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Abstract: Many problems such as delamination, cracking, fiber tearing, ovality, and surface roughness
are encountered in the drilling of glass-fiber-reinforced composite (GFRP) materials. In this study, the
percentage of multi-walled carbon nano tube (MWCNT), cutting tool type, feed rate, and cutting speed
were selected as control factors during the drilling of MWCNT-reinforced GFRP nanocomposites. The
quality characteristics of the drilling process were determined as surface roughness, delamination,
torque, and thrust force. The experiments were carried out in accordance with the Taguchi L27
orthogonal array. The lowest values obtained because of the experiments were Ra = 4.95 µm,
Dm = 1.099, T = 14.78 N, and F = 44.24 N, respectively. However, since each of these outputs
were obtained from different experimental trials, different multi-criteria decision-making (MCDM)
methods were used to optimize all outputs at the same time. First, the criteria were weighted
using the fuzzy AHP method, and then the outputs were optimized using multi-criteria decision-
making methods (i.e., GRA, WASPAS and VIKOR). Very close optimal ranking was obtained in
all three methods. The best results were obtained for Ra = 4.86 µm, Dm = 1.13, T = 55.57 N, and
F = 48.00 N. In the next step, the performance values obtained from each MCDM method were re-
optimized using the Taguchi S/N ratio method. By comparing between these models, a single optimal
condition for drilling is proposed. Accordingly, A2B3C1D1 (Ra = 4.86 µm, Dm = 1.10, T = 17.47 N and
F = 48.33 N) for FAHP-GRA and FAHP-WASPAS and A2B3C2D2 (Ra = 5.02 µm, Dm = 1.09, T = 37.19 N
and F = 45.01 N) for FAHP-VIKOR were determined as the best performing experiments. Finally,
validation tests were conducted to compare the performance of the experiments. As a result, the
FAHP-GRA and FAHP-WASPAS optimization with Taguchi S/N gave an unweighted improvement
of 82.9% and a weighted improvement of 10.04% compared to the results of the experiment with
MCDM. Compared to the results of the experiments with MCDM, S/N FAHP-VIKOR provided an
unweighted improvement of 52.75% and a weighted improvement of 8.19%. According to the results
obtained, for this study, FAHP-GRA and FAHP-WASPAS are more effective optimization methods
than FAHP-VIKOR.

Keywords: drilling process; optimization; nano GFRP composites; MCDM; fuzzy AHP; GRA; WASPAS;
VIKOR

1. Introduction

Glass-fiber-reinforced polymer (GFRP) matrix composite materials are widely used
in many sectors, such as the automotive, marine and aviation industries. Especially in
the aviation sector, its features are also developing accordingly, while the usage rates are
increasing day by day. Their superior properties, such as high mechanical properties and
light weight, resistance to chemical and environmental conditions, make these materials
more and more attractive.

Lighter and stronger materials can be manufactured with nanoparticle reinforcement.
In this context, nanocomposites are accepted as one of the best materials that can meet
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all the requirements. The superior mechanical properties of (GFRP)MWCNTs make them
the preferred filler for reinforcement in composite material [1]. In particular, nanocompos-
ites, namely multi-walled carbon nanotubes (MWCNTs)-added GFRPs, exhibit favorable
material properties at low weight percentages due to the corrosive nature of their rein-
forced components.

They are usually produced close to the net shape when manufacturing composite
materials. However, the final stage for using these products usually requires machining
or drilling. The life of the puncture joint in composite materials is directly affected by
the quality of the drilled holes [2–4]. During the drilling of fiber-reinforced composites,
different types of damage can occur in the hole, such as microcracks, fiber shrinkage, and
matrix burning, as well as delamination. Delamination errors are a major cause of part
rejections in assemblies, especially in the aerospace industry, and it is one of the most
frequent types of failures in fiber-reinforced composites. A drill bit performance can be
determined from a variety of variables such as the thrust or torque required, good hole
tolerances and surface finish, and drill life [5–7].

Although many parameters are considered in drilling fiber-reinforced composites,
parameters such as drill type, drill diameter, feed rate, and spindle speed are generally
used in studies [8]. The drilling process occurring in a confined space is challenging to
control, which adversely affects outputs such as delamination, roughness, torque, and
thrust force [9].

Rajamurugan et al. [10] modeled the empirical relationship between delamination
and input parameters in drilling GFRP composites. They mentioned that the increase
in feed rate increases the separation of parts between the layers and the cutting speed
reduces delamination. Similarly, in drilling composite materials, the use of an appropriate
drill bit angle plays a crucial role in reducing the main defects such as delamination and
surface roughness by minimizing the thrust force [11]. Ekici et al. [12] investigated the
effects of input parameters on surface roughness, delamination factor, and thrust force
when perforating a commercial laminate, CARALL-type composite. The authors used
the PCA weighting-based Grey Relational Analysis (GRA) method for the multi-objective
optimization of the outputs.

In a study on the machinability of CET/epoxy materials, the effect of machining
parameters in drilling on thrust force and delamination was investigated. It was observed
that the delamination size increased with the increase in the revolution and feed rate. In
addition, it was determined that the thrust force and thus the delamination size increased
at high feed rates. It was stated that the increase in the feed rate also affects the surface
roughness negatively [13]. Many researchers observed in their studies that the level of
delamination is related to the thrust force and that delamination can be neglected if the
thrust force is below the critical value [14].

Thanks to the lubricating properties of MWCNTs in different proportions added to
the composite, it has been observed that these reduce delamination by improving some
situations such as fiber bending and shearing, and plastic deformation that occur during
drilling. Therefore, to acquire a good result, it is necessary to better understand both the
material properties and the machining process [15–17].

In production, the selection of the most suitable process parameters is of great im-
portance in order to reduce the cost and improve the quality. The selection of appropriate
process parameters in an experimental process has an important contribution to the deter-
mination of the optimal or best experimental conditions [18,19]. One of the most important
parameters that affect the quality of drilled hole in the processing of composites is the
selection of the drill tool material, which is a direct function of the torque and thrust force
generated during drilling. In the drilling of GFRP composites, commonly used drill tools in-
clude coated and uncoated high-speed steel (HSS) drills, coated and uncoated carbide tools
using different methods (i.e., PVD, CVD), and polycrystalline diamond (PCD) tools [19–22].
In the investigated literature, the studies have been conducted using various drill bit sizes.
Valarmathi et al. [23] suggested in their study that an increase in drill diameter increases
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delamination. According to the experimental results, it is evident that in order to minimize
delamination, suitable cutting conditions involve high spindle speed, low feed rate, and
smaller drill diameter.

Multi-criteria decision-making (MCDM) methods are the methods that choose the
most suitable one among the available alternatives under certain constraints in decision
problems where more than one objective is optimized. Until now, many different MCDM
techniques have been used for parameter optimization, especially in the manufacturing
industry [24–27]. Kalyanakuma et al. [28] optimized the drilling parameters of 316 types of
stainless steel by using the VIKOR (Serbian; VlseKriterijumska Optimizacija I Kompromisno
Resenje) method. They used a Taguchi L27 orthogonal experimental design in the study and
selected the input parameters with the responses. The Taguchi method is a method used
for single-response optimization. Determining the significance of the impact of different
processing parameters on the outputs is crucial. Taguchi (S/N)-based MCDM methods are
used to transform multiple responses into a single response, and they have been utilized in
many studies in the literature [29–31].

The most important criterion affecting the ranking obtained from MCDM methods is
the selection of the weighting values of the responses. In the application of multi-objective
decision-making techniques, although it is mostly weights of similar importance that
are assigned to determine the response weights in the process of converting multiple
responses to single response values, various techniques have been developed to assign
importance weights to the responses. The selection of weights, which is very important in
determining the optimum alternative for MCDM problems, also depends on the selection
of the weighting method [29]. In the literature, criteria weighting methods are used as
subjective, objective or a combination of these two methods. Among these techniques,
many methods, such as the Entropy method, Critic method, AHP method, Fuzzy AHP
method, Least Squares Method, SWARA method, have been used in previous studies [32].

Numerous authors have developed new methods to find the optimal ranking using
more than one MCDM method in their studies. In this way, the results produced using
different MCDM methods can be observed. For this reason, the optimization of optimum
drilling conditions was investigated by applying three different MCDM methods in the
study [33].

Researchers use the WASPAS (Weighted Aggregated Sum Product Assessment) tech-
nique to select the best alternative from the set of available feasible alternatives/solutions in
different engineering domains [34]. It is stated that this method has the ability to accurately
rank alternatives in all selection problems and provides better or equivalent results than
other methods [35].

According to the results of the reviewed literature, it is clear that the MCDM methods
have achieved very successful results in the optimization of the multi-response machining
parameters, thus improving the overall machining performance. However, there do not
exist studies in which MCDM methods are applied using similar parameters in the process-
ing of GFRPs, as they are in this study. In the literature, no study was reported in which all
three methods (GRA, WASPAS and VIKOR) were compared.

This study intends to fill this gap by focusing on statistical, modeling and optimization
studies of performance parameters. In this study, a multi-objective optimization study was
carried out to find the optimum cutting conditions that minimize all outputs at the same
time, at three levels of four input parameters. To carry this out, three different MCDM
methods (GRA, WASPAS and VIKOR) based on the Taguchi (S/N) method were used.
Among the weighting methods used in the MCDM problems, the Fuzzy AHP method based
on expert opinion was used. Finally, the rankings of the alternatives obtained according to
each MCDM method were analyzed and compared with each other. The results obtained
show that the optimization method based on Taguchi S/N MCDM method has excellent
potential in solving multi-objective optimization problems used in engineering.
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2. Materials and Methods
2.1. Workpiece and Fabrication of Specimens

In the present work, the effects of drilling parameters on the output parameters in
drilling GFRP composite materials have been investigated. Drill type, spindle speed,
feed rate, and nano content amount were chosen as control parameters, and four main
response factors (i.e., surface roughness, delamination, torque, and thrust force) have
been considered. The specimen material used in the experiments was a GFRP (glass-
fiber-reinforced polymer) made of pre–preg glass fiber epoxy resin, manufactured by
İnovatif Material Technologies Inc. in Izmir, Turkey. The GFRP composite was produced
by weight with 0.5% and 1% additives, without any additives. Detailed information about
the production of the composite can be accessed from the study conducted by Fedai and
colleagues [36].

2.2. Drilling Tool, Drilling Process and Measurements of Output Parameters

The drilling experiments of the composites were performed using the Johnford VMC
850 model three axes CNC Fanuc system vertical machine center equipped with a maximum
spindle speed of 8000 rpm, cutting feed 12.000 mm/min, and a 7.5 kW drive motor. The
experiments were conducted under dry-cutting conditions. The steps of the experimental
process are shown in Figure 1.
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Figure 1. The experimental setup.

Three different cutting tools were used in the experiments, which were Ø8 mm
uncoated HSS, carbide, and TiAlN-coated tools. The selection of the cutting tools was
based on the professional experience of the tool manufacturer and recommendations from
the literature. In order to ensure consistent effects on the outputs, cutting tools with the
same diameter and tooltip angle were chosen from widely used tool types in practice.
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HSS tools were preferred due to their cost-effectiveness, while carbide and coated tools
were preferred for their longer tool life. In each experiment, a new cutting tool was used
to prevent the influence of tool wear on the experiments. The characteristics of the used
cutting tools are provided in Table 1.

Table 1. Cutting tool characteristics.

Tool Type Trade
Mark DIN Drill Dia. Point

Angle
Overall
Length

Flute
Length

HSS MKT 328 θ8 mm 118◦ 75 mm 117 mm
Uncoated
Carbide YG 6539 θ8 mm 118◦ 37 mm 79 mm

TiAlN MAIER 6539 θ8 mm 118◦ 37 mm 79 mm

The thrust force and torque are measured during work with the Kistler 9257B dy-
namometer, which is connected to the machine table of the vertical machining center. The
data obtained from the dynamometer were recorded on the computer using the Kistler
Type 5070 amplifier A/D converter and DynoWare (version 2.4.1.3) software. Each ex-
periment was repeated three times, and the arithmetic average of the obtained data was
taken. During data analysis, the unstable regions at the entrance and exit of the hole were
neglected to avoid measurement errors.

Delamination is the most important type of damage that occurs during the drilling of
laminated composites. It is frequently seen in the hole inlets and outlets on the workpiece
during the drilling of composites. The maximum damaged diameter of the hole is called
Dmax. The delamination factor is the ratio of Dmax to D.

In the drilling processes of composite materials, surface damage is a crucial parameter
to assess the quality of the workpiece machining [37].

After the drilling processes of the composite, offline measurement procedures were
conducted for delamination and surface roughness. The delamination factor was measured
using a Euromex Holland Type PB 4161 microscope. Figure 2 shows the images obtained
from the microscope, which were edited and transferred to the AutoCAD environment.
The maximum diameter (Dmax) in the damaged area was measured, and the damage factor
was determined by proportioning it to the normal diameter (D).
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Figure 2. Measuring steps of delamination damage.

The surface roughness (Ra) value of workpieces was measured using a MITUTOYO
SJ-410 transportable surface roughness tester with a cut-off interval of 4.8 mm and speed of
0.5 mm/s. Surface roughness measurements were carried out three times on the surfaces
of the workpieces, and their average roughness parameters were determined. During the
measurements, in order to minimize the influence of the damaged surfaces at the entrance
and exit of the hole, the measurements were taken from the middle sections of the hole.
Figure 3a shows the delamination measurement of drilled composites, and Figure 3b the
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hole surface roughness measurement. Hole surface roughness was averaged by measuring
from four points inside the hole.
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2.3. Experimental Design

Experimental design (DOE) is a method used to determine the relationship between
inputs that affect a process and the output of that process. It helps to find the necessary
information to manage process inputs in order to optimize the output. Traditional experi-
mental design methods are very complex and challenging to use. Moreover, as the number
of process parameters increases, these methods require a large number of experiments
to be conducted. The Taguchi method is an experimental design technique developed
by Taguchi to minimize variability in both product and process by selecting the most
suitable combination of levels of controllable factors against uncontrollable factors that
create variability in the product and process. The Taguchi method requires a carefully
planned process when determining the experimental design and factor selection. The fol-
lowing are the steps to be used in factor selection to apply the Taguchi technique: Problem
Definition, Determination of Independent Variables, Determination of Levels, Selection of
Experimental Design, Implementation of Experiments, Data Analysis, Determination of
the Best Combination, Interpretation and Implementation of Results. In a general sense, for
quality improvement and optimization, the selected independent variables for a defined
problem, which is measuring the response of different types of drills in drilling various
ratios of nanocomposites, are the tool type, % MWCNT, cutting speed, and feed rate. Three
different levels were chosen for each control parameter to examine changes in the response.
Based on the literature and considering the limitations of the workpiece, tool type, and
machine, three different levels were selected, as shown in Table 2.

Table 2. The factors and levels.

Factors Symbol Level 1 Level 2 Level 3

Drilling Tool Type TT HSS Carbide TiAlN
MWCNT ratio % W% 0 0.5 1
Cutting Speed (m/min) V 25 50 75
Feed rate (mm/rev) f 0.1 0.15 0.2

The experimental design was conducted according to a Taguchi method-based L27
array, and the use of the Taguchi orthogonal array significantly reduced the number of
experiments. While a full factorial design would require 34 = 81 experiments, this number
was reduced to 27. After the implementation of experiments, the data were analyzed using
Taguchi metrics. Finally, based on the analysis results, the factor combination and levels
that provided the best results were determined. This allows for the identification of factors
and levels that yield the best performance for a specific problem. The Taguchi method
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provides a systematic approach, and the steps of factor selection and experimental design
are crucial for the effective implementation of the Taguchi technique.

In the study, the Taguchi (S/N) technique was employed to investigate the effects
of process variables on drilling performance. In the evaluation of the MCDM results,
signal-to-noise (S/N) ratios, which are based on the ratio of mean to standard deviation,
were used to determine the optimum parameters. The goal here is to maximize the S/N
ratio. Therefore, the level with the highest calculated average S/N ratio for each parameter
was used to determine the best result in the evaluations.

In the determination of the optimum parameters, the signal-to-noise S/N ratios, which
are the ratio of the mean to the standard deviation, were taken as basis. The aim here
is to maximize the S/N ratio. Therefore, the level with the largest S/N ratio among the
average S/N ratios calculated for each parameter is used to determine the best result in
the evaluations.

In this study, the Taguchi technique was used to investigate the effects of process
variables on drilling performance.

2.4. Method

The values obtained from the multi-response experiments need to be carefully inves-
tigated. The response variables should not be analyzed individually and independently
of the others, as the relationships among the responses will cause univariate results to be
meaningless. In this case, it is pointless to obtain individual best experimental conditions if
multiple responses are needed to be simultaneously optimized. Where design variables
depend on uncertain factors and conflicting goals, the goal is to define a single solution
that encompasses all responses. In the solution produced for this purpose, the responses to
the design points are optimized and the variances are minimized. For this purpose, MCDM
methods and the Taguchi method are applied in an integrated manner in the literature [38].
The consistency of the results of some MCDM methods is still questionable. Depending
on the conditions or robustness, using two or more different multi-criteria optimization
methods will yield more consistent results than using a single method [39]. In the study,
different MCDM methods were used to optimize the control parameters. In this context,
GRA, WASPAS and VIKOR methods were used. Fuzzy AHP method was used for criterion
weighting required by all three methods. The parameters were reoptimized by applying
the Taguchi S/N optimization method to the values obtained by using all three MCDM
methods. In the final stage, the results of both methods were compared. The flowchart of
the proposed approach is given in Figure 4.

2.5. Determination of Criteria Weights Using Fuzzy AHP Method

The Fuzzy AHP method developed by Saaty is an improved version of the Analytical
Hierarchy Process method [40]. The AHP method is applied to the solution of the decision-
making problem in fuzzy environmental conditions [41]. Firstly, the criteria and alternatives
are determined and then, the fuzzy comparison matrix is built by using the triangular
fuzzy numbers After that, the fuzzy weight vector is developed and fuzzy weight vector
is established [42]. Table 3 shows the fuzzy comparison matrix for the decision-making
problem in this study.

Table 3. Pairwise comparison of criteria.

Response D Ra F T

D 1.00 1.00 1.00 1.00 2.00 3.00 2.00 3.00 4.00 4.00 5.00 6.00
Ra 0.33 0.50 1.00 1.00 1.00 1.00 2.00 3.00 4.00 3.00 4.00 5.00
F 0.25 0.33 0.50 0.25 0.33 0.50 1.00 1.00 1.00 2.00 3.00 4.00
T 0.17 0.20 0.25 0.20 0.25 0.33 0.25 0.33 0.50 1.00 1.00 1.00

Total 1.75 2.03 2.75 2.45 3.58 4.83 5.25 7.33 9.50 10 13 16.00
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In Table 4, the geometric means for alternatives were calculated after developing the
fuzzy comparison matrix. After that, the fuzzy weights for each experiment were calculated
and averaged. Then, the normalization process was performed. Table 3 gives the geometric
mean, fuzzy weights, and normalized weights.

The most important damages based on the experts’ opinion are caused by delamination
during the use of GFRP composites, followed by surface roughness, force and applied
torque. Delamination, surface roughness, force and torque were obtained in order of
importance after the weighting procedure. These ratios are given in Table 4, and the
calculated percentages of the weights for each criterion (i.e., Dm, Ra, F and T) are as follows:
45.4%, 32%, 15.4%, 7.2%, respectively.
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Table 4. Geometric mean, fuzzy weights, and normalized weights.

Response Geometric Mean Fuzzy Weights Mean Normalized Weights (wj)

D 1.682 2.340 2.913 0.260 0.466 0.773 0.500 0.454
Ra 1.189 1.565 2.115 0.183 0.312 0.561 0.352 0.320
F 0.595 0.759 1.000 0.092 0.151 0.265 0.169 0.154
T 0.302 0.359 0.452 0.047 0.071 0.120 0.079 0.072

Total 3.767 5.024 6.479 1.00 1.00 1.00 1.00 1.000
Inverse 0.265 0.199 0.154

Increasing Order 0.154 0.199 0.265

2.6. Fuzzy AHP-GRA Modeling

GRA is a grading, classification and decision-making technique based on the Grey
Relational Grade, developed using the Grey System Theory. The GRA is a solution method
that can be applied to decision problems where there are complex relations between
factors. The main purpose of this method is to establish an index where alternatives can be
compared with each other. The basic idea here is to determine the degree of relationship
between each criterion and the reference series. The grey relational analysis method is also
used in solving problems involving complex relations, as well as combined models with
other MCDM methods. This study was implemented using the following steps in GRA.

Step 1: Development of the decision matrix.
The decision matrix is a matrix that must be developed by the decision maker. This

matrix should be a matrix of mxn size. While the decision maker shows the alternatives
in the rows, the factors are included in the columns. This matrix can be represented as in
Equation (1):

Aij =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . .

...
am1 am2 . . . amn

 (1)

Step 2: Normalization. Since there are great differences between the mathematical
values of the data obtained as a result of the experiments, the data should be normalized
between 0 and 1. There are many normalization methods in practice. They are classified as
vector, linear and non-monotonic normalization to suit real application situations under
different conditions. For GRA analysis, the following linear normalization method (see
Equations (2) and (3)) is used in most studies [43].

x∗j = maxi
{

xij
}

, rij =
xij − x−j
x∗j − x−j

for benefit (2)

x−j = mini
{

xij
}

, rij =
x∗j − xij

x∗j − x−j
for cost (3)

Since Ra, D, F and T are cost-oriented according to their quality characteristics, our
objective function is to minimize these values. For this reason, the normalization process
was applied according to Equation (2) for GRA.

Step 3: Calculation of grey relational coefficient (GRC). Let k denote the kth row in the
series of n length. The GRC in the kth row is calculated using Equation (4).

ξ(k) =
∆min + ξ∆max

∆0i(k) + ξ∆max
(4)

where ∆0i(k) =
∣∣x0

i (k)− xi(k)
∣∣ is the difference in the absolute values of x0

i (k) and xi(k).
ξ is the distinguishing coefficient 0 ≤ ξ ≤ 1 (ξ = 0.5 is used in most applications).
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Step 4: Grey relational grade.
When the obtained grey correlation coefficients are multiplied by the weight of the

criterion and added up for each alternative, the grey correlation degree (GRG) is obtained
for each alternative The GRG is represented by Equation (5).

γi =
1
n

n

∑
i=1

wjξ(k) (5)

where γi (GRG) is a fuzzy-AHP weighted (wj) value.
If the weights of each criterion are known, the grey correlation coefficient can be calcu-

lated by multiplying the grey correlation coefficient of the criterion and the criterion weight.
The weights used in the study were determined according to the Fuzzy AHP method.

2.7. Fuzzy AHP-WASPAS Modeling

The WASPAS method developed by Zavadskasvd consists of a combination of Weighted
Sum Model (WSM) and Weighted Product Model (WPM) methods with a coefficient
indicated by λ [44]. The steps of the WASPAS method are as follows:

Step 1: Development of the Decision Matrix.
The decision matrix showing the values of the alternatives on the basis of the deter-

mined criteria is established as shown in Equation (1).
Step 2: Development of the normalized decision matrix.
Linear normalization process is applied to the decision matrix values according to

the criteria type. Since all our criteria are cost-oriented, the normalization process was
performed according to Equation (7).

For benefit attributes, it is as follows:

rij =
xij

x∗j
, i = 1, . . . , m; j = 1, . . . , n; x∗j = maxi

{
xij
}

(6)

For cost attributes, it is as follows:

rij =
x−

xij
, i = 1, . . . , m; j = 1, . . . , n; x−i = mini

{
xij
}

(7)

Step 3: Calculating weighted sum and weighted product values.
Using the Weighted Sum and Weighted Product methods, the total relative importance

of the alternative is calculated separately. The Weighted Sum is calculated by adding
the criteria values multiplied by the weights. The value of each alternative is multiplied
as much as the number of the relevant criterion weight, and then all these values are
multiplied to calculate the Weighted Product. Qi

(1) and Qi
(2) represent the total relative

importance of the ith alternative according to Weighted Sum and Weighted Product, and
are calculated by using Equations (8) and (9), respectively.

Q(1)
i =

n

∑
j=1

rijwj (8)

Q(2)
i =

n

∏
j=1

rij
wj (9)

Step 4: Calculating total relative importance.
The total relative importance of the alternatives calculated according to the AS and

AP methods can be generalized as shown in Equation (10).

Qi = λQ(1)
i + (1− λ)Q(2)

i (10)
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The λ used in Equation (10) takes values between 0 and 1 and is taken as 0.5 in
the literature.

2.8. Fuzzy AHP-VIKOR Modeling

Opricovic and Tzeng developed this technique to solve MCDM problems involving
conflicting and incomparable criteria [45]. The method ranks the alternatives and chooses
the best from these alternatives. VIKOR is a conciliatory decision-making solution technique
that takes into account not only the maximum group benefit but also minimum individual
regret in the search for near-ideal solutions [27].

The VIKOR method starts by establishing the performance matrix (i.e., decision matrix).
In the matrix, all alternatives (i.e., experiments) are evaluated in terms of each criterion
(i.e., output parameters). The performance matrix is normalized to eliminate the unit
differences of the criteria. To reflect the superiority or priority of the criteria, the normalized
matrix is weighted with the previously calculated Fuzzy AHP method. Opricovic and
Tzeng built a ranking that takes into account the maximum group utility and minimum
regret [45].

Step 1: Development of the decision matrix (see Equation (1)).
Step 2: Determining the best (xi*) and worst (xi

−) performance value of all criteria.
Process parameters are classified as benefit-oriented (maximizing) and cost-oriented

(minimizing). In this case, all outputs (Ra, Dm T and F) are chosen as cost-oriented
(minimized). The smallest value (Best Value, xi*) and the largest value (worst value, xi

−)
for our outputs are selected.

Step 3: Determining Si by calculating normalized and weighted normalized value
of variables.

Best x∗i = min
(
xij
)

and Worst x−i = max
(
xij
)

(11)

Normalized value; Rij =
x∗i − x ..

ij

x∗i − x−i
(12)

Weighted normalized value; Vij = Ri ∗wj (13)

Step 4: Calculating the utility measure and the regret measure.

sj =
n

∑
i=1

wjVij (14)

where sj is the sum of the weighted normalized value.

Rj = max
[
Rij
]

(15)

where sj, Rj ∈ [0, 1], and 0 denotes the best and 1 denotes the worst situations.
Step 5: Calculating the VIKOR index.
The VIKOR index can be calculated as follows:

Qi =
sJ − s∗

s− − s
∗ + (1− v)

RJ − R∗

R− − R∗
(16)

where v ∈ [0, 1] is a weighting factor.
Step 6: Condition to check alternatives.
As a result of checking the alternatives determined in the VIKOR method, the Qi value

giving the value of v = 0.8 was accepted as the best alternative.



Processes 2023, 11, 2872 12 of 24

3. Results and Discussion
3.1. Analysis Experimental Results

The experiments were carried out according to the Taguchi L27 orthogonal experi-
mental design and the levels of control factors are as given in Table 5 below. Thus, the
values of the surface roughness, average delamination value, torque and force are shown
in Table 5. The smallest results represent the best values for all outputs. According to the
measurements obtained from the experiments, in which each test result is independent
of each other, the lowest values of each factor obtained are as follows: Ra = 4.950 µm for
surface roughness in the 7th experiment, Dm = 1.099 for delamination in the 15th experi-
ment, T = 14.78 N for torque in the 19th experiment, and F = 44.24 N for force in the 15th
experiment 15.

Table 5. Taguchi L27 orthogonal experimental results.

Exp. TT % W V f Ra D T F

1 1 1 1 1 6.850 1.167 23.89 66.53
2 1 1 2 2 6.593 1.185 36.30 79.14
3 1 1 3 3 6.479 1.256 27.46 86.87
4 1 2 1 2 5.672 1.206 40.52 79.78
5 1 2 2 3 5.273 1.208 44.48 80.73
6 1 2 3 1 6.584 1.160 34.72 59.93
7 1 3 1 3 4.950 1.257 46.73 88.14
8 1 3 2 1 5.463 1.157 51.74 59.34
9 1 3 3 2 5.672 1.179 68.64 68.86

10 2 1 1 1 7.287 1.135 16.76 50.66
11 2 1 2 2 7.097 1.161 24.42 61.94
12 2 1 3 3 6.622 1.180 50.29 71.86
13 2 2 1 2 6.004 1.162 26.14 62.95
14 2 2 2 3 6.156 1.172 32.87 67.20
15 2 2 3 1 6.612 1.099 36.70 44.24
16 2 3 1 3 5.235 1.181 33.92 75.01
17 2 3 2 1 5.786 1.128 50.82 45.01
18 2 3 3 2 5.539 1.131 55.57 48.00
19 3 1 1 1 7.315 1.246 14.78 84.77
20 3 1 2 2 7.040 1.287 17.69 97.24
21 3 1 3 3 7.287 1.312 23.63 101.46
22 3 2 1 2 6.508 1.270 18.35 93.42
23 3 2 2 3 6.422 1.277 22.97 95.13
24 3 2 3 1 7.239 1.185 36.70 78.91
25 3 3 1 3 5.947 1.332 16.50 105.69
26 3 3 2 1 6.584 1.204 35.11 79.43
27 3 3 3 2 6.669 1.239 40.52 81.86

3.2. Grey Relational Analysis

The first step of the grey relational analysis is to normalize the responses according
to the objective function. Since Ra, D, F and T are cost-oriented outputs according to
their quality characteristics, the objective function minimizes these values. For this reason,
the results obtained in Table 5 according to the L27 orthogonal array were normalized
using Equation (3). After the normalization process, the distance matrix required for the
coefficient matrix is obtained by subtracting the results from the reference series.

The GRC matrix was established by calculating the GRC for each combination of
experiments according to the formula in Equation (3). After the coefficient matrices are
calculated, the weighted GRC values are obtained by multiplying the grey relational degrees
and the weights obtained via the fuzzy AHP using Equation (4). The grey relational grade
obtained for all experiments and the rankings of the experiments are given in Table 6.
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Table 6. Grey relational grade (GRG) and rank.

Weighted GRC
GRG Rank S/N

Exp. Ra D T F

1 0.174 0.202 0.054 0.089 0.519 15 −5.692
2 0.190 0.184 0.040 0.072 0.486 17 −6.268
3 0.198 0.136 0.049 0.065 0.448 22 −6.976
4 0.282 0.167 0.037 0.071 0.557 11 −5.078
5 0.357 0.166 0.034 0.070 0.627 7 −4.057
6 0.191 0.210 0.041 0.102 0.544 13 −5.285
7 0 0.136 0.033 0.063 0.686 4 −3.268
8 0.317 0.214 0.030 0.103 0.665 6 −3.548
9 0.282 0.190 0.024 0.085 0.582 10 −4.705
10 0.153 0.245 0.067 0.127 0.592 9 −4.554
11 0.161 0.209 0.053 0.098 0.521 14 −5.657
12 0.188 0.189 0.031 0.081 0.490 16 −6.204
13 0.240 0.209 0.051 0.096 0.595 8 −4.511
14 0.225 0.197 0.043 0.088 0.553 12 −5.149
15 0.189 0 0.040 0 0.702 3 −3.068
16 0.366 0.188 0.042 0.077 0.673 5 −3.446
17 0.266 0.257 0.031 0.150 0.704 2 −3.045
18 0.303 0.252 0.029 0.137 0.720 1 −2.848
19 0.151 0.141 0 0.066 0.431 25 −7.308
20 0.164 0.122 0.065 0.057 0.408 26 −7.786
21 0.153 0.113 0.054 0.054 0.374 27 −8.545
22 0.196 0.130 0.064 0.059 0.449 21 −6.962
23 0.202 0.127 0.055 0.058 0.442 23 −7.092
24 0.155 0.184 0.040 0.072 0.451 20 −6.924
25 0.246 0.107 0.068 0.051 0.472 19 −6.522
26 0.191 0.169 0.041 0.072 0.472 18 −6.521
27 0.185 0.146 0.037 0.069 0.437 24 −7.196

Table 6 shows the order of the ideal values of the factors affecting the Ra, Dm, T and
F outputs according to the GRA analysis results. The degree of effect between the factors
is called the grey relational degree. A high GRG indicates a strong correlation between
the outputs and the factors. The grey relational degree value is 1 if the two series being
compared are identical. The GRG indicates how similar the compared series is to the
reference series. That is, the largest value of GRG indicates that the factors positively affect
the outputs. Rank gives the order of the GRG values. The GRG value was 0.720 in the 18th
experiment with a rank of 1. In other words, according to the GRA, the most ideal value
for multi-factor assessment was obtained in the 18th experiment. The worst experimental
conditions (i.e., Rank 27) were reached in the 21st experiment.

The parameter with a signal-to-noise ratio close to zero is the most effective parameter.
The graph in Figure 5 was established by optimizing the results according to the “the
largest is the better” approach using Equation (3). The Taguchi GRA response table for
S/N ratios is shown in Table 7. In Figure 5 and Table 7, the 2nd level of cutting cool type
(A2), the 3rd level of the percentage of MWCNT (B3), the 1st level of cutting speed (C1)
and the 1st level of feed rate (D1) give the highest values of the S/N ratio. Therefore, the
combination of factor levels A2B3C1D1 (Carbide Drill, 1% MWCNT, 25 m/min cutting
speed and 0.1 mm/rev feed) has been determined as the optimum drilling conditions for
drilling the composite.
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Table 7. Taguchi GRA response table for S/N ratios.

Level TT Wt% V f

1 −4.99 −6.55 −5.26 −5.11
2 −4.28 −5.35 −5.46 −5.67
3 −7.21 −4.57 −5.75 −5.7

Delta 2.93 1.988 0.49 0.59
Rank 1 2 4 3

In the last column of Table 7, the differences between the maximum and minimum
values of the grey relational degrees for each factor are also given. According to the table, a
large difference indicates that the degree of effectiveness of a factor on the process is higher.
In the table, the most effective parameter according to the grey relational degree was tool
type (TT), with the largest difference value of −4.28 (Level 2). This value is followed by
%MWCNT (Wt%) with −4.57 (Level 3), feed rate (f) with −5.11 (Level 1) and cutting speed
(V) with −5.11 (Level 1). In addition, the difference in Wt% and TT values is much larger
than the difference in V and f values. When the results are compared, the carbide tool type
and 1% MWCNT ratio have a significant effect on the cutting speed and feed rate.

3.3. Waspas

The WASPAS method developed by Zavadskas et al. integrates the Weighted Sum
Method (WSM) and the Weighted Product Method (WPM) with a coefficient and determines
the most appropriate choice in the multi-criteria dataset [44]. To explain the responses, all
criteria must be of either minimization or maximization character. The procedure of the
WASPAS method begins with the normalization of the decision matrix by applying the
WASPAS approach. Accordingly, the decision matrix is linearly normalized according to
the minimum values using Equation (7). The normalized values were then multiplied with
the weights obtained via the fuzzy AHP using Equations (8) and (9), and all of them were
summed to determine the rank scores for each alternative, and the ranking was calculated
from the highest value to the lowest. In WPM, the value of each criterion in the decision
matrix is first weighted with the relevant weight values calculated using the fuzzy AHP
(see Table 8). Negative weights are used as all outputs are cost-oriented outputs. The total
relative importance of the alternatives and the WASPAS values in Table 8 were calculated
by taking into account λ = 0.5, as shown in Equation (10). The highest score is ranked as
the best value [8].
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Table 8. Waspas weighted assessment (Qi) and S/N values.

Exp. WSM WPM WASPAS Rank S/N

1 0.776 0.768 0.772 14 −2.246
2 0.753 0.734 0.744 18 −2.572
3 0.744 0.731 0.738 21 −2.644
4 0.800 0.775 0.787 12 −2.077
5 0.826 0.794 0.810 9 −1.832
6 0.789 0.775 0.782 13 −2.137
7 0.834 0.793 0.814 7 −1.792
8 0.851 0.822 0.836 4 −1.553
9 0.809 0.769 0.789 11 −2.059
10 0.816 0.806 0.811 8 −1.818
11 0.773 0.764 0.769 15 −2.285
12 0.754 0.728 0.741 20 −2.607
13 0.826 0.818 0.822 6 −1.701
14 0.799 0.785 0.792 10 −2.024
15 0.843 0.821 0.832 5 −1.597
16 0.849 0.827 0.838 3 −1.532
17 0.873 0.843 0.858 2 −1.331
18 0.878 0.845 0.862 1 −0.700
19 0.742 0.728 0.735 23 −2.677
20 0.723 0.708 0.716 25 −2.906
21 0.689 0.675 0.682 27 −3.329
22 0.753 0.740 0.747 17 −2.537
23 0.743 0.729 0.736 22 −2.660
24 0.722 0.704 0.713 26 −2.937
25 0.771 0.751 0.761 16 −2.376
26 0.750 0.733 0.741 19 −2.602
27 0.730 0.711 0.721 24 −2.844

Figure 6 shows the main effect plot for the signal-to-noise ratio obtained from the
WASPAS method. Based on the factor levels, it was calculated using Equation (2) by taking
into account the “the largest is the better” approach. The Taguchi WASPAS response table
for the S/N ratios is shown in Table 8. Figure 6 and Table 9 show similar results with GRA.
Accordingly, the 2nd level of the cutting tool type (A2), the 3rd level of the percentage of
MWCNT (B3), the 1st level of the cutting speed (C1) and the 1st level of the feed rate (D1)
give the highest value of the GRG S/N ratio. Therefore, the combination of factor levels
A2B3C1D1 (carbide drill, 1% MWCNT, 25 m/min cutting speed and 0.1 mm/rev feed) has
been determined as the optimum drilling conditions for drilling the composite.

Processes 2023, 11, x FOR PEER REVIEW 16 of 25 
 

 

25 0.771 0.751 0.761 16 −2.376 
26 0.750 0.733 0.741 19 −2.602 
27 0.730 0.711 0.721 24 −2.844 

Figure 6 shows the main effect plot for the signal-to-noise ratio obtained from the 
WASPAS method. Based on the factor levels, it was calculated using Equation (2) by taking 
into account the “the largest is the better” approach. The Taguchi WASPAS response table 
for the S/N ratios is shown in Table 8. Figure 6 and Table 9 show similar results with GRA. 
Accordingly, the 2nd level of the cutting tool type (A2), the 3rd level of the percentage of 
MWCNT (B3), the 1st level of the cutting speed (C1) and the 1st level of the feed rate (D1) 
give the highest value of the GRG S/N ratio. Therefore, the combination of factor levels 
A2B3C1D1 (carbide drill, 1% MWCNT, 25 m/min cutting speed and 0.1 mm/rev feed) has 
been determined as the optimum drilling conditions for drilling the composite. 

 
Figure 6. Main effects plot for S/N ratios (WASPAS). 

In the last column of Table 9, the differences between the maximum and minimum 
values for each factor according to the WASPAS method were also calculated. In the table, 
the most effective parameter according to the WASPAS method was the cutting tool type 
(TT) with the largest difference value of −1.73 (Level 2). This value is followed by the 
%MWCNT(Wt%) ratio with −1.87 (Level 3), cutting speed (V) with −2.08 (Level 1), and 
feed rate (f) with −2.10 (Level 1). In addition, the difference in Wt% and TT values is much 
larger than the difference in V and f values. According to the results, the carbide tool type 
and 1% MWCNT ratio have a significant effect on the cutting speed and feed rate. 

Table 9. Taguchi WASPAS response table for S/N ratios. 

Level TT Wt% V f 
1 −2.1 −2.57 −2.08 −2.1 
2 −1.73 −2.17 −2.2 −2.19 
3 −2.76 −1.87 −2.32 −2.31 

Delta 1.03 0.699 0.233 0.211 
Rank 1 2 3 4 

3.4. VIKOR 
The ranking obtained using the steps of the VIKOR technique in Section 2.8 is shown 

in Table 10. The ranking is conducted in ascending order according to the Qi value, which 
means that the alternative with the smallest Q value is in the best [22]. The output re-
sponses of the 18th experiment were selected as the best experimental parameters accord-
ing to the VIKOR technique. According to the Qi values mentioned in the last column of 

Figure 6. Main effects plot for S/N ratios (WASPAS).



Processes 2023, 11, 2872 16 of 24

Table 9. Taguchi WASPAS response table for S/N ratios.

Level TT Wt% V f

1 −2.1 −2.57 −2.08 −2.1
2 −1.73 −2.17 −2.2 −2.19
3 −2.76 −1.87 −2.32 −2.31

Delta 1.03 0.699 0.233 0.211
Rank 1 2 3 4

In the last column of Table 9, the differences between the maximum and minimum
values for each factor according to the WASPAS method were also calculated. In the table,
the most effective parameter according to the WASPAS method was the cutting tool type
(TT) with the largest difference value of −1.73 (Level 2). This value is followed by the
%MWCNT (Wt%) ratio with −1.87 (Level 3), cutting speed (V) with −2.08 (Level 1), and
feed rate (f) with −2.10 (Level 1). In addition, the difference in Wt% and TT values is much
larger than the difference in V and f values. According to the results, the carbide tool type
and 1% MWCNT ratio have a significant effect on the cutting speed and feed rate.

3.4. VIKOR

The ranking obtained using the steps of the VIKOR technique in Section 2.8 is shown
in Table 10. The ranking is conducted in ascending order according to the Qi value, which
means that the alternative with the smallest Q value is in the best [22]. The output responses
of the 18th experiment were selected as the best experimental parameters according to the
VIKOR technique. According to the Qi values mentioned in the last column of Table 10,
the S/N ratio of the ranking was calculated. It has been claimed that the VIKOR technique
has many advantages over other methods, especially in using MCDM problems with
contrasting criteria [46]. The parameters were first normalized according to Equation (3).
Then, Equations (11)–(15) were used to find the Rj and Sj values. Using these values, the Qi
Vikor index was calculated using Equation (16).

Table 10. Utility measure, regret measure, VIKOR Index, and rank.

Exp. Rj Sj Qj Rank S/N

1 0.526 0.365 0.512 13 5.82
2 0.550 0.315 0.513 16 5.80
3 0.632 0.294 0.598 19 4.47
4 0.408 0.146 0.249 10 12.1
5 0.342 0.149 0.173 5 15.2
6 0.463 0.314 0.408 12 7.78
7 0.369 0.216 0.242 8 12.3
8 0.265 0.098 0.052 3 25.7
9 0.381 0.139 0.213 7 13.4
10 0.516 0.448 0.547 14 5.23
11 0.554 0.412 0.571 18 4.86
12 0.548 0.321 0.513 15 5.79
13 0.350 0.202 0.212 6 13.5
14 0.413 0.232 0.303 11 10.4
15 0.348 0.319 0.276 9 11.2
16 0.270 0.113 0.067 4 23.5
17 0.250 0.160 0.069 2 23.2
18 0.221 0.113 0.008 1 41.7
19 0.758 0.454 0.837 25 1.55
20 0.796 0.401 0.852 26 1.39
21 0.895 0.448 0.997 27 0.03
22 0.661 0.299 0.635 21 3.94
23 0.666 0.283 0.631 22 4.00
24 0.674 0.439 0.729 24 2.74
25 0.668 0.320 0.655 23 3.68
26 0.573 0.314 0.538 17 5.38
27 0.650 0.330 0.639 20 3.88



Processes 2023, 11, 2872 17 of 24

Figure 7 shows the S/N ratio graph. The S/N ratio was calculated according to
the least–best principle in ordering the VIKOR index. Considering the values given in
Figure 7 and Table 10, the S/N ratios giving the levels of optimum drilling parameters
were A2B3C2D2. According to the VIKOR index, carbide is the best drilling tool type. In
addition, the increase in the % MWCNT ratio in the composite enabled an increase in the
VIKOR index. According to Figure 8, the %MWCNT ratio has the greatest effect on the
VIKOR index, followed by TT, F and V, respectively.
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The Taguchi VIKOR response table for signal-to-noise ratios is shown in Table 11.
The table was prepared by taking into account “the smallest is the better” approach with
Taguchi, depending on the factor levels. The difference between the parameter levels can
be seen in the “Delta” line in the table. According to the table, a large difference indicates
that the degree of effectiveness of a factor on the process is higher. In the table, the most
effective parameter according to the VIKOR index was the %MWCNT (Wt%) ratio with the
largest difference value of 13.089 (Level 2). This was followed by tool type (TT) with 12.525
(Level 3), feed rate (f) with 2.354 (Level 2) and cutting speed (V) with 1.589 (Level 2). In
addition, the difference in Wt% and TT values is much larger than the difference in V and
f values.
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Table 11. Taguchi VIKOR response table for S/N ratios.

Level TT Wt% V f

1 11.398 3.882 9.064 9.837
2 15.480 8.979 10.653 11.174
3 2.954 16.971 10.114 8.820

Delta 12.525 13.089 1.589 2.354
Rank 2 1 4 3

To obtain robust results, the ranking was performed using a hybrid of the GRA,
WASPAS and VIKOR techniques.

3.5. ANOVA Results for Fuzzy AHP MCDM Methods
Comparison of ANOVA Results for Fuzzy AHP MCDM Methods

Statistical analysis of variance (ANOVA) was applied to determine the interactions
of all control factors used in this study with each other, how much these factors affect
the performance characteristics, to what extent the differences in the parameters in the
experimental study change the performance character and the reasons for this change.
ANOVA is a statistical technique that provides important results based on the analysis
of experimental data. This technique is very useful to determine the significance of the
effect of factors or the interaction between factors on a particular response. The combined
ANOVA analysis showing the effect range and variability of the experimental parameters,
contributions of the factors, degrees of freedom and error rates for each output parameter
is given in Table 12. ANOVA determines the ratio between the regression mean squared
and the mean squared error and calls it the F ratio or variance ratio. This ratio is also
a factor arising from the error term and a ratio dependent on the effect of variance. If
the calculated value of the F ratio is high, the factor is significant at the desired level. In
general, the higher the F value, the higher the importance of the particular parameter and
the percentage of contribution. The ANOVA procedure was applied at 95% confidence
level and 5% significance level. In determining the effect levels of the control factors used in
the experiment, the F value with the highest effect value is specified as the value that most
affects the result. Additionally, having a p-value in the ANOVA table less than 0.05 indicates
that the factor is statistically significant. The ANOVA results show that the most important
contributions among the parameters for all three MCDM methods are the tool type and
the %MWCNT ratio in the composite. According to Table 12, the ratios for GRA, WASPAS,
and VIKOR are found to be 56.77%, 53.26%, and 56.14%, respectively. The finding of this
result in the conducted experiments indicates that the type of tool has the most significant
effect on the outputs. Similarly, the F values of TT and W%, which appear as the most
effective parameters in all three methods, are the largest and their p values are less than
0.05. For the ANOVA GRA values, the cutting speed (p = 0.126 ≥ 0.05) was not found to be
statistically significant. However, since p ≤ 0.05 for all other control parameters and their
pairwise interactions, all of them are statistically significant. A similar pattern is observed
when comparing ANOVA for WASPAS. The p-values for the TT and MWCNT% parameters
are less than 0.05, indicating statistical significance, while the F-values and other mutual
interaction parameters are greater than 0.05, indicating no statistical significance. ANOVA
for WASPAS exhibits similar features to ANOVA for VIKOR in terms of p and F-values. It
is worth noting that the pairwise interactions among control parameters contribute to the
outputs at relatively low levels (2-3-4%).

Total squares (SS), mean squares (MS), percentage of contributions (Cont. %) and
degrees of freedom (FD) for each output parameter are given in Table 12. The R2 values
are 98.94%, 96.79%, and 98.89% for GRA, WASPAS, and VIKOR, respectively. The corre-
sponding AdjR2 values are 95.41%, 86.11%, and 95.20%, indicating that all output values
are accurately estimated within a 95% confidence interval.
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Table 12. Analysis of variance (ANOVA) for GRA, WASPAS and VIKOR.

Source DoF % Cont. SS MS F P

G
R

A

TT 2 56.77 0.155 0.078 160.82 0.000
W 2 26.66 0.073 0.036 75.52 0.000
V 2 1.05 0.003 0.001 2.98 0.126
f 2 2.79 0.008 0.004 7.91 0.021

TT ×W 4 4.24 0.012 0.003 6.01 0.027
TT × V 4 3.73 0.010 0.003 5.28 0.036
TT × f 4 3.71 0.010 0.003 5.25 0.037
Error 6 1.06 0.003 0.000

S = 0.0219648 R-sq = 98.94 R-sq(adj) = 95.41

W
A

SP
A

S

TT 2 53.26 0.040 0.020 49.84 0.000
W 2 24.75 0.018 0.009 23.17 0.002
V 2 2.10 0.002 0.001 1.96 0.221
f 2 2.20 0.002 0.001 2.06 0.208

TT ×W 4 5.36 0.004 0.001 2.51 0.151
TT × V 4 4.60 0.003 0.001 2.15 0.192
TT × f 4 4.52 0.003 0.001 2.12 0.197
Error 6 3.21 0.002 0.000

S = 0.0199102 R-sq = 96.79 R-sq(adj) = 86.11

V
IK

O
R

TT 2 56.14 1.050 0.525 152.12 0.000
W 2 36.88 0.690 0.345 99.93 0.000
V 2 1.40 0.026 0.013 3.79 0.086
f 2 0.26 0.005 0.002 0.71 0.531

TT ×W 4 2.00 0.037 0.009 2.71 0.133
TT × V 4 2.00 0.037 0.009 2.71 0.132
TT × f 4 0.21 0.004 0.001 0.28 0.882
Error 6 1.11 0.021 0.003

S = 0.0587504 R-sq = 98.89 R-sq(adj) = 95.20

When examining the effect of control parameters on the outputs according to the
ANOVA table, it is observed that the type of tool has a significant impact during the drilling
of holes in composites. Especially important, it can be concluded that the use of coated
carbide drills has a significant influence on roughness, delamination strength, and torque
during drilling of nanomaterial-reinforced composites. According to the table, feed rate,
cutting speed, and other interactive parameters are less important in this regard.

By applying several different MCDM methods to the same problem, even the same
decision maker can obtain different alternative ranking results, leading to the problem of
conflicting decision results. Three different MCDM methods have been applied in this study
to reduce the risk of wrong decision making. The most suitable experimental parameters
should be determined from these methods.

The ranking of process parameters’ selection according to these three MCDM methods
is shown in Table 13. As can be seen from the table, the best alternative among the current
experimental conditions is the 18th experiment, and the worst ranking is from the 21st
experiment. Similar results are obtained in other rankings. The control parameters of the
18th experiment occurred at the levels of A2B3C3D2 (TT: carbide tool, %W: 1, V: 75 and
f: 0.15). For the Ra, Dm, T and F responses corresponding to these levels, 5.539 µm, 1.131,
55.57 N and 48 Nm were obtained, respectively.

Optimum drilling parameters were determined according to Taguchi-based MCDM
methods. Optimum parameters are A2B3C1D1 according to GRA and WASPAS, and
A2B3C2D2 according to VIKOR. Since these values did not exist in the L27 experimental
design, confirmation tests were carried out under these experimental conditions. The Ra,
Dm, T and F values obtained as a result of the confirmation tests are given in Table 14.
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Table 13. Ranking of GRA, WASPAS and VIKOR.

Exp. No.
GRA WASPAS VIKOR

Value Rank Value Rank Value Rank

1 0.519 15 0.772 14 0.482 13
2 0.486 17 0.744 18 0.501 16
3 0.448 22 0.738 21 0.604 19
4 0.557 11 0.787 12 0.264 10
5 0.627 7 0.810 9 0.177 5
6 0.544 13 0.782 13 0.384 12
7 0.686 4 0.814 7 0.231 8
8 0.665 6 0.836 4 0.059 3
9 0.582 10 0.789 11 0.226 7

10 0.592 9 0.811 8 0.493 14
11 0.521 14 0.769 15 0.533 18
12 0.490 16 0.741 20 0.499 15
13 0.595 8 0.822 6 0.202 6
14 0.553 12 0.792 10 0.295 11
15 0.702 3 0.832 5 0.232 9
16 0.673 5 0.838 3 0.070 4
17 0.704 2 0.858 2 0.056 2
18 0.720 1 0.862 1 0.004 1
19 0.431 25 0.735 23 0.816 25
20 0.408 26 0.716 25 0.852 26
21 0.374 27 0.682 27 0.998 27
22 0.449 21 0.747 17 0.644 21
23 0.442 23 0.736 22 0.645 22
24 0.451 20 0.713 26 0.701 24
25 0.472 19 0.761 16 0.659 23
26 0.472 18 0.741 19 0.530 17
27 0.437 24 0.721 24 0.638 20

Table 14. Comparison of optimum conditions according to GRA, WASPAS and VIKOR.

Factor/Level Ra (µm) Dm T (N) Ft (N) %Total

FuzzyAHP criteria weights - 0.32 0.45 0.07 0.15
MCDM Opt. (Exp. = 18) A2B3C3D2 5.54 1.13 55.57 48.00
Taguchi-GRA-WASPAS A2B3C1D1 4.86 1.10 17.47 48.33
% Improvement - 12.2 2.83 68.56 −0.69 82.9
% Weighted Improvement - 3.92 1.28 4.94 −0.11 10.03
Taguchi–VIKOR A2B3C2D2 5.02 1.09 37.19 45.01
% Improvement - 9.37 4.07 33.08 6.23 52.75
% Weighted Improvement - 3.00 1.85 2.38 0.96 8.19

In Figure 8, the ranking of alternatives for each MCDM method is given graphically.
The rankings obtained according to the experimental conditions of all three methods
intersect in many experimental conditions, and small deviations occur in some experiments.

The comparison of the best alternative (i.e., 18th experiment) of the MCDM methods
and the optimum conditions of the Taguchi S/N-based GRA, WASPAS and VIKOR, and
the improvement rates are given in Table 14. When the optimum experiment conditions
determined using MCDM methods and Taguchi-based GRA and WASPAS were compared,
the following improvement rates were obtained for the output parameters: 12.26% for
surface roughness, 2.83% for average delamination, 65.86% for torque. On the other hand,
a 0.69% worsening for thrust force was experienced. The weighted improvement rates
obtained by multiplying these improvements with the fuzzy AHP criterion weights are
3.92% for the improvement of surface roughness, 1.28% for average delamination, 4.94%
for torque, and a 0.11% worsening for thrust force. The total improvement rate was 10.04%.
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When the same comparison was performed using the results from the Taguchi-based
VIKOR method, an improvement of 9.37% was observed for surface roughness, 4.07%
for average delamination, 33.08% for torque and 6.23% for thrust force. The overall im-
provement rate was 52.74%. The weighted improvement rates obtained by multiplying
these improvements with the d AHP criterion weights are 3.00% improvement for surface
roughness, 1.85% for average delamination, 2.38% for torque, and 0.96% for thrust force.
The total improvement rate was 8.1.

Although the VIKOR method is superior to other MCDM methods in many stud-
ies [47], it had a worse performance than that of GRA and WASPAS in this study.

The rankings of experiments generated by various MCDM methods can differ. Spear-
man’s rank correlation coefficient makes it possible to quantify the degree of correlation
between any two rank alternative sets obtained by applying different MCDM methods. In
the study, Spearman’s ranking correlation coefficient was calculated between the rankings
of the alternatives obtained from the GRA, WASPAS and VIKOR methods and is given
in Table 15. Spearman’s rank correlation coefficients (ρr) should be in the range between
0.9 and 1 [33].

Table 15. Pairwise Spearman correlation.

GRA WASPAS VIKOR p

GRA 1 0.962 0.919 0.000
WASPAS 0.962 1 0.907 0.000
VIKOR 0.919 0.907 1 0.000

Since the p values were obtained as 0 (less than 0.05) in the pairwise comparison of
MCDM methods, the correlation coefficients could be interpreted. High and significant
correlation values were obtained in the pairwise comparisons of the GRA, WASPAS and
VIKOR methods. The GRA-WASPAS, GRA-VIKOR and GRA-WASPAS correlation coef-
ficients are 0.962, 0.919 and 0.907, respectively. These high correlation coefficient values
indicate the robustness of the methods. According to Spearman’s correlation coefficient, the
highest correlation was determined between GRA and WASPAS with a value of 0.962 [27].
The correlation was specified to be negative since the principle of “the smallest is better”
was used in the VIKOR technique. This showed that there is a strong linear relationship
between the MCDM methods.

4. Conclusions

Today, nanocomposites are processed in different industries and have found widespread
applications. In this study, the multi-walled carbon nanotube (MWCNTs)-reinforced com-
posites are drilled by using different types of drills under dry drilling conditions. A
three-level Taguchi L27 orthogonal experimental study is conducted to investigate the
effects of different drilling parameters (i.e., MWCNT ratio, drill type, feed and cutting
speed) on a number of output parameters (i.e., delamination factor in hole damage, surface
roughness, thrust force and torque). A number of MCDM methods have been used in the
literature to determine the optimal combination of drilling parameters. The GRA, WASPAS
and VIKOR methods are used in this study. In this study, the fuzzy AHP method is used
to weight the criteria in order to prevent subjectivity in the decision-making process. The
findings from the study are given below:

• The fuzzy AHP method is used to determine the criterion weights. The weighted
percentages of Dm, Ra, F and T values were determined as 45.4%-32%-15.4%-7.2%,
respectively.

• Experiments are planned according to the Taguchi L 27 orthogonal sequence and
multi-criteria optimization is performed by using three MCDM methods (i.e., GRA,
WASPAS and VIKOR).
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• The correlation coefficient value between the rankings obtained from each MCDM
method is over 90%. This result shows that the methods are compatible with each
other and eliminates the possibility of obtaining any skewed results.

• According to all MCDM methods, the best multi-response quality characteristic perfor-
mance is achieved in the 18th test condition (i.e., A2B3C3D2- Ra = 4.86 µm, Dm = 1.13,
T = 55.57 N and F = 48.00 N), while the worst performance is obtained in the 21st test
condition (i.e., A2B3C3D2- Ra = 7.287 µm, Dm = 1.312, T = 23.63 N and F = 101.46 N).

• According to the optimization conducted via Taguchi S/N FAHP–GRA and WASPAS,
the optimum parameters are obtained under A2B3C1D1 experimental conditions
(Ra = 4.86 µm, Dm = 1.10, T = 17.47 N and F = 48.33 N), and according to the opti-
mization carried out via Taguchi S/N FAHP–VIKOR, under A2B3C2D2 experimental
conditions (Ra = 5.02 µm, Dm = 1.09, T = 37.19 N and F = 45.01 N).

• The comparison of MCDM and the weighted Taguchi S/N MCDM methods shows an
improvement of 10.04% with Taguchi S/N FAHP–GRA and WASPAS, and 8.19% with
Taguchi S/N FAHP–VIKOR.

• Spearman correlation coefficients are calculated by successfully comparing the GRA,
WASPAS and VIKOR methods with each other. The correlation coefficients of GRA-
WASPAS, GRA-VIKOR and WASPAS-VIKOR are calculated as 0.962, 0.919 and 0.907,
respectively.

In the conducted study, the single optimization of the experimental outputs was not
discussed due to the constraint of the field. This study primarily focused on multi-objective
optimization, criteria weighting, and the comparison of different MCDM methods. This
study demonstrates that, in addition to the methods used in multi-objective optimization,
the weighting of the outputs also has a significant impact on the optimization process. In
the study, it is understood that companies have various demands in reaching their own
goals and in applying expert opinions based on the fuzzy AHP method. While energy
consumption is important for some companies, others prioritize production time. In future
research, a study can be conducted in which the results are discussed by optimizing the
outputs with a single MCDM method using several different weighting methods (i.e., AHP,
Swara, Entropy, or Critic). Additionally, studies can be carried out by using different
outputs, especially both minimization and maximization such as tool life.
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