slicer software in printed enduse parts. IOP Conf Ser Mater. Sci. Eng. 2019, 659, 012082. [Google Scholar] [CrossRef]
- Schaechtl, P.; Hallmann, M.; Schleich, B.; Wartzack, S. Tolerance Analysis of Additively Manufactured Non-assembly Mechanisms considering Joint Clearance. Procedia CIRP 2020, 92, 27–32. [Google Scholar] [CrossRef]
- Lieneke, T.; Denzer, V.; Adam, G.A.O.; Zimmer, D. Dimensional Tolerances for Additive Manufacturing: Experimental Investigation for Fused Deposition Modeling. Procedia CIRP 2016, 43, 286–291. [Google Scholar] [CrossRef]
- UltiMaker. Cura 5.1.1 3D Printing Software. Available online: https://ultimaker.com/software/ultimaker-cura (accessed on 10 March 2023).
- UltiMaker Thingiverse. Skew Compensation Post Proc Script. Available online: https://www.thingiverse.com/thing:3050059 (accessed on 10 March 2023).
- UltiMaker Thingiverse. Linear Advance Calibration. Available online: https://www.thingiverse.com/thing:2688535 (accessed on 10 March 2023).
- Kljajin, M.; Opalić, M. Inženjerska Grafika; Strojarski fakultet u Slavonskom Brodu: Slavonski Brod, Croatia, 2016. [Google Scholar]
- Miroslav Petele. ‘MITCalc 2.02’ Software. Available online: https://www.mitcalc.com/index.htm (accessed on 28 September 2022).
- PotatotreeSoft, ON Diameter. Available online: https://play.google.com/store/apps/details?id=com.potatotree.ondiameter&hl=en_US (accessed on 10 March 2023).
- Soleyman, E.; Aberoumand, M.; Soltanmohammadi, K.; Rahmatabadi, D.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Baghani, M. 4D printing of PET-G via FDM including tailormade excess third shape. Manuf. Lett. 2022, 33, 1–4. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Soltanmohammadi, K.; Aberoumand, M.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. Development of Pure Poly Vinyl Chloride (PVC) with Excellent 3D Printability and Macro- and Micro-Structural Properties. Macro-Mol. Mater. Eng. 2023, 308, 2200568. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Temperature (°C) | 200 |
Bed temperature (°C) | 45 |
Layer height (mm) | 0.2 |
PLA diameter (mm) | 1.75 |
Infill (%) | 100 |
Pattern | Lines |
Printing speed (mm/s) | 50 |
Fan settings (all layers) (%) | 100 |
Layer orientation (°) | ±45 |
Number of perimeters | 1 |
Nozzle diameter (mm) | 0.4 |
Parameter | Value |
---|---|
Horizontal Expansion (mm) | 0.0 |
Initial Layer Horizontal Expansion (mm) | −0.2 |
Hole Horizontal Expansion (mm) | 0.13 |
Request, mm | Ø45 | ||
---|---|---|---|
Iteration | Measurement (mm) | Difference (mm) | HHE Value (mm) |
1. | Ø44.80 | 0.2 | 0.1 |
Adopted HHE value (mm) | 0.1 | ||
2. | Ø44.94 | 0.06 | 0.03 |
Adopted HHE value (mm) | 0.13 | ||
3. | Ø45 | 0 | 0.13 |
Adopted HHE value (mm) | 0.13 | ||
4. | Ø45 | 0 | 0.13 |
Adopted HHE value (mm) | 0.13 | ||
5. | Ø45 | 0 | 0.13 |
HHE value confirmed (mm) | 0.13 |
Type of Fit | Tolerance Zones | Upper/Lower Deviation (mm) | Max/Min Diameter (mm) | Diameter to Be 3D Printed (mm) |
---|---|---|---|---|
Ø35H9/h9 | Ø35H9 | 0.062 | Ø35.062 | Ø35.031 |
0.000 | Ø35.000 | |||
Ø35h9 | 0.000 | Ø35.000 | Ø34.969 | |
−0.062 | Ø34.938 | |||
Ø35H9/g9 | Ø35H9 | 0.062 | Ø35.062 | Ø35.031 |
0.000 | Ø35.000 | |||
Ø35g9 | −0.009 | Ø34.991 | Ø34.960 | |
−0.071 | Ø34.929 | |||
Ø35H9/f9 | Ø35H9 | 0.062 | Ø35.062 | Ø35.031 |
0.000 | Ø35.000 | |||
Ø35f9 | −0.025 | Ø34.975 | Ø34.944 | |
−0.087 | Ø34.913 | |||
Ø35H9/e9 | Ø35H9 | 0.062 | Ø35.062 | Ø35.031 |
0.000 | Ø35.000 | |||
Ø35e9 | −0.050 | Ø34.950 | Ø34.919 | |
−0.112 | Ø34.888 | |||
Ø35H9/d9 | Ø35H9 | 0.062 | Ø35.062 | Ø35.031 |
0.000 | Ø35.000 | |||
Ø35d9 | −0.080 | Ø34.920 | Ø34.889 | |
−0.142 | Ø34.858 | |||
Ø35H9/c9 | Ø35H9 | 0.062 | Ø35.062 | Ø35.031 |
0.000 | Ø35.000 | |||
Ø35c9 | −0.120 | Ø34.880 | Ø34.849 | |
−0.182 | Ø34.818 | |||
Ø35H9/b9 | Ø35H9 | 0.062 | Ø35.062 | Ø35.031 |
0.000 | Ø35.000 | |||
Ø35b9 | −0.170 | Ø34.830 | Ø34.799 | |
−0.232 | Ø34.768 | |||
Ø35H9/a9 | Ø35H9 | 0.062 | Ø35.062 | Ø35.031 |
0.000 | Ø35.000 | |||
Ø35a9 | −0.310 | Ø34.690 | Ø34.659 | |
−0.372 | Ø34.628 |
Basic Dimension (mm) | Ø35 | Tolerance Zones and Limits—3D Printing | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H9 | 0.045 | h9 | −0.004 | g9 | −0.021 | f9 | −0.027 | e9 | −0.050 | d9 | −0.080 | c9 | −0.122 | b9 | −0.171 | a9 | −0.323 |
0.002 | −0.056 | −0.071 | −0.084 | −0.095 | −0.143 | −0.176 | −0.229 | −0.370 | |||||||||
H10 | 0.096 | h10 | −0.009 | g10 | −0.014 | f10 | −0.029 | e10 | −0.089 | d10 | −0.090 | c10 | −0.125 | b10 | −0.179 | a10 | −0.311 |
0.008 | −0.067 | −0.080 | −0.113 | −0.142 | −0.140 | −0.210 | −0.259 | −0.401 | |||||||||
H11 | 0.150 | h11 | −0.012 | g11 | −0.029 | f11 | −0.054 | e11 | −0.068 | d11 | −0.149 | c11 | −0.165 | b11 | −0.184 | a11 | −0.347 |
0.077 | −0.106 | −0.109 | −0.168 | −0.200 | −0.215 | −0.212 | −0.280 | −0.470 | |||||||||
H12 | 0.228 | h12 | −0.080 | g12 | −0.086 | f12 | −0.078 | e12 | −0.095 | d12 | −0.187 | c12 | −0.200 | b12 | −0.270 | a12 | −0.400 |
0.127 | −0.158 | −0.155 | −0.178 | −0.210 | −0.247 | −0.274 | −0.330 | −0.491 | |||||||||
H13 | 0.301 | h13 | −0.207 | g13 | −0.183 | f13 | −0.197 | e13 | −0.201 | d13 | −0.239 | c13 | −0.272 | b13 | −0.380 | a13 | −0.460 |
0.188 | −0.345 | −0.336 | −0.307 | −0.323 | −0.317 | −0.377 | −0.473 | −0.580 | |||||||||
H14 | 0.328 | h14 | −0.244 | g14 | −0.248 | f14 | −0.205 | e14 | −0.274 | d14 | −0.319 | c14 | −0.424 | b14 | −0.511 | a14 | −0.526 |
0.249 | −0.368 | −0.365 | −0.379 | −0.413 | −0.459 | −0.639 | −0.600 | −0.671 |
Basic Size (mm) | Ø35 | Roundness Tolerance t (mm) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H9 | 0.043 | h9 | 0.052 | g9 | 0.050 | f9 | 0.057 | e9 | 0.045 | d9 | 0.063 | c9 | 0.054 | b9 | 0.058 | a9 | 0.047 |
H10 | 0.088 | h10 | 0.058 | g10 | 0.066 | f10 | 0.084 | e10 | 0.053 | d10 | 0.050 | c10 | 0.085 | b10 | 0.080 | a10 | 0.090 |
H11 | 0.073 | h11 | 0.094 | g11 | 0.080 | f11 | 0.114 | e11 | 0.132 | d11 | 0.066 | c11 | 0.047 | b11 | 0.096 | a11 | 0.123 |
H12 | 0.105 | h12 | 0.078 | g12 | 0.069 | f12 | 0.100 | e12 | 0.115 | d12 | 0.060 | c12 | 0.074 | b12 | 0.060 | a12 | 0.091 |
H13 | 0.113 | h13 | 0.162 | g13 | 0.153 | f13 | 0.110 | e13 | 0.122 | d13 | 0.078 | c13 | 0.105 | b13 | 0.123 | a13 | 0.120 |
H14 | 0.079 | h14 | 0.124 | g14 | 0.117 | f14 | 0.174 | e14 | 0.139 | d14 | 0.140 | c14 | 0.215 | b14 | 0.151 | a14 | 0.145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grgić, I.; Karakašić, M.; Glavaš, H.; Konjatić, P. Accuracy of FDM PLA Polymer 3D Printing Technology Based on Tolerance Fields. Processes 2023, 11, 2810. https://doi.org/10.3390/pr11102810
Grgić I, Karakašić M, Glavaš H, Konjatić P. Accuracy of FDM PLA Polymer 3D Printing Technology Based on Tolerance Fields. Processes. 2023; 11(10):2810. https://doi.org/10.3390/pr11102810
Chicago/Turabian StyleGrgić, Ivan, Mirko Karakašić, Hrvoje Glavaš, and Pejo Konjatić. 2023. "Accuracy of FDM PLA Polymer 3D Printing Technology Based on Tolerance Fields" Processes 11, no. 10: 2810. https://doi.org/10.3390/pr11102810
APA StyleGrgić, I., Karakašić, M., Glavaš, H., & Konjatić, P. (2023). Accuracy of FDM PLA Polymer 3D Printing Technology Based on Tolerance Fields. Processes, 11(10), 2810. https://doi.org/10.3390/pr11102810