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Abstract: Antibiotics are important drugs for the treatment of microbial infections and related
diseases. However, due to the abuse of antibiotics, drug resistance has become a serious and urgent
problem. The development of new antibiotics is a crucial area of research, and natural products are
one of the main sources of novel antibiotics. Among various potential natural antimicrobial products,
saponins attracted much attention due to their excellent and broad-spectrum antimicrobial properties.
Although there are several reviews on antibacterial saponins, this review is the first to highlight the
potential antibacterial mechanisms of saponins from both experimental and molecular simulation
perspectives to provide a comprehensive panorama of the field. This review presents the current
progress in the development and repurposing of natural-product antibiotics. The focus is centered on
antimicrobial saponins discovered in recent years as well as the synergistic effect of some saponins
with traditional antibiotics. This review presents experimental and simulation studies in this field to
provide a multiscale overview of the antimicrobial mechanisms of saponins and potential directions
for future research.

Keywords: antibiotics; drug-resistance; natural products; saponins; glycosides; biomolecular
interactions; molecular dynamics simulation

1. Introduction
1.1. The Basics

Antibiotics are drugs that treat microbial infections by killing them or inhibiting their
growth. They are also considered one of the most successful chemotherapy agents in
the history of human medicine, traced back to more than 2000 years ago. China, Greece,
and Egypt are known to have used moldy bread to treat wounds [1]. However, it was
not until Alexander Fleming discovered penicillin in 1928 that the era of the large-scale
discovery of natural-product antibiotics truly started [2]. This era reached the “Golden Age”
between the 1940s to 1960s [3,4]. Since then, a large number of antibiotics derived from
microorganisms have been discovered and applied clinically. For example, macrolides [5],
tetracyclines [6], aminoglycosides [7], and chloramphenicol [8] were found in bacteria.
Fungal microorganisms also provide humans with a large number of natural-product
antibiotics, e.g., cephalosporins [4]. In addition, a variety of synthetic antibiotics have
been developed, inspired by natural products such as quinolones or nitrofurans [9,10].
The use of antibiotics revolutionized medical treatments and lifestyles; before antibiotics,
more than half of the deaths in the US during the 20th century were related to infectious
diseases [11]. Antibiotics are also a reliable method to control infections after surgical
operations, significantly reducing postoperative complications and extending the average
human life expectancy by more than 10 years in just half a century after the application of
antibiotics [4,12].
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1.2. Challenge

The success of any therapeutic agent is limited by the development of drug resistance.
Since the discovery of penicillin, antibiotics have been used as a “panacea” for various
microbial-related diseases. With the abuse of these products, antimicrobial resistance has
become an inescapable problem [13]. Pathogens such as bacteria develop the ability to
survive antibiotic treatments, resulting in super-microorganisms [14]. These generally have
the following characteristics: reduced membrane permeability towards antibiotics, the
active export/removal of antibiotics, modified or protected drug targets, mechanisms to
destroy or degrade the drug structure, and the bypassing of the antibiotic by making the
original target redundant [15]. Initially developed antibiotics are not able to inhibit the
growth of such super-microorganisms.

Although antimicrobial resistance emerged in the 1950s, it has experienced a significant
acceleration in the last decade, presenting a serious challenge to antibiotic therapy and
society in general [16,17]. In 2019, the number of deaths due to antimicrobial resistance
worldwide reached 1.2 million, with expectations to reach 10 million in 2050 if no measures
are taken to address the problem [18]. The socio-economic repercussions are also troubling
and expected to cost low-income countries more than 5% of their gross domestic product by
2050, with more than 20 million people living in extreme poverty as a result [19]. The effects
will also affect the developed world; a report showed that the cost of hospital care due to
antibiotic resistance in the European Union had already reached £1.6 billion in 2012 [20].
Therefore, in addition to better regulations for the use of antibiotics, the development of
novel antibiotics is a fast-growing research area.

1.3. Current Status

Natural-product antibiotics have achieved great clinical success and inspired the de-
velopment of synthetic alternatives. Between the 1940s and 1970s, 55% of all antibiotics
discovered came from bacteria from the Actinomycetes genus [21]. As of 2018, 28 of the 45
new antibiotic candidates in US clinical trials were natural products, compared to the 17
synthetic ones [22]. In the past, molecules with antimicrobial activity were mainly extracted
and discovered from microbial metabolites in soil [23]. Scientists believe that novel metabo-
lites will be discovered if the soil environment is sampled more extensively. Since 2000, the
use of advanced screening technologies helped establish that the amount of metabolites
produced by microorganisms was about ten times higher than previously recognized [24].
For example, Actinomycetes can produce about 30–50 secondary metabolites [12]. Given the
abundant chemical diversity of natural products, it is generally believed that the best route
for the development of new antibiotics lies in the discovery and repurposing of natural
products [25]. Advances in high-throughput screening, bioinformatics, mass spectrometry,
proteomics, transcriptomics, and metabolomics have greatly promoted the identification of
novel antibiotics [26,27]. The application of these technologies accelerates the identification
of new natural products from soil and previously underexplored areas [28–31]; for example,
from new bacterial strains, algae, marine invertebrates, and some plants. Table 1 lists
typical natural-product antibiotics from different sources.

Table 1. Typical natural-product antibiotics.

Name/Class Natural Source Clinical/Potential Application Ref.

Penicyclones A–E Deep-sea Penicillium species S. aureus. [32]
Tetronates lobophorins G Actinomycetes strain B. subtilis. [33]

Hunanamycin A Marine-derived Bacillus hunanensis Salmonella enterica. [34]
Curvulamine 15 Curvularia sp. Veillonella parvula [35]

Baulamycins A and B Streptomyces tempisquensis S. aureus, B. anthracis, E. coli. [36]
Vermelhotin 19 Fungi M. tuberculosis. [37]

Viridicatumtoxins Paecilomyces sp. Ancomycin-resistant Enterococci. [38]
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In the process of discovering novel natural products, saponins (listed in Table 2) have
attracted much attention due to their excellent and broad-spectrum antimicrobial properties.
These are organic compounds widely distributed in the plant kingdom, though some are
produced by marine invertebrates [39]. Saponins consist of various hydrophilic glycone
side chains and hydrophobic aglycone backbones (see Figure 1). According to the type of
aglycone, these molecules can be mainly divided into triterpenoid (30 carbons) or steroidal
(27 carbons) [40]. Common glycone side chains include glucose, arabinose, gluconic acid,
and galactose, among others [41]. These saccharides are linked to the aglycone via an
ester or ether bond, which further contributes to the complexity of saponin molecules [42].
2,3-Oxidosqualene, with 30 carbon atoms, is synthesized first via the linkage and oxidation
reaction of six isoprene units, which is also the starting point for the biosynthesis of both
triterpenoid and steroidal saponins [43,44]. Subsequently, the oxidosqualene is cyclized into
a cyclic aglycone precursor compound via protonation and the epoxide ring opening [45,46].
After rearrangement, degradation, and additional modifications that include oxidation and
glycosylation reactions, naturally derived saponins are synthesized [44]. These compounds
can result in positive effects on plant growth and development as well as to protect the
plant from microbes [47]. The biosynthesis, metabolism, and corresponding extraction of
saponins have been described in published reviews in the past two decades and are not
discussed in detail here [40,46,48,49].

Table 2. List of typical saponins with antimicrobial activity.

Name/Class Natural Source Target/Potential Application 1 Ref.

Tigogenin saponins
(Steroidal) Agave Americana leaves Fungi: C. albicans (5–10), C. glabrata (5–20), C. krusei (10–20),

C. neoformans (0.63–1.25) 2. [50–52]

Flabelliferin B
(Steroidal) Borassus flabellifer L. fruit Bacteria: E. Coli, S. aureus. (None) 3

Fungi: S. epidermidis, P. aeroginosa. (None)
[53]

Dioscin (Steroidal) Dioscorea nipponica Fungi: C. albicans (22.5 ± 9.2), C. parapsilosis
(11.3 ± 4.6), T. beigelii (11.3 ± 4.6), M. furfur (22.5 ± 9.2). [54]

Fruticoside I
(Steroidal) Cordyline fruticose leaves Bacteria: E. faecalis (128). [55]

Sansevistatin 1 (Steroidal) Sansevieria ehrenbergii Fungi: C. albicans (2), C. neoformans (1–2). [56]

Aginoside saponin (Steroidal) Allium nigrum L. Fungi: C. gloeosporioides (None), F. verticillioides (None),
B. squamosa (None), C. albicans (47). [57,58]

Persicosides A and B
(Steroidal) Persian leek Fungi: P. italicum, A. niger, T. harzianum. (None) [59]

chonglouoside SL-6 (Steroidal) Paris polyphylla
var. yunnanensis Bacteria: P. acnes (3.9). [60]

Quinoa saponin (Triterpenoid) Quinoa
husks

Bacteria: P. gingivalis (62.5), C. perfringen (31.3),
F. nucleatum (31.3). [61]

3β,19α,23,24–tetrahydroxyurs-
12-en-28-oic acid and

Ternifoliaoside A
(Triterpenoid)

Gardenia ternifolia Schumach. &
Thonn (Rubiaceae)

Bacteria: P. aeruginosa (12.5), S. aureus (25), S. typhi (12.5),
E. coli (12.5). [62]

Aridanin and Lotoidoside E
(Triterpenoid) Paullinia pinnata Bacteria: S. aureus (1.56–6.25), E. coli (0.78–3.13),

P. smartii (0.78–3.13). [63]

Betulinic acid (Triterpenoid) Tovomita krukovii Fungi: C. albicans (16). [64]

3-O-a-L-arabinopyranosyl-
echinocystic acid

(Triterpenoid)
Cussonia bancoensis bark Fungi: C. albicans (12.5). [65,66]

1 The bacterial strains summarized here are the strains in the antimicrobial tests reported in the literature, and it
does not mean that these saponins have antimicrobial activity only against these strains. 2 The numbers in the
parentheses are MIC value ranges reported in the corresponding references, with the unit of µg/mL. 3 The “None”
means that there is no MIC report in the corresponding reference.
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Figure 1. Basic chemical structure of saponins (This structure was made based on [41]).

This review introduces the study and characterization of antimicrobial saponins de-
rived from natural products. First, recent studies on the activity of antimicrobial saponins
from in vitro experiments are presented. Then, molecular simulations aimed to charac-
terize the antimicrobial mechanism of these molecules are discussed. Finally, the main
conclusions, challenges, and a research outlook on this field are summarized.

2. Experimental Studies

Various biotechniques have been used to identify saponins with antimicrobial activity.
These studies reported molecular structures, biochemical information (including solubil-
ity, toxicity, or target information), and antimicrobial testing (e.g., minimum inhibitory
concentration, MIC). Both steroidal and triterpenoid saponins have been found to have
antimicrobial activity. Table 2 shows the typical antimicrobial saponins discovered in
recent years.

Steroidal saponins first attracted the attention of researchers as a potential antifungal
drug [67]. For example, Yang et al. tested the antifungal activity of steroidal saponins
extracted from Agave Americana leaves against the opportunistic pathogens C. albicans,
C. glabrata, C. krusei, C. neoformans, and A. fumigatus [52]. They found 10 saponin structures
that were active against these fungi. Additionally, Qin et al. extracted 24 steroidal saponins
from the stems and leaves of Paris polyphylla var. yunnanensis and found that 11 of them had
moderate or significant inhibitory effects on P. acnes [60]. On the other hand, triterpenoid
saponins have also shown antibacterial and antifungal activity, especially those found in
quinoa crops [68]. For example, oleanane-type saponins from Paullinia pinnata showed
antibacterial effects on S. aureus, E. coli, and P. smartii [61]. Additionally, the 3-O-a-L-
arabinopyranosyl-echinocystic acid found in the stem bark of Cussonia bancoensis shows
antifungal activity against C. albicans [65]. Betulinic acid extracted from Tovomita krukovii
can also inhibit the aspartic protease secreted by C. albicans, which is one of the important
virulence factors of Candida infection [64].

An interesting finding is that the antibacterial or antifungal activity of saponins de-
pends on the carbohydrate groups attached to their aglycone (Figure 2). Qin et al. found
that Chonglouoside SL-6, a saponin containing a trisaccharide moiety at the C-1 position,
had the lowest MIC for P. acnes (3.9 µg/mL) compared with other saponins [60]. MIC is
generally considered as the most basic measurement index for the effectiveness of antimi-
crobial agents, and the lower the MIC, the better the effect on microbials [69]. Among
the 10 active C-27 steroidal saponins extracted from several monocotyledonous plants
by Yang et al., four molecules with more carbohydrate groups showed stronger activity
against C. neoformans and A. fumigatus [52]. However, this does not imply that saponins
with more carbohydrate groups attached to the backbone will have stronger antimicrobial
activity. Some studies have shown that hydrophobic saponins more easily bind to microbial
cell membranes and thus show stronger antimicrobial activity [61,70]. For example, San
Martín et al. obtained more hydrophobic saponin derivatives from quinoa via alkali treat-
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ment; these molecules showed an obvious increase in the inhibitory effect on the mycelial
growth of B. cinereal [70]. In contrast, saponins from non-alkali-treated quinoa had little
effect against the fungus. The aglycone skeletons of saponins also show an impact on
antimicrobial activity. Sadeghi et al. extracted various new steroidal saponins from Persian
leek, which can be further classified into spirostanol, furostanol, and cholestanol based on
the chemical structure of aglycone [59]. This study found that two spirostanol saponins
were more active against the tested fungi than other steroidal ones.
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Figure 2. Typical saponin structures with stronger antimicrobial activity (Reprinted from the original
figures in [60] for Chonglouoside, Copyright (2012), with permission from Elsevier, [58] for Aginoside,
Copyright (2013), with permission from Elsevier, and [59] for Persicoside saponins, Copyright (2013),
with permission from Elsevier).

In the studies of bioactive saponins, some found that their antimicrobial properties may
be related to their interaction with the cell membranes [61,71]. Experiments showed that
the interaction of saponins with microbial membranes can change the membrane surface
morphology and even destroy its integrity. For example, Choudhary et al. observed the cell
morphologies of control and treated cells using a scanning electron microscope (SEM) [72].
As shown in Figure 3A, compared with the smooth surface of control cells, the cells treated
with safflower seed saponins (triterpenoids) showed a rough appearance with much debris,
pits, and gaps. Sun et al. treated F. nucleatum cells with quinoa saponin extract ATS-80;
complete cells could not be observed under MIC, and the cell membrane was completely
disintegrated [61]. In vitro model membrane systems were also used to characterize the
interaction mechanism of saponins with cell membranes. Orczyk et al. employed Langmuir
monolayers of phospholipids to determine the effect of digitonin, a steroidal saponin,
on lipid organization [73]. The results showed that digitonin inserted easily into the
hydrophobic lipid tails’ region, which significantly increased the bilayer surface pressure.
However, especially for DPPE, DMPE, and DPPS, the inserted digitonin-kept lipid tails
in a disordered state inhibited the transition to the liquid-condensed phase caused by the
high surface pressure. This phenomenon is similar to the previously reported behavior of
antimicrobial peptides penetrating negatively charged PG lipid monolayers [67].
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Figure 3. Sample figures from experimental studies on the impact of saponins on bacteria. (A) SEM
micrograph images of P. aeruginosa and P. acne control (without treatment) and after treatment with
isolated saponins (Reproduced with permission from Springer Nature [72]). (B) Transmission electron
microscopic images of P. aeruginosa; 0—untreated cells (control sample), SmE—cells exposed to
100 mg/L of saponin extract, NFT—cells exposed to 5 mg/L of nitrofurantoin, SmE + NFT—cells
exposed to both saponin extract and nitrofurantoin (Reprint from the original figure in [74], Copyright
(2022), with permission from Elsevier).

In addition to their antimicrobial function, saponins can synergize with other antibi-
otics to enhance their activity. This synergy between known antibiotics and natural products
is also considered to be one of the important ways to overcome antimicrobial resistance.
Smulek et al. found that Sapindus mukorossi saponins can enhance the antibacterial activity
of nitrofurantoin (NFT) [74]. NFT is a broad-spectrum antibiotic commonly used to treat
urinary tract infections [75,76]. The cell toxicity test on P. aeruginosa strains showed that in
the presence of NFT drugs alone (5 mg/L), the bacterial cell viability decreased by about
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35%. However, its antibacterial ability was significantly enhanced when saponin extracts
were introduced. The test results indicated that when 100 mg/L of saponin was used, the
cell viability decreased by more than 75%. They observed the shape and morphology of
individual bacterial cells via TEM and AFM. From Figure 3B, NFT alone has no significant
effect on cell morphology, but when saponin extract is introduced, wrinkles and ripples
appear on the cell surface.

A. baumannii is an important pathogen that causes infections such as bacteremia,
pneumonia, and meningitis. Unfortunately, this strain is resistant to almost all conventional
antibiotics [77]. Shin et al. studied the synergistic effect of oleanolic acid (OA) on multiple
antibiotics against A. baumannii [78]. The microdilution checkerboard method is one of the
traditional methods for the measurement of antibiotic synergy; it tests two antimicrobics
in double serial dilutions, where the concentration of each drug is tested both alone and
in combination [79]. Using this approach, OA was found to significantly reduce the
MIC of aminoglycoside antibiotics. For example, if gentamicin was used alone, the MIC
for A. baumannii ATCC17978 was 16 µg/mL, compared to 4 µg/mL in the presence of
OA. Microarray and quantitative reverse transcription-PCR analysis indicated that OA
regulates bacterial ATP synthesis and the genes related to cell membrane permeability,
which ultimately changes the intake of aminoglycoside antibiotics and exerts a synergistic
antibacterial effect.

Antimicrobial assays showed that the MICs of saponins in combination with antibi-
otics against E. coli, S. flexneri, S. aureus, C. parapsilosis, C. albicans, and C. neoformans were all
much lower than the MICs of conventional antibiotics alone. For example, saponins from
Melanthera elliptica could enhance the antibacterial activity of Vancomycin and Flucona-
zole [80]. Additionally, Ye et al. reported that the camelliagenin derived from the defatted
seeds of Camellia oleifera can be used to treat infections caused by amoxicillin-resistant E. coli
and erythromycin-resistant S. aureus [81]. Their antibacterial tests indicated that the MICs
of amoxicillin and camelliagenin saponin for amoxicillin-resistant E. coli were 72.6 ± 7.9
and 50.2 ± 5.7 µg/mL, respectively. However, the MIC of a 5:1 saponin–amoxicillin mixture
was reduced to 23.4 ± 5.6 µg/mL. This study reported that the synergistic effect of camellia-
genin saponin was related to its inhibition of bacterial biofilm. Generally, bacterial biofilm is
a key factor in antibiotic resistance. Some studies have shown that the formation of bacterial
biofilm is related to mannitol dehydrogenase (MDH) and extracellular DNA (eDNA). Ye
et al. found that both the activity of MDH and the content of eDNA in saponin-treated
biofilm decreased, suggesting the inhibition of bacterial biofilm by saponins. Together,
these studies indicate that, in addition to the direct identification and development of
saponins as novel antibiotics, their synergistic effect with known antibiotics may bring new
options for the treatment of drug-resistant bacteria [82–84].

Despite excellent antimicrobial properties identified for saponins, cytotoxicity limits
their biomedical potential [39,85,86]. Particularly, saponins are known for their hemolytic ef-
fects specially at the saponin–membrane interface [86–88]. Several studies found hemoglobin
release when using saponins to treat red blood cells, including both triterpenoid and
steroidal saponins [86,89–91]. Additionally, Baumann et al. use transmission electron
microscopy to observe the destruction of lipid bilayers and the emergence of multilamellar
buds in erythrocytes treated by saponins [87,89]. Such a hemolytic effect was found to be
related to the chemical structure of saponins [91,92]. For example, Takechi et al. found that
steroid saponins induced faster hemolysis in a study that compared 75 triterpenoid and
steroid saponins [93]. Vo et al. found that the polar regions on sapogenins significantly en-
hanced hemolysis [91]. Finally, Savarino et al. characterized the hemolytic effect of saponins
extracted from Holothuria scabra’s viscera. Their findings show that hemolysis is nearly
eliminated by the desulfurization of glycones during the assay [89]. These new insights
can help to reduce saponin cytotoxicity when leveraging its antimicrobial properties.



Processes 2023, 11, 2856 8 of 17

3. Computational Studies

With the increase in computational power, molecular modeling plays a key role in drug
discovery and development [94,95]. Since the first computational simulations by Metropolis
et al., there have been various well-established methods for the study of biomolecular
systems [96]. These techniques are suitable for describing the motion and interaction of
biomolecules and can increase the understanding of macromolecular observables. Among
common methods, molecular docking is a powerful technique for studying protein–ligand
interactions and predicting their binding modes [97,98]. Meanwhile molecular dynamic
(MD) simulations model biological processes by predicting the motion of atoms in a system
to predict the thermodynamic, physical, and dynamic properties [99]. In the study of
saponins, both modeling approaches have provided important insights into antimicrobial
molecular mechanisms. The basic principles of each approach are briefly described below,
followed by the main contributions to saponin research in recent years.

3.1. Molecular Docking Studies

In the process of drug development, molecular docking can predict the potential
structures of a drug–protein complex based on the stability of its configuration by cal-
culating the free binding energy [100,101]. Molecular docking simulations are relatively
simple and require only modest computational resources [102–104]. The first step is posing;
the receptor and ligand structures are positioned in several initial configurations using a
stochastic or systematic algorithm [105,106]. Then, scoring takes place in which all binding
modes obtained in the previous stage are evaluated using a scoring function to determine
the most likely conformations. Commonly used scoring functions include force-field-based,
empirical, and knowledge-based functions [107]. The results predict which ligands may
be more favorable to interact with a given protein and the most probable binding mode.
In drug discovery, these results can help narrow down the number of molecules that are
promising drug candidates [108].

A variety of studies have shown that saponins exert antimicrobial activity by acting
on specific proteins. Molecular docking can provide atomic-level details of the interaction
between saponins and protein receptors and rank them according to their corresponding
binding free energy [109,110]. This is an important supplement to understanding antimicro-
bial molecular mechanisms. As discussed earlier, Ye et al. found that camelliagenin saponin
can reduce the activity of mannitol dehydrogenase (MDH) and the content of extracellular
DNA (eDNA), which are both key components in bacterial biofilm formation [81]. To
further examine these interactions, they simulated saponins using molecular docking and
showed that saponins can bind to MDH and eDNA easily (see sample diagrams in Figure 4).
The calculated average binding energies were −86.94 ± 1.99 and −105.01 ± 1.19 kcal/mol,
respectively, which indicated that camelliagenin can spontaneously bind to both MDH
and eDNA and modulate their function. In addition, Wei et al. examined the synergistic
antibacterial activity of Sapindoside A and B against M. luteus [111]. The experimental data
indicated the antibacterial activity of this combination was achieved by attacking the cell
membrane proteins. To further explore their molecular mechanism, molecular docking
was employed to simulate the binding modes of Sapindoside A and B with membrane
protein PBP 2 (PDB ID: 3UN7). The results showed that saponin and PBP 2 form a stable
complex via the hydrogen bonds between saponin sugar groups and specific amino acids,
illustrating the importance of sugar chains for antibacterial activity.

3.2. MD Simulation Studies

MD simulations predict the trajectory of atoms in a system based on the forces exerted
on them [112]. In a nutshell, given the positions of all atoms in the system of interest,
MD simulation predicts the motion of particles by solving Newton’s equations of motion
and a function that models the potential of interaction across all atom types [113]. The
thermodynamic, physical, and dynamic properties of the system can be computed from
the resulting trajectories to predict the biomolecular mechanisms and functions that help
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in the interpretation of experimental phenomena. To examine the antimicrobial activity
of saponins, MD simulations can reproduce the interaction dynamics between saponins
and different targets. The ability to simulate larger systems enables the study of saponin–
protein, saponin–saponin, and saponin–membrane interactions [114,115]. The mechanism
of membrane disruption by antimicrobials is of particular interest; MD simulations can
contribute immensely to modeling such interactions.
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Most antibiotics need to cross cell membranes to reach their target, especially in Gram-
negative bacteria [116]. Some bacteria with antimicrobial resistance reduce membrane
permeability [15]. Modeling this process at the atomic level can aid in the discovery and
development of saponin-related antibiotics. However, the energy barriers and timescale
of the process make it challenging to sample with brute-force MD [117,118]. Enhanced
sampling techniques have been developed to enable the modeling of such slow biologi-
cal processes. In the study of active saponins, the most commonly used techniques are
umbrella sampling (US) and metadynamics (MetaD) [119,120]. These techniques enable
enough sampling of slow- and high-energy processes by directly applying forces (in US) or
introducing external bias energy (in MetaD) on a specific reaction coordinate.

Saponin is a typical amphipathic molecule with hydrophilic and hydrophobic groups;
it easily forms clusters in water, which may have an impact on the interaction with its
targets. Zelikman et al. simulated the aggregation behavior of glycyrrhizic acid (GA) in
water [121]. The results showed that GA easily forms tightly packed dimers that can rotate
around the triterpenoid groups, allowing water molecules around it to induce the random
motion of the saponins’ sugar groups. In contrast, Kim et al. simulated the aggregation
behavior of GA in a hydrophobic environment, mimicking the condition of the bilayer
core [122]. Their results indicated that GA can form dimers or trimers in the heptane
solvent, but these are unstable and form or dissociate easily.

Other simulation studies found that saponins prefer to bind to cholesterol in the
membrane core due to the structural similarity between aglycone and sterol rings [123–125].
Lin et al. used MD simulations to explore the interaction of dioscin, a monosaccharide
saponin, with lipids [126]. The results show that in a non-polar environment, the head-
to-head configuration of dioscin with cholesterol is much more stable than in water, and
that increased dioscin in the bilayer induces high curvature, possibly leading to membrane
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rupture. Claereboudt et al. studied Frondoside A, a holothuroid saponin, and found
it can promote the formation of cholesterol domains in the membrane, thereby altering
its permeability [127]. In all the above studies, the membrane models used mimic the
lipid diversity of eukaryotic cells. A recent study focused on the interaction of four
triterpenoid saponins with the POPE/POPG/DPPG bilayer, which is a typical bacterial
membrane model [128]. The study found that the sugar groups attached to the aglycone
affect the orientation and relative location of saponins in the membrane (See Figure 5A).
In addition, hydrophilic saponins tend to localize closer to the membrane surface, which
is consistent with the sugar-modulated antimicrobial activity of triterpenoid saponins
found in experiments [61,70]. This last simulation study also suggested saponins may
be actively involved in the lateral resorting of lipids and the modulation of the local
membrane structure.
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Figure 5. (A) The chemical structures and binding processes of four triterpenoid saponins with
different glycone side chains (Adapted with permission from the figure in [128]. Copyright (2023),
American Chemical Society). (B) Three typical configurations of PZQ and GA connected by hydrogen
bonds. (C) Several proposed permeation processes of PZQ in the absence and presence of GA, where
red balls represent PZQ molecules and green columns represent GA molecules ((B,C) are adapted
with permission from original figures in [122]. Copyright (2019), American Chemical Society).
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Finally, enhanced sampling techniques have also contributed to the study of the mem-
brane permeation mechanism of saponin molecules. Praziquantel (PZQ) is a commonly
used anthelmintic drug which is often used to treat various diseases caused by trematode
infection [129]. The availability of orally administered PZQ is often very low due to its
low solubility and membrane permeability. Kim et al. studied its membrane permeation
in the presence of glycyrrhizic acid (GA) [122]. Parallel artificial membrane permeation
assays showed that the membrane permeation of PZQ significantly increased in the pres-
ence of GA compared with the control group. Umbrella sampling was used to model this
permeation process, revealing that GA forms hydrogen bonds with PZQ and reduced the
energy barrier for permeation through the bilayer. Additionally, GA reduces the resistance
of the local membrane surface to the PZQ insertion by rearranging the orientation of lipid
headgroups and increasing PZQ permeability (see Figure 5B,C).

It should be noted that current MD simulations need further refinement. First, most
studies on saponin–lipid interactions use pure PC lipid bilayers, which are the most abun-
dant lipid species found in eukaryotic cells. In the future, studies should include lipids
present in bacterial membranes, such as phosphatidylglycerol (PG) lipids. Second, bacterial
cell membranes are usually asymmetrical, with different inner and outer membrane com-
positions, yet current bilayer simulations use only symmetric bilayer models [130]. The use
of asymmetric membrane models can allow the characterization of antimicrobial drugs
in a more realistic setting in both the lipid diversity and mechanical environment of the
membrane. Enhanced sampling techniques have been used successfully to simulate the
permeation of some natural products across bilayers. However, reaction coordinates (RC)
for these simulations are generally selected based intuitively; for example, the distance be-
tween a drug molecule and the lipid bilayer centroid [131,132]. Such intuitive RCs are often
too simple and cannot accurately describe the main motions during the permeation process.
This is particularly true as the drug molecules of interest gain chemical complexity, like the
addition of glycones to the backbone of saponin molecules. The selection of efficient RCs is
far from trivial, using dimensionality reduction techniques like the principal component
analysis, and more sophisticated machine learning approaches could speed up the design
of smarter RCs to better describe drug permeation and the aggregation processes [133].

4. Conclusions

Antimicrobial resistance is a serious problem to human health and has strong socio-
economic repercussions. As presented in this review, saponins have attracted much atten-
tion because of their excellent ability to inhibit the growth of multiple bacteria or fungi,
in addition to their abundance in the plant kingdom. Saponins can have a triterpenoid
or steroidal skeleton and a wide range of carbohydrate groups attached to it. Several
studies have shown that the antibacterial activity of saponins is directly related to their
interaction with cell membranes. Experiments confirmed that saponins can indeed change
the morphology of cell membranes and even destroy their integrity. Furthermore, saponins
can synergistically enhance the antimicrobial activity of traditional antibiotics by increasing
their permeability or by inhibiting biofilm synthesis—both of which are key aspects in the
development of novel therapies to overcome antibiotic resistance.

In addition to experimental work, molecular modeling has increasingly become an
important tool for drug discovery. In the field of antibiotics development, molecular
docking and MD simulations are generally used to predict the antimicrobial mechanisms
of various compounds. Simulations successfully provided molecular-level explanations
for the interaction between saponins and microbial membranes as well as protein targets,
which could lay the foundation for saponins to become feasible commercial drugs. It should
be acknowledged that, although many saponin molecules with antibiotic efficacy have been
identified, their antimicrobial mechanisms need to be further characterized. For example,
there are many molecular simulation reports on the interaction between saponins and
simple lipid bilayer models for eukaryotic cells. In these models, PC lipids are commonly
used to mimic the membrane environment, which is not the main lipid species found in



Processes 2023, 11, 2856 12 of 17

bacterial membranes. The asymmetry of bacterial membrane composition should be further
considered to better characterize the effect of saponins on the mechanical and structural
properties of bacterial cell membranes.
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