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Abstract: In the present work, a modified mixed-integer linear programming model was implemented
in Microsoft Excel® and minimized using the Solver tool to obtain information to devise a heat
exchanger network with multiple utilities from a set of hot and cold streams and selected utilities
by hand. Regarding the mixed-integer linear programming problem, the summation of utility
energy was added to the model, and this energy was equal to that from the Temperature Interval
method and the Grand Composite Curve. Moreover, feasible temperature ranges for heat exchange
were considered according to the second law of thermodynamics. Also, the last two temperature
intervals from the rank-ordered ones were assigned for water energy balances. An energy balance
was introduced into the algorithm for each interval between its temperature and the process pinch
temperature in the case of the boiler-feed water. Seven stream sets collected from the literature were
used for the mixed-integer linear programming formulation testing, and six of them are presented
in this article. Because of boiler-feed water generation and the low cost of utilities, the annualized
cost of a heat exchanger network with multiple utilities can be lower than that of a network without
multiple utilities.

Keywords: pinch; heat exchanger network; multiple utilities; mixed-integer linear programming;
Microsoft Excel

1. Introduction

Commodities like ammonia or hydrogen can be obtained by utilizing the Stage-Gate
Technology Development Process (SGTDP) methodology before the Stage-Gate Product
Development Process (SGPDP) procedure [1]. The latter method comprises concept, fea-
sibility, manufacture, development, and product introduction. Concerning SGTDP, it is
formed by technology scoping, technology assessment, and technology transfer. Therefore,
eight levels must be passed before the product is launched into the market.

Process synthesis for the chemical species mentioned above occurs at the concept level,
which is made up of five steps: (i) chemical reaction; (ii) mixing, recycling, and division
streams; (iii) separation steps; (iv) pressure and temperature changes; and (v) equipment
substitution. Finally, heat integration, including high, medium, and low-pressure steam
and boiler-feed water (BFW) incorporation, is applied to the fourth step [1].

Fuel (F), steam (S), and water (W) are some required utilities in the industry for heating
and cooling process streams in a heat exchanger network (HEN). It should be mentioned
here that the heat from hot i streams that cannot raise the temperature of process streams
or generate BFW is dumped into the W utility. In contrast, the heat can be stored by
performing a gas–gas, liquid–gas, or solid-gas chemical reaction, concentrating and then
diluting chemical species, or harnessing ammoniated salt pairs, hydrated salt pairs, or
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metal hydrides, as described by Yan et al. [2]. Similarly, rocks, ceramics, and molten salts
can be utilized for this goal [3]. All of these options are influenced by temperature, and
they enable the saving of waste energy.

A HEN is obtained by minimizing a mixed-integer nonlinear programming (MINLP) for-
mulation from different superstructure (SST) assessments. In this case, Yee and Grossman [4]
addressed a stage-wise SST considering possible heat exchanges between the i and cold
j streams. Furthermore, Nair and Karimi [5] reviewed an SST with a pool of two-stream
heat exchangers (HEs). Likewise, Sun et al. [6] communicated a stage-wise SST account-
ing for the generation and absorption processes from a compression–absorption cascade
refrigeration system. Also, Rathjens and Fieg [7] used a genetic algorithm and determinis-
tic local optimization techniques for solving the SST. In addition, the HEN obtention by
solving a MINLP using results from the resolution of mixed-integer linear programming
(MILP) problems of the same process-stream data has been claimed by Nemet et al. [8],
with optimization of the temperatures, flowrates, and areas associated with each match by
Caballero et al. [9]. The GAMS program has been handled for model optimization [4–6,8,9].

On the other hand, there are several measures of profitability to compare process
flowsheets at the Task Integration level [1], and they can depend on the area of HEs and the
utilities. These two parameters can be obtained by determining the minimum amount of
utilities using the Temperature Interval (TI) method and then the minimum number of HEs
following a MILP approach. The sequential mode comprises these last two strategies [10],
and the area can be obtained from heat loads associated with the minimum number of HEs.
It is worth mentioning that (i) the exact values of the capital and operating costs at the Task
Integration level are not necessary [11], and (ii) the sequential mode provides a value near
the corresponding optimum [12]. Therefore, the sequential mode is adequate to compare
process flowsheets.

In the process design stage, the inclusion of multiple utilities in the HEN can be manu-
ally carried out after the HEN synthesis [13], evaluating the Grand Composite Curve [14] as
published for a chemical process [15]. Conversely, other strategies for multiple utilities intro-
duced into the HEN have been communicated in the literature. For example, Yeo et al. [16]
proposed a graphical method to determine the minimum utility values and the minimum
number of HEs in which phase changes occur. Additionally, Ponce-Ortega et al. [17] de-
veloped a MINLP strategy from an SST, including different types of utilities. Moreover,
Na et al. [18] communicated a utility substage in a stage-wise SST.

Some computer programs have been employed to solve problems involving the in-
corporation of multiple utilities into HENs. For instance, Papoulias and Grossmann [19]
reported the synthesis of HENs with multiple utilities in assessing a MILP framework in the
LINDO software. In this last work, the pinch process and the pinch utilities are determined
simultaneously. Furthermore, Shenoy et al. [20] synthesized HENs with multiple utilities
as a function of the Total Annual Cost by setting up the HXTARG software.

Microsoft Excel® has been widely applied in the determination of Minimum Energy
Recovery (MER) values from a set of i and j streams [21], obeying the Problem Table
Algorithm spreadsheet [22], or the Goal Seek function [23], and HEN design [24]. In this
situation, Walmsley et al. [25] found a novel HEN retrofit targeting method for the HEN
design in configuring this software.

To the best of our knowledge, the multiple utilities determined by the TI method or the
Grand Composite Curve, the minimum heat transferred between i and j streams according
to the second law of thermodynamics, the assignment of two last intervals for the W utility
to collect the heat, and energy balances per interval between the process pinch and the BFW
pinch have not been taken into account in the MILP model. As a solution, the Microsoft
Excel® program was used to obtain a HEN with the minimum amount of HEs, the MER
requirements, their cost, and the annualized cost (CA). This methodology could be utilized
to select a process flowsheet at the Task Integration level. In this context, this work aims to
report the synthesis of HENs with multiple utilities and their CA, yearly utility costs (CU),
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and purchase costs (HEN CP) by assessing a modified version of the conventional MILP
approach and the Microsoft Excel® program to compare process flowsheets.

2. Problem Statement

In the design stage, for a given set of i and j streams with their source and target
temperatures, their product of flow rate and heat capacity, i.e., the C value, the utility
streams, their cost, the ∆Tmin value, and the HE CP, a HEN with selected multiple utilities,
the minimum number of HEs, the MER targets, and the lowest value of CA are obtained.
Figure 1 illustrates a flowchart indicating the obtention of HEN for all examples solved
in this work, showing its connection with the modified MILP (m-MILP) framework and
input data.
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3. Methodology
3.1. Problem Formulation

The TI method [1] was carried out to determine the pinch temperature and the MER
objectives. In addition, the Large function was used to rank the temperatures for tempera-
ture interval obtention. Concerning the C value per interval (Equation (1)) operation (CH
and CC are C values for i and j streams, respectively), Equation (2) was employed. Without
considering their bounds, if a common temperature between the interval formed by the
adjusted source and target temperatures of a process stream and a temperature interval
determined by the TI method is detected, its C value is considered for Equation (1). It
is worth pointing out that a constant value of heat capacity and no phase change in any
process streams or utilities were assumed [26].

(CI) = ∑ CH −∑ CC (1)
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formula = IF(Y(condition1; condition2); value_if is true; value_if is false) (2)

The rank-ordered intervals required for the m-MILP approach were derived from
the source temperature of process streams [1]. These temperatures were placed in the
vertices of a stack with same-size squares: the source temperatures of i streams were set
at the left side stack, while the source temperatures of j streams were at the right side
stack. Since the intervals are represented by horizontal lines in the stack, which depict
the ∆Tmin value, the other temperatures for each interval were obtained by aggregating
(source temperatures of j streams) or subtracting (source temperatures of i streams) the
∆Tmin value. For example, the temperature intervals obtained for a hypothetical set of two
i and two j streams are presented in Figure S1 of the Supplementary Material. In this last
figure, the pinch temperature was indicated by a horizontal line to show the limit for heat
flow that comes from intervals at higher temperatures. Likewise, the i and j streams were
qualitatively located at the left and right side square stacks, respectively.

The W utility source temperature was assumed to be 15 ◦C [27]. Similarly, its target
temperature was equal to the second-lowest source temperature of j streams minus 1. This
previous procedure defines the W-utility C value and guarantees a heat remotion by the W
utility in the last two intervals. After obtaining the MER targets, the pinch temperature,
and the temperature intervals for the m-MILP problem, the transshipment model [19] was
used to create a modified formulation compared to that of the minimum HEs obtention [1],
coupled with forbidden matches between i and j streams or without process pinch, as
proposed by Biegler et al. [10]. The m-MILP algorithm is the following:

minz = ∑
i

∑
j

yij

w.r.t.
Qijk, yij

s.t.

(3)

Rik + ∑
j∈Ck

Qijk − Ri,k−1 −QH
ik = 0 i ∈ Hk,

k = 1, . . . , K
(4)

∑
i∈Hk

Qijk −QC
jk = 0 j ∈ CSk, k = 1, . . . , K (5)

∑
k

Qijk − yijUij ≤ 0 i ∈ H, j ∈ CS (6)

∑
k

QH
UUk = UUH (7)

Rik ≥ 0, Qijk ≥ 0, yij ∈ 0, 1 (8)

An important remark is that, through their residuals, the i streams can transfer heat to
the j streams at intervals where they are absent [1]. Regarding the inclusion of BFW utility,
an energy balance was implemented for each interval formed between the process pinch
temperature and its utility temperature.

It is important to note that the utility Uij (Equation (6)) means the lowest heat ex-
changed between the i and j streams. This definition is opposite to the one elaborated by
Seider et al. [1], who determined Uij values that are not according to the second law of
thermodynamics. In the case of the match i-BFW, contrasting the heat of i streams per
interval and BFW heat from the Grand Composite Curve, the Uij values were determined.
Equation (7) guarantees that the utility heat introduced at all k intervals equals the value
determined by the TI method or the Grand Composite Curve [1]. In this case, one equation
per hot utility must be introduced into the m-MILP algorithm.
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3.2. m-MILP Problem Solution

All the computer calculations were performed using Microsoft Excel® 2016. Also, the
GRG Nonlinear method from the Solver tool was selected to solve the m-MILP algorithm,
applying the default parameter settings of the program. It is essential to point out that
if there are problems with convergence on a solution, the Evolutionary method can be
employed instead of the GRG Nonlinear method [28]. Furthermore, the starting values
were 1 for the first m-MILP model solving. In addition, the Solver execution was carried
out until the solution values were equal to those from a previous resolution of the same
m-MILP formulation. The time for the last m-MILP resolution is communicated for each
example carried out in this investigation. Lastly, the m-MILP approach solution provides
information to devise the HEN manually with and without multiple utilities.

3.3. HEN CP, CU, and CA

Cost data for determining the HEN CP, CU, and CA are shown in Table 1. Since BFW
production reduces energy consumption to produce the S utility [29], this can be considered
an income. Thus, the BFW cost was subtracted from the CU.

As developed by Seider et al. [1], the flowsheets’ CA values for the same heating and
cooling task can be compared, and as a result, its formula (Equation (9), Table 1) was
exploited in this work. Similarly, a value of 1 for FP, FM, and FL (Equation (10), Table 1), and
FT and an overall heat-transfer coefficient of 444 W m−2K−1 [30] (Equation (13), Table 1)
were found suitable to obtain a mathematical expression that depends only on the area, as
proposed in work by Liu et al. [31]. Moreover, because of its low price, the Fixed-Head HE
was used (Equation (11), Table 1) [32]. Related to the CP, since its mathematical relationship
(Equation (11), Table 1) is valid for the range of 13.9 to 1114.8 m2, this range’s lowest limit
was assumed for areas less than this value. On the other hand, if the area was above the
range, it was divided into equal parts equivalent to 1114.8 m2 or less [33]. Furthermore, the
CP was updated with the index cost corresponding to December 2022 [34] (Equation (10),
Table 1). Additionally, Equation (12) enables the logarithmic mean temperature calculation,
even for those cases where the temperature difference value from i stream inlet minus j
stream outlet (∆T1) equals that from i stream outlet minus j stream inlet (∆T2). It is worth
noting that the HEN CP is computed by summing each HE CP and configuring the HEN.

Table 1. Cost data and formulae for obtaining the HEN CP, CU, and CA.

Parameter Value or Formula No. of
Equation Reference

Water, 15 ◦C USD 10 (kW y)−1 [27]

BFW, 110 ◦C USD 14.14 (kW y)−1 [1]

Steam, 170 ◦C USD 57.14 (kW y)−1, a [35]

Steam, 226.85 ◦C USD 106.85 (kW y)−1, a [10]

High-pressure steam, 280 ◦C USD 160 (kW y)−1 [27]

Steam, 332.25 ◦C USD 164.63 (kW y)−1, a [1]

Fuel, 800 ◦C USD 200 (kW y)−1 [27]

Annualized cost CA = im(CTCI) + CU (9) [1]

HE f.o.b. purchase cost CP = FPFM FLCB

(
I

Ibase

)
(10) [1]

Fixed head HE base f.o.b. purchase cost CB = exp
{

11.0545− 0.9228[ln(A)] + 0.09861[ln(A)]2
}

(11) [36]

Chen’s approximation of the logarithmic
mean temperature ∆TLM = [∆T1 ∆T2 0.5 (∆T1 + ∆T2)]1/3 (12) [37]

Heat exchanged in a HE Q = UAFT∆TLM (13) [38]
a This cost was obtained by cost data interpolation from Chang et al. [27].
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4. Examples
4.1. Example 1

Table S1 depicts a set of two hot and two cold streams reported by Seider et al. [1] and the
multiple utilities introduced to the HEN. Moreover, Tables S2 and S3 present the above streams’
pinch determination and MER requirements at the minimum temperature difference (∆Tmin)
value of 10 ◦C. Furthermore, the m-MILP model comprised 24 energy balances, 31 continuous
variables, 14 binary variables, 33 constant parameters, and 14 restrictions describing possible
HEs involving utilities and process streams (Tables S11–S15). It is important to note that
the constant parameters include the heat of i streams provided to j streams for each interval
and the minimum amount of heat exchanged between themselves within their temperature
range, obeying the second law of thermodynamics, i.e., QH

ik , QC
jk, and Uij, respectively. In

addition, the time resolution for the m-MILP problem was about 10 s. Figure 2 illustrates
the HEN with multiple utilities, which shows 12 HEs, with a CA of USD 26,025.16 (Row 2,
Table 2). An essential remark is that detailed information for this example is indicated in
SM Figure S6.
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Figure 2. HEN with multiple utilities for Example 1. ∆Tmin: 10 ◦C. S pinch temperature: 170 ◦C.
Process pinch temperature: 140 ◦C. BFW pinch temperature: 110 ◦C. CA: USD 26,025.16. C values are
also in parenthesis and possess kW ◦C−1 units.

Table 2. BFW cost, CU, HEN CP, and CA for Examples 1 to 6.

Example
BFW CU HEN CP CA

(USD) (USD) (%) a,b (USD) (%) a (USD) (%) a

1 c 7600
30.5

97,108.57
51.9

17,310.86
33.5

1 d 537.38 5825.47 201,996.88 26,025.16

2 c 43,510.6
18.3

124,810.2
46.2

55,991.62
6.6

2 d 36,784.2 231,790.37 59,963.24

3 c 11,343,897.21
13.8

423,221.79
20.8

11,386,219.39
13.6 b

3 d 302,552.77 9,971,022.68 534,268.95 10,024,449.58

4 c 53,889.55
17.4

98,368.64
26.9

63,726.41
7.4 b

4 d 45,897.6 134,550.92 59,352.69
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Table 2. Cont.

Example
BFW CU HEN CP CA

(USD) (USD) (%) a,b (USD) (%) a (USD) (%) a

5 c 2,191,360
30.7

183,511.99
19.1

2,209,711.2
30 b

5 d 1,676,745.84 226,735.23 1,699,419.36

6 c 191,500
16.7

192,909.67
42.3

210,790.97
6.7 b

6 d 14,141.7 164,158 334,436.19 197,601.92
a: 100 (Value from HEN with multiple utilities cost—Value from HEN without multiple utilities cost)/Value from
HEN with multiple utilities cost (14). b: Absolute value. c: Value from HEN without multiple utilities. d: Value
from HEN with multiple utilities.

The HEN without multiple utilities is exhibited in SM Figure S3. It contains six HEs,
as proposed by Seider et al. [1]. This last result is an insight into the methodology accuracy
reported in this article. Although the HEN CP and CA were increased by 51.9% and 33.5%,
respectively, the CU was reduced by 30.5% in the case of the HEN with multiple utilities
compared to the same HEN without multiple utilities (see Row 2 from Table 2).

4.2. Example 2

Table S18 shows the set of streams for Example 2 to obtain a HEN with multiple
utilities at the threshold approach temperature difference (∆Tthreshold). Similarly, the pinch
temperature and the MER requirements are indicated in Tables S19 and S20. It is essential
to note that this example has no pinch temperature for integer values below 50 ◦C; thus,
this last temperature is the ∆Tthreshold [39]. Likewise, the m-MILP formulation comprised
38 energy balances, 71 continuous variables, 25 binary variables, 51 constant parameters
(accounting for QH

ik , QC
jk, and Uij), and 25 inequalities for possible HEs (Tables S28–S32).

For this example, the computation time was about 180 s. A critical remark is that this
was achieved after several attempts to get initial guesses for obtaining the same m-MILP
problem resolution. This solution is composed of 13 HEs and is depicted in Figure 3.
Additionally, the CA was equal to USD 59,963.24 (Row 4, Table 2). It should be mentioned
that Figure S11 presents temperatures between the HEs and more significant figures for C
values and heat loads for this example.
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ture: 280 ◦C. Process pinch temperature: 100 ◦C. CA: USD 59,963.24. Furthermore, the C values are in
parenthesis with kW ◦C−1 units.



Processes 2023, 11, 2840 8 of 16

Seider et al. [1] communicated the HEN for this example using only the S utility and
the Stream Matching Rules at the pinch. These authors claimed seven HEs for the HEN.
On the contrary, in the findings of this research, the HEN without multiple utilities is
illustrated in SM Figure S8. Although the total number of HEs was equal to those reported
by Seider et al. [1], the number of utility HEs was lower. As represented in Table 2, even
though CA and HEN CP increased by 6.6% and 46.2%, the CU was reduced by 18.3%.

4.3. Example 3

Regarding the third example, the ten streams Mizutani et al. [34] employed were used
to obtain the HEN with multiple utilities. The C values, source, target temperatures, and
selected utilities are also illustrated in Table S35. Likewise, the pinch determination and
the MER objectives with a ∆Tmin value of 10 K are presented in Tables S36 and S37. After
solving the m-MILP model for the HEN without multiple utilities, 15 HEs were found
(Table S43). However, these HEs did not comprise a HEN adhering to the C rule at the
pinch and ∆Tmin values greater or equal to 10 K for HEs involving C2 at the hot side of
the process pinch. Although the minimum HEs CP will not be achieved as indicated in the
tick-off heuristic [40], to accommodate the heat needed by C2 to reach its target temperature,
the heat loads for each interval were incorporated progressively for the cases of intervals 4,
5, and 6.

On the left side of the process pinch, C2 was divided five times to place the heat from
S, H3, H4, H5, H6, and H7 in C2 (Rows 3 and 12–16, Table S44). Similarly, in the case of the
heat provided by S to C2 at interval 6, as represented in Figure S13a, it was added after HE
10 since the obtained outlet temperature is close to 473 K when compared to those achieved
after placing this load at outlets 9, 11, 12, or 13 HEs. It is worth noting that isothermal
temperature is recommended at the mixing stage, as shown in work by Seider et al. [41],
to minimize the magnitude of the irreversibilities and, thus, the value of the generated
entropy [42]. Therefore, the C2 temperature was increased from 423 K to 473 K. Then, the
heat loads from S, H4, H5, H6, and H7 were transferred to C2 at Interval 5 (Rows 2 and
8–11, Table S44) to obtain a C2 temperature of 523 K. Next, the heat from H5 and H7 was
introduced to C2 (Rows 5–6, Table S44) at Interval 4. Finally, the new total number of HEs
for the HEN without multiple utilities was 22.

Regarding the HEN with multiple utilities, the values of the m-MILP problem res-
olution are depicted in Tables S46–S50. It comprises 56 energy balances, 123 variables,
73 constant parameters (related to QH

ik , QC
jk, and Uij), and 34 restrictions illustrating feasible

HEs between i and j streams. Also, the resolution time was about 240 s. In addition, the
number of HEs was 23. Since this was insufficient to be in accordance with the C rule and
the ∆Tmin restriction of 10 K on the hot side of the process pinch, the heat transfer between
i and j streams for each interval was performed for those matches involving C2 on the side
of the process pinch mentioned above, as carried out for this example without multiple
utilities. HEs 4 and 7 to 16, obtained through this last procedure, are represented by the
green color in Figure 4a. Since BFW receives heat from H2 at intervals 8 and 9, only one
HE was employed. The total number of HEs was 28, as depicted in Figure 4, with detailed
findings in Figure S16 and a CA of USD 10,024,449.58 (Row 6, Table 2).

As shown in Table 2, the HEN CP increased by 20.8%. However, a reduction of CA
(13.6%) and CU (13.8%) was observed, which can be attributed to the high BFW production,
costing USD 302,552.77 per year, and the low cost of the S utility.
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Figure 4. HEN with multiple utilities for Example 3: (a) hot and (b) cold sides from the process
pinch. ∆Tmin: 10 K. S pinch temperature: 605.4 K. Process pinch temperature: 423 K. BFW pinch
temperature: 383.15 K. CA: USD 10,024,449.58. Moreover, the C values are indicated in parenthesis
and present kW K−1 units.

4.4. Example 4

For this example, a HEN with multiple utilities displaying two process pinch tem-
peratures devised at the ∆Tthreshold is obtained using the methodology tested in this work.
The HEN without multiple utilities and designed at the ∆Tthreshold was proposed by
Seider et al. [1]. The process streams and utilities are indicated in Table S54, and they
consist of five i streams and one j stream, including HPS and S at 500 K. Also, the MER
requirements and the process pinch temperatures are depicted in Table S56. In this table, it
can be observed that, at the ∆Tthreshold of 25.833 K, the heat provided by the HPS utility
was 336.81 kW, and the process pinch temperatures were 468.47 K and 451.67 K, the same
as reported by Seider et al. [1].

The m-MILP comprised 15 energy balances, 29 variables, 21 constant parameters, and
nine restrictions describing possible HEs. The time resolution of this model was about 10 s.
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Furthermore, the results involved nine HEs with a CA of USD 59,352.69, as exhibited in
Figure 5 and Figure S21, with more values for this last illustration.
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Figure 5. HEN with multiple utilities for Example 4. ∆Tmin = ∆Tthreshold: 25.833 K. S pinch tempera-
ture: 500 K. First-process pinch temperature: 468.47 K. Second-process pinch temperature: 451.67 K.
CA: USD 59352.69. Furthermore, the C values are in parenthesis with kW K−1 units.

The HEN without multiple utilities is presented in SM Figure S18, and it comprises seven
HEs, as found in the literature [1]. Finally, the HEN CP, CU, and CA are represented in Table 2.
Contrasting to the HEN without multiple utilities, the HEN with multiple utilities showed CU
and CA reductions of 17.4% and 7.4%, respectively, due to the low cost of the S utility.

4.5. Example 5

This example illustrates the combination of the m-MILP results and the Solver tool
from Microsoft Excel® to derive information to draw a HEN with multiple utilities by hand.
In addition, the data set containing the source and target temperatures and C values for
five i and one j streams (Table S71) was initially published by Jiang et al. [43]. Furthermore,
the utilities F and S at 332.25 ◦C were employed for this example. Likewise, at the ∆Tmin of
10 ◦C, the F heat was 10,956.8 kW, and the process pinch temperature was 52 ◦C (Table S73).

For the case of the HEN without multiple utilities, the m-MILP encompassed 28 energy
balances, 51 variables, 25 constant parameters, and six restrictions for possible matches be-
tween i and j streams (Tables S74–S78). The time computation for this algorithm resolution
was about 10 s. Although the results from the m-MILP depicted six HEs (Table S79), more
than these units were used for the HEN without multiple utilities. This number increased
because, after placing the F heat in the C1 stream to achieve the C1 target temperature and
then splitting this cold stream into five streams, the summation of each branch-C value
from those five streams was not equal to the C1-C value of 143.9 kW ◦C−1. Therefore, the
heat of i streams in the sixth interval from Figure S22 was introduced to C1, enlarging the
HEs number compared to that achieved by solving the m-MILP algorithm (Table S79).

The procedure for heat addition in the sixth interval to the C1 stream was as follows:
(i) After the placement of the F heat from intervals 1 to 5 of Figure S22 to C1 and dividing it
into five branches, the heat of the i streams in the sixth interval was exchanged to the C1
stream. It is worth pointing out that an inlet heater temperature of 284.4 ◦C (Figure S23)
was accomplished with this previous step. The sixth interval contains the process pinch
temperature of 52 ◦C and the temperature difference of 144 ◦C (Figure S22) for cold streams.
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(ii) Except for the branch case with the lowest heat load, the branch-C value was calculated
by dividing the heat load by the temperature difference of 144 ◦C. (iii) The remaining
branch-C value was obtained by subtracting each branch-C value obtained in the previous
step from 143.9 kW ◦C−1. (iv) In this final branch, the heat from the F utility in the sixth
interval was incorporated at the outlet of the match i–j to obtain a temperature of 196 ◦C,
which is respective from the other branches’ outlet in the sixth interval.

Next, as described in Figure S23, the heat from the fifth interval was transferred to C1,
assuming the above procedure for the sixth interval, attaining a C1 temperature of 220 ◦C.
Regarding the heat from intervals lower or equal to the fourth interval, it was possible
to utilize this energy and the temperatures of 220 ◦C and 284.4 ◦C to obtain branch-C
values whose summation was equal to that of the C1 by handling the Solver tool. This
last mathematical operation was the objective function. In this case, the ∆T1 value greater
or equal to 10 ◦C was a restriction for the branch-C values’ computation, which were
86.36 kW ◦C−1, 23.46 kW ◦C−1, and 34.08 kW ◦C−1. Finally, the number of HEs was 12.

For the HEN with multiple utilities, the equations, variables, constant parameters, and
restrictions representing the m-MILP model are exhibited in Tables S82–S86. It employed
about 10 s for the m-MILP resolution. The procedure to identify matches between i streams
and C1 for devising the HEN without multiple utilities by hand was followed to obtain
the HEN with multiple utilities. This last HEN presented 16 HEs, a CA value of USD
1,699,419.36, and is shown in Figure 6, with details in Figure S26.
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Figure 6. HEN with multiple utilities for Example 5. ∆Tmin = 10 ◦C. S pinch temperature: 332.25 ◦C.
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with kW ◦C−1 units.

In Figure 6, the green 4 to 15 HEs illustrate the transfer of i streams of heat per interval
to C1. Moreover, the blue numbers next to HEs 2 and 3 in Figure 6 indicate the C values
and temperatures obtained using the Solver tool from Microsoft Excel®. Finally, the HEN
CP, CU, and CA are displayed in Table 2. Though the HEN CP increased, the CU and CA
were reduced by 30.7% and 30%, respectively, ascribed to the low cost of the S utility.

4.6. Example 6

This example describes the m-MILP model application for two intervals between the
process and BFW pinches involved in the problem. Similarly, the set of streams is exhibited
in Table S90 and includes four i streams and one j stream. This information was reported
by Seader et al. [1]. Likewise, the F and HPS utilities were utilized for this example.
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Also, at the ∆Tmin value of 10 ◦C, the F heat was 900 kW, whereas the process pinch
was 250 ◦C, and the heat received by W was 1150 kW (Table S92). The m-MILP model for
this example with multiple utilities is presented in Tables S101–S105. It includes 41 energy
balances, 107 continuous and discrete variables, 65 constant parameters, and 35 restrictions
representing possible matches between i and j streams. Moreover, the time resolution for
this problem was about 60 s, and the results are shown in Figure 7, with a CA of USD
197,601.92. Another essential remark is that there are more decimal places for the values in
Figure S31 than in this last figure, and temperatures between the HEs make up Figure S31.
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Since a ∆T1 value of at least 10 ◦C for the match H1-C1 above the HPS pinch (Rows
4 and 5, Table S106) was impossible to obtain, the green HEs 1 and 2 from Figure 7 were
employed to illustrate this last match. In addition, the blue HE 12 from Figure 7 indicates
the two consecutive matches between H1 and BFW (Rows 17 and 18, Table S106). On the
other hand, concerning the model solution for this example without multiple utilities, the
Tables S93–S97 comprise the m-MILP model. It used the Evolutionary method for the first
set of results from the m-MILP model resolution. Subsequently, this method was switched
to the GRG Nonlinear method to solve the problem.

Table 2 depicts the effect of the addition of multiple utilities in the HEN CP, CU, and
CA from the HEN without multiple utilities. Even though the HEN CP was increased by
42.3%, the CU and CA costs were reduced by 16.7% and 6.7%, respectively. This decrease is
attributed to BFW production and the low cost of the HPS utility.

5. Conclusions

In this work, a modified mixed-integer linear programming problem was implemented
in Microsoft Excel® to synthesize heat exchanger networks with multiple utilities. In this
model, energy balances account for the heat loads provided or received by utilities, which
were equal to the corresponding duty from the Temperature Interval method and the Grand
Composite Curve. Also, the last two intervals from those rank-ordered were assigned for
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water to collect the heat from hot streams. Furthermore, the minimum amount of heat
transferred between a hot and a cold stream adheres to the second law of thermodynamics.
Regarding the boiler-feed water generation, an energy balance per temperature interval
was employed between the process pinch and the boiler-feed water pinch. In addition, the
annualized cost for a heat exchanger network with multiple utilities can be lower than its
counterpart without multiple utilities because of boiler-feed water production and the low
cost of utilities.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pr11102840/s1, Figure S1: Temperature intervals derivation for the m-
MILP problem. Example 1: Figures S2–S6; Tables S1–S17. Example 2: Figures S7–S11; Tables S18–S34.
Example 3: Figures S12–S16; Tables S35–S53. Example 4: Figures S17–S21; Tables S54–S70. Example 5:
Figures S22–S26; Tables S71–S89. Example 6: Figures S27–S31; Tables S90–S108.

Author Contributions: Conceptualization, M.F.R. and P.V.T.; methodology, M.F.R. and P.V.T.; soft-
ware, M.F.R. and P.V.T.; validation, M.F.R. and P.V.T.; formal analysis, M.F.R. and P.V.T.; investigation,
M.F.R. and P.V.T.; resources, M.F.R. and P.V.T.; data curation, M.F.R. and P.V.T.; writing—original draft
preparation, P.V.T.; writing—review and editing, M.F.R. and P.V.T.; visualization, M.F.R. and P.V.T.;
supervision, P.V.T.; project administration, P.V.T.; funding acquisition, P.V.T. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: Pablo V. Tuza acknowledges Universidad Técnica de Ambato/Ecuador for
supporting this work.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Abbreviations
BFW Boiler-feed water
F Fuel
HE Heat exchanger
HEs Heat exchangers
HEN Heat exchanger network
HENs Heat exchanger networks
HPS High-pressure steam
MER Minimum energy recovery
MILP Mixed-integer linear programming
MINLP Mixed-integer nonlinear programming
m-MILP Modified mixed-integer linear programming
MPS Medium-pressure steam
S Steam
SGPDP Stage-gate product development process
SGTDP Stage-gate technology-development process
SM Supplementary material
SST Superstructure
TI Temperature Interval method
W Water
Symbols
A The area for the heat transfer
C Product of flow rate and heat capacity
CA Annualized cost
CB Fixed head heat exchanger base f.o.b. purchase cost
CC C values for cold streams
CH C values for hot streams

https://www.mdpi.com/article/10.3390/pr11102840/s1
https://www.mdpi.com/article/10.3390/pr11102840/s1
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CS The set of cold streams (or set of cold utilities)
CI C value per interval from the Temperature Interval method
CP Heat exchanger f.o.b. purchase cost
CU Annual utility cost
CTCI Total capital investment
FL Length factor
FM Material factor
FP Pressure factor
FT Correction factor
H The set of hot streams (or set of hot utilities)
i Hot process stream (or hot utility)
I Updated index cost
Ibase Base index cost
im Annual return on investment
j Cold process stream (or cold utility)
k Interval index
K Last interval determined by the process pinch (or utility pinch)
Q Heat exchanged in a unit
QH

ik Heat provided by a hot stream (or hot utility) at k interval

Qijk
Heat exchanged by a hot stream (or hot utility) and a cold stream (or cold utility)
at k interval

QC
jk Heat received by a cold stream (or cold utility) at k interval

QH
UUk Hot utility per interval

Rik Hot stream (or hot utility) residual at k interval
∆TLM Chen’s approximation of the logarithmic mean temperature
∆Tmin Minimum temperature difference
∆Tthreshold Threshold approach temperature difference

∆T1
Inlet temperature of hot stream (or hot utility) minus outlet temperature of cold
stream (or cold utility)

∆T2
Outlet temperature of hot stream (or hot utility) minus inlet temperature of cold
stream (or cold utility)

U Overall heat-transfer coefficient

UijT
Minimum amount of heat exchanged between a hot stream (or hot utility) and
a cold stream (or cold utility), limited by the process pinch or utility pinch, and
according to the second law of thermodynamics

UUH Hot utility value determined by the Temperature Interval method or the Grand
Composite Curve

yij

1 for a feasible match between a hot stream (or hot utility) and a cold stream
(or cold utility), or 0 when there is no match between a hot stream (or hot utility)
and a cold stream(or cold utility)

z Objective function value
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