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Abstract

:

Ascertaining the positions of geological boundaries serves as a cornerstone in the characterization of shale reservoirs. Existing methods heavily rely on labor-intensive manual well-to-well correlation, while automated techniques often suffer from limited efficiency and consistency due to their reliance on single well log data. To overcome these limitations, an innovative approach, termed DRAG, is introduced, which uses deep belief forest (DBF), principal component analysis (PCA), and an enhanced generative adversarial network (GAN) for automatic layering recognition in logging curves. The approach employed in this study involves the use of PCA for dimensionality reduction across multiple well log datasets, coupled with a sophisticated GAN to generate representative samples. The DBF algorithm is then applied for stratification, incorporating a confidence screening mechanism to improve computational efficiency. In order to improve both accuracy and stability, a coordinate system is introduced that adjusts for stratification variations among neighboring wells around the target well. Experimental comparisons demonstrate the superior performance of the proposed algorithm in reducing stratification fluctuations and improving precision.
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1. Introduction


Well log stratification plays an integral role in geological data interpretation, significantly influencing lithology identification, log facies analysis, and reservoir parameter studies [1,2,3,4,5,6,7,8,9,10]. Conventional methodologies, which include both labor-intensive manual techniques and automated approaches, have inherent limitations. The origin of automatic stratification can be traced back to mathematical statistical methods, encompassing intra-layer difference, optimal segmentation, change point analysis, and extreme variance clustering [11,12,13,14,15]. While these pioneering methods were transformative, they generally necessitated substantial computational resources and had difficulty with the acquisition of accurate prior probabilities [16,17,18,19].



The advent of machine learning techniques, exemplified by fuzzy clustering and neural networks, represents a significant evolution [20,21,22,23,24]. These methods focus on stratification using individual well-logging curves, potentially leading to imprecision, especially in instances of ambiguous curve delineation [25]. Moreover, these techniques often have difficulty correlating stratification resulting from proximate wells that share similar stratigraphic structures [26,27].



More recently, the development of deep learning has provided a promising direction for well logging curve prediction. Techniques such as fully convolutional neural networks (FCNNs) and recurrent neural networks (RNNs) have exhibited considerable promise. Zhang et al. [28] utilized the RNN-based improved long short-term memory (LSTM) network and the C-LSTM network with a cascading system to generate logging curves. Zhou et al. [29] accurately predicted the changing trend of logging curves using LSTM networks and gated recurrent unit (GRU) neural networks [28,29,30,31,32]. In recent years, both the GRU algorithm and the BPNN algorithm have emerged as foundational tools in the domain of neural network-based stratigraphic division [28,29,30,31,32]. The GRU, a variant of the recurrent neural network (RNN), enhances the capacity to capture dependencies across different time steps, addressing some of the vanishing gradient challenges inherent to traditional RNNs [16,24,26,27,28,29,30,31,32]. Its architecture, characterized by update and reset gates, allows for efficient memory retention over longer sequences [28,29,30,31,32]. Conversely, BPNN, a foundational artificial neural network, relies on the propagation of errors backward through the network to refine its predictions iteratively [28,29,30,31,32]. Although BPNN has exhibited versatility across a wide range of tasks, its susceptibility to issues, such as local minima and slow convergence in certain scenarios, is noteworthy [16,24,26,27,28,29,30,31,32]. The methods based on recurrent neural networks can improve the prediction effect of logging curves to a certain extent, compared to those based on fully connected neural networks; however, when local mutations arise in logging curves, their prediction effect still needs improvement [28,29,30,31,32]. Nevertheless, these methods also face unique challenges, particularly when local mutations arise in logging curves.



Despite these advancements, the majority of automatic stratification techniques rely on the data derived from single wells, frequently overlooking the pivotal data from drilling location coordinates. This singular focus results in stratification that does not consider the potential impact of neighboring wells, thereby posing a significant challenge [30,31,32].



Subtle changes in mineral composition and organic matter content of black shale surrounding the stratigraphic boundary result in small variations in the logging response tied to the shale stratigraphic boundary. Such nuances make the stratigraphic division notably more challenging than in sandstone and carbonate formations [33,34,35,36]. In light of these complexities, this paper focuses on Ordovician–Silurian black shale and the corresponding logging curves on the southern edge of the Sichuan Basin, aiming at automatic stratigraphic division. Based on the above analysis, an innovative method, DRAG, which combines deep belief forest (DBF), principal component analysis (PCA), and an advanced generative adversarial network (GAN), is introduced to achieve automatic layering recognition in logging curves [37,38,39,40]. This method encompasses several techniques; principal component analysis (PCA) is utilized for dimensionality reduction, followed by the application of a generative adversarial network (GAN) for sample generation. Furthermore, DRAG integrates the deep belief forest (DBF), a cascaded deep forest algorithm [40,41,42,43,44,45,46]. An integral feature of the method is the automatic calibration strategy, which uses neighborhood information to adjust single point results [47,48,49].




2. The Proposed Method


This paper proposes a novel approach, termed DRAG, for well log analysis and shale boundary identification, as illustrated in Figure 1. Specifically, the original well log curve data undergo dimensional reduction using the PCA algorithm. Subsequently, a GAN network is employed to generate synthetic samples of the well log curve data, aiming to achieve a balanced quantity of samples across different categories. The deep belief forest algorithm is then utilized for well log curve stratification. Lastly, the calibration threshold function of the layer division result for a single well is constructed, and the layer division result is corrected by considering the stratigraphic division schemes of neighboring wells.



2.1. Data Preprocessing


Well log curve data typically consist of a high-dimensional feature space, with each feature represents different attributes. However, in well log analysis, not all features are equally informative or relevant for the target task [32,33,34,35]. Consequently, working with such high-dimensional data, which may contain redundant or noisy information, can lead to challenges such as high computational complexity and low analysis performance [38]. To overcome these limitations, dimensionality reduction is applied to the original well log curve data, where the most important and distinctive features should be identified and retained [42,43,44].



In this study, a principal component analysis (PCA) algorithm, a widely utilized method, is employed for dimensionality reduction in well log curve analysis. PCA helps eliminate redundant dimensions and identifies the most important and distinctive features, thereby preserving crucial information [38,39,40]. By reducing the dimensionality of well log curve data while preserving vital attributes, PCA improves the robustness of analysis results. The trend in TOC can effectively predict the boundaries of stratigraphic units. Therefore, conducting PCA analysis on well logging data and TOC data enhances the accuracy in predicting the limits of these stratigraphic units. This enables more efficient processing and enhances the ability to extract meaningful insights from the well log data, leading to improved decision-making in shale boundary identification and well log analysis tasks [44].



First, the principal component score of each sample is obtained after PCA dimension reduction of the original data, and it is represented by    F  ic      (  i = 1 , 2 , ⋯ , n ; c = 1 , 2 , ⋯ , m  )   , where  n  is the number of samples and  m  is the number of main components [24].



Then, each principal component is normalized. The process can be formulated as follows [38]:


       F  ic  *  =    F  ic   −  F  c  (  min  )       F  c  (  max  )    −  F  c  (  min  )             (  i = 1 , 2 , ⋯ , n ; c = 1 , 2 , ⋯ , m  )       



(1)




where    F  ic  *    is the normalized score of the  c  principal component of the i sample.    F  ic     is the score of the  c  principal component of sample i.    F  c  (  max  )      is the maximum score of the  c  principal component.    F  c  (   min   )      is the minimum score of the c principal component. Then, the gravity of each principal component sample is calculated.


         P  ic   =  F  ic  *  /    ∑   i = 1  n    F  ic  *            i = 1 , 2 , ⋯ , n ; c = 1 , 2 , ⋯ , m        



(2)




where    P  ic     is the proportion of the  c  principal component in sample  i .



Then, the information entropy of each principal component is calculated. The formula is as follows [38]:


       E c  = −  1  lnn      ∑   i = 1  n    P  ic   ⋅   lnP   ic          (  i = 1 , 2 , ⋯ , n ; c = 1 , 2 , ⋯ , m  )       



(3)




where    E c    is the information entropy of the  c  principal component. Next, the weight of each principal component is calculated. The formula is as follows [38]:


   w c  =  (  1 −  E c   )  /   ∑   f = 1  m   (  1 −  E f   )   (  c , f = 1 , 2 , ⋯ , m  )   



(4)




where    w c    is the weight of the  c  principal component, and    E f    is the information entropy of the f principal component. Then, the comprehensive score of principal component of information entropy is calculated, and the formula is as follows:


   F ′  =   ∑   c = 1  m   w c  ⋅  P  ic    (  i = 1 , 2 , ⋯ , n ; c = 1 , 2 , ⋯ , m  )   



(5)




where   F ′   is the comprehensive score of principal components based on information entropy. According to the comprehensive score of principal components based on information entropy, the first 30% of principal components are selected as the data after dimensionality reduction.



This paper takes Well A as a case study and reduces the dataset for predicting TOC using PCA analysis. The specific parameters related to the PCA analysis are presented in Tables S1–S7. The weights of principal components (Wc) and the composite scores (F’) for logging data at each depth allow for the identification of principal components that explain the data with the highest granularity. The magnitude of these weights determines which principal components are pivotal in describing the data’s variability. Using Well A as a reference, Figure 2a reveals that the weights for the principal components GR, AC, RT, and DEN are comparatively high, indicating their pronounced predictive capacity for the TOC parameter (Figure 2a). The variability in the composite scores (F’) for each sample reflects the inherent importance or influence of each sample within the entirety of the logging data (Figure 2b). This information facilitates the recognition of samples that stand out across all principal components.




2.2. Sample Balance Treatment


The generative adversarial network (GAN) is a powerful unsupervised learning mechanism that was introduced in 2014 by Goodfellow [42,43,44,45,46]. Goodfellow and his colleagues first applied GAN to image generation [48,49,50,51,52]. Since then, GAN has attracted significant attention in the deep learning community for its capability to model high-dimensional data distributions and produce realistic samples [48,49,50,51,52].



In the context of well log data analysis, GAN provides valuable contributions by addressing the challenges associated with complex and high-dimensional data [32]. Well log curve data contain intricate patterns and subtle variations that are crucial for accurate shale boundary identification [44]. Utilizing GAN allows for harnessing its robust computational power to model the underlying distribution of the well log data and generate synthetic samples that capture the essential characteristics of the actual data.



GAN’s key characteristic is its composition of two competing networks: a generator (G) and a discriminator (D) [48,49,50,51,52]. The generator captures the latent distribution of actual sample data, creating new data samples, while the discriminator distinguishes between input data and generator-produced samples [48,49,50,51,52]. The training alternates and consists of competing phases between G and D, and it concludes once a balance is reached. At this point, the generator produces data that are true enough to elude detection by the discriminator [48,49,50,51,52]. The GAN process does not necessarily require prior knowledge of boundaries identified by experts. GANs are designed to learn and generate data in an unsupervised manner, without relying on pre-defined boundaries or labels. Instead, GANs learn from input data to generate new samples that resemble the training data.



In this paper, an improved GAN algorithm is used to generate samples. The network structure of the generator is mainly composed of five deconvolution layers, in which the input is a 100-dimensional log vector, and the output is a matrix with both length and width of 64 and 3 channels.



The discriminator network structure is basically the opposite of the generator, aims to judge the probability that the input feature matrix is the true sample, and is composed of 5 convolution layers and 1 reshaping layer.



The input feature matrix is a 3-channel matrix with length and width of 64. After 5 convolutional layers, the feature vector with length and width of 1 and channel number of 1 is output. After transformation, the output scalar is output in the range of 0–1; the closer the value is to 1, the higher the probability that the input feature vector is true. As with the generator, batch normalization is added after each convolution layer.



The convolution kernel size of CONV1, CONV2, CONV3, CONV4, and CONV5 is 4 × 4, and the step size is 2. Figure 3 shows the framework of a GAN.



For logging curves, amplitude and frequency can reflect the main differences between different curves. To capture the main differences between different curves based on their amplitudes and frequencies, we used the difference function   C (  f t  ,  f u  )  , defined as:


  C (  f t  ,  f u  ) =    f t  ×  f u     f t  +  f u       



(6)




where    f t    is the amplitude and    f u    is the frequency. The function combines the amplitude (   f t   ) and frequency (   f u   ) using a weighted average, where the product of the two values is divided by their sum. Both    f t    and    f u    represent the amplitude (for    f t   ) and the frequency (for    f u   ) of individual samples, spanning the entire data distribution of the dataset. These are not confined to specific intervals. The term Ec in Equation (6) calculates the weighted average difference between the amplitude and frequency of the generated and real samples, capturing the dissimilarity between them. In the provided formulation, the difference is normalized by the sum of the two values to ensure the result stays within a meaningful range. This formulation emphasizes both amplitude and frequency information in determining the dissimilarity between curves.



In the improved GAN algorithm, the similarity between the generated log and the real log is defined as the objective function of the network, and the formula is:


   R   loss      =  |   R   real      −  R   generate       |   



(7)




where    R   real        represents the actual log curve and    R   generate        represents the generated log curve.




2.3. Layering Recognition


In order to effectively extract geological information and identify different geological layers or reservoirs from well log curve data, a robust algorithm is required [53,54,55,56]. In this study, the deep belief forest (DBF) algorithm, which combines the concepts from deep belief networks (DBNs) and random forests, is employed for well log curve stratification, as illustrated in Figure 4. The DBF algorithm offers several advantages over traditional random forest algorithms [53,54,55,56]. It utilizes a cascade forest structure, consisting of multiple layers of decision trees, to extract higher-level geological features and enhance the model’s expressive capability [53,54,55,56]. Additionally, the DBF algorithm incorporates DBNs to extract shale-related features, further improving its performance [53,54,55,56]. Moreover, the hierarchical structure of random forests provides interpretability to the classified well log curve data, enabling users to better understand the obtained stratification results [53,54,55,56].



However, all the data in the deep forest must pass through each step of the cascade forest, making the time cost increase linearly with the increase of the number of cascade forest layers [57,58,59,60,61]. Moreover, each original sample will generate hundreds of new samples after multi-particle scanning, greatly increasing the training set and computing cost [62,63,64]. To tackle the issue of time and memory overhead caused by all samples passing through each layer of the cascaded forest, this paper proposes a confidence screening mechanism in the cascaded forest structure, where each layer of the cascaded forest is able to automatically determine its own confidence threshold such that this mechanism improves the computational efficiency of the deep forest model while ensuring performance [62,63,64].



Figure 5 shows a deep confidence level forest [62,63,64]. The confidence screening mechanism aims to divide the instances of each level of the cascade into two subsets, those that are easy to predict and those that are more difficult to predict [62,63,64]. Specifically, if an instance is classified as belonging to the easily predictable subset, it will be directly outputted and used as the final result. Conversely, if an instance is determined to be difficult to predict, it needs to be passed to the next level of the cascaded forest [62,63,64].



At layer  t  of the cascade forest, its predicted confidence threshold    n t    is determined according to the cross-validation error rate    ϵ t    of layer t. The hyperparameter   α < 1   represents the cross-verification error rate that the training sample with high confidence needs to achieve  α .    ϵ t    sorts the training sample at the same level in descending order according to the prediction confidence, where    c i    represents the prediction confidence of    x i    of the m samples. The confidence threshold is set as follows:


   n t  = m    {   c k  ∣ L  (   x 1  , ⋯ ,  x k   )  < α  ∈ t  , k ∈  [  1 , m  ]   }   



(8)







In the equation   L  (   x 1  , ⋯ ,  x k   )  =  1 k    ∑   i = 1  k  1  [   g t   (   x i   )  ≠  y i   ]   , the term 1[gt(xi) ≤ α] is an indicator function. Specifically, it takes the value of 1 if the condition gt(xi) ≤ α holds true and 0 otherwise. This function serves to capture the instances where the prediction confidence exceeds the threshold α. The equation aims to compute the cross-verification error rate for the k samples with the highest prediction confidence. Considering only the samples with the highest confidence ensures that the selected training samples have a low cross-verification error rate, indicating more reliable predictions. When the output class vector of the last layer of forest is obtained, each forest class vector of the last layer of forest is averaged, and then the category corresponding to the maximum value is taken as the prediction category of the model, namely the classification category    Y t    of the stratum in this paper. Moreover, m is the sample size,   α  ϵ t    represents the cross-validation error rate,    c k    denotes the prediction confidence of the kth sample.





3. Result Calibration


The automatic calibration of single point results through neighborhood information can significantly reduce the fluctuation of formation division between different logs in different regions; this can lead to the single detection results in the same region having a more similar formation division, which is more in line with the accuracy of actual formation division. In addition, since there are some fuzzy formation boundaries in single well-logs, the use of formation division results can make the fuzzy boundaries of a single well clearer and its performance more stable [50,51].



In this paper, the calibration threshold function of the single point result is constructed and the point information is corrected by considering the neighborhood stratification result. The correction function is constructed as follows:


   Y  f i n a   = r a n d  (    5  Y t  +  Y 1  +  Y 2  +  Y 3  +  Y 4  +  Y 5  +  Y 6  +  Y 7  +  Y 8    13    )   



(9)




where    Y  f i n a     is the final classification result,   r a n d  (   )    is the integral function, Yt represents the classification result obtained directly from the stratigraphic division results predicted by the DRAG method (using the PCA algorithm, the well log curve data dimensions are reduced. The GAN network then generates synthetic samples for balanced distribution. Finally, the deep belief forest algorithm refines well log stratification using a calibration threshold function; for details, see Section 2), before considering any neighborhood stratification influences. Essentially, Yt is the primary output classification of a specific depth point in the well based on its intrinsic logging properties. This classification acts as the foundation, which is then refined by the correction function using neighborhood stratification results. In terms of its computation, Yt is determined through the deep belief forest-based analysis, where well log characteristics at each depth point in layer 4 are input into the model, and the model then provides a classification based on the learned patterns and relationships in the data.    Y 1  ,    Y 2  ,    Y 3  ,    Y 4  ,    Y 5  ,    Y 6  ,    Y 7  ,    Y 8    are the stratigraphic classification results of the surrounding wells, respectively. Moreover, the function rand() is utilized to generate random numbers. Within GANs, the generator model (G) initiates its training with a random input, often referred to as a noise vector. This noise vector, after being processed by the generator, is transformed into an output resembling the distribution of the real data. The inherent randomness ensures that the generator produces varied results each time, enhancing the diversity of generated samples. Had we consistently employed the same input, the generator might repetitively produce identical or highly similar images. This randomness is pivotal for the generator’s capability to explore and learn diverse data distributions.




4. Result and Discussion


4.1. Targeted Stratigraphic Formations and Sub-Divisions


The objective of this study was to conduct well log analysis and identify shale boundaries in the southern Sichuan area [40,46]. This region poses particular complexities in terms of stratigraphic division due to the subtle variations across different areas and the subtle changes in well log responses in shale formations. The primary focus of this study is on the Longmaxi Formation, specifically the sub-section of Long1, which shows substantial exploration potential [43].



The Longmaxi Formation can be broadly divided into two sections, Long1 and Long2. The Long1 section is further divided into two sub-sections, Long1-1 and Long1-2. The Long1-1 sub-section, which is the target layer, is sub-divided further into four layers: L11, L12, L13, and L14 [1,14,25]. Moreover, the Wufeng Formation is also a crucial target for shale gas exploration. It is necessary to automatically identify L11, L12, L13, L14, and W1 (Wufeng Formation) by using deep belief forest analysis [30,31,32].




4.2. Experimental Data


For this study, well log data from 168 shale gas wells drilled in the southern Sichuan Basin were utilized. These data were specifically extracted from the Wufeng–Longmaxi Formation (Long1-1 sub-section, [33]). Through PCA analysis, the top four logging curves with the highest principal component weights have been selected for stratigraphic unit division (see the Section 2.1 for details). The well log curves employed for training include gamma ray (GR), acoustic transit time (AC), bulk density (DEN), and deep resistivity (Rt). Each of these sets of well log data comes with the corresponding layer labels, which allow for precise identification of the stratigraphic layers [35]. In the process of implementing the deep belief forest-based analysis, the goal is to overcome the challenges of shale formation division in the Southern Sichuan Basin [42,43,44]. Furthermore, the ability to accurately identify the boundaries within the sub-sections of Long1-1 could facilitate more effective and efficient exploration of shale gas resources in this region [35].




4.3. Experimental Results and Analysis


Figure 6a displays the stratigraphic curve annotated manually by experts. Figure 6b presents the stratigraphic curve results yielded by the method proposed in this study. Figure 6c depicts the results of well log curve stratification carried out using the gated recurrent unit algorithm, while Figure 6d shows the outcomes of well log curve stratification performed via the backpropagation neural network (BPNN) algorithm. The comparative analysis of these results emphasizes that the method introduced in this study possesses superior classification accuracy and performance.



Compared with the GRU and BPNN algorithms, the automatically identified results based on deep belief forest are the most similar to the results of artificial stratigraphic division, with an error of ±1 m. Compared with artificial results, the mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) of both algorithms are the smallest. The results of automatic stratigraphic division based on the GRU algorithm generally differ from those of manual stratigraphic division by less than 5 m. The difference between the results of automatic stratigraphic division based on the BPNN algorithm and the results of artificial stratigraphic division is the greatest (Table 1 and Table 2). Compared with the results of artificial stratigraphic division, the errors of the two are generally concentrated within 10 m, and the error of stratigraphic division results is relatively large.



Both GRU and BPNN have been widely regarded as effective tools for sequence modeling and stratigraphic division tasks, respectively. The GRU’s architecture, with its capacity to maintain memory over extended sequences, has demonstrated its efficacy in capturing intricate dependencies within data [28,29,30,31,32]. On the other hand, the BPNN, being a seminal artificial neural network approach, has demonstrated adaptability and precision across myriad applications, even though it can encounter challenges such as local minima or slow convergence in certain contexts [16,24,26,27,28,29,30,31,32]. Given their prominence and applicability in related domains, juxtaposing the performance of GRU and BPNN against DRAG provides a comprehensive and rigorous assessment [28,29,30,31,32]. This comparative analysis aims to discern the inherent strengths and potential limitations of our proposed method, while anchoring it to established benchmarks in the field [28,29,30,31,32]. Compared to the GRU and BPNN algorithms, the hierarchical results based on the deep belief forest are the most similar to the result of artificial stratigraphic division. The deviation from manual interpretations is within ±1 m. In comparison to the results of artificial stratigraphic division, the deep belief forest method yields the lowest values for MAE, RMSE and R2. On the other hand, the results of automatic stratigraphic division based on the GRU algorithm generally differ by less than 5 m from manual interpretations. The automatic stratigraphic identification using the BPNN algorithm exhibits the largest discrepancy compared to manual interpretations, with the deviations typically concentrated within 10 m, indicating significant errors in artificial stratigraphic division results. The proposed method in this study introduces a confidence-based filtering mechanism within the cascade forest structure, partitioning instances into subsets of easily predictable and difficult-to-predict instances. As a result, it effectively reduces time and memory overhead, enhances classification accuracy, and exhibits advantages in terms of resource efficiency, hierarchical processing, and high-dimensional data handling (Table 1 and Table 2).



The proposed method, DRAG, demonstrates high accuracy, attributed not only to appropriate dimensionality reduction and sample generation operations, but also to the incorporation of a confidence-based filtering mechanism in the deep belief forest algorithm. Confidence filtering involves dividing instances at each cascade layer into two subsets, one comprising easily predictable instances and the other comprising difficult-to-predict instances. If an instance is deemed easy to predict, it is directly output as the final result; only when an instance is difficult to predict does it get passed to the next layer. This hierarchical approach greatly enhances the accuracy of classification. Additionally, utilizing neighborhood information for single-point result calibration further improves the classification performance.



As illustrated in Figure 6, the well log curve predictions for Well A have been adjusted using the stratigraphic layering outcomes from Wells B, C, and D (Figure 6, Table 3). Figure 7a exhibits the well log curve derived from auto division for stratigraphic units by single well (Figure 7a), whereas Figure 7b presents the well log curve for Well A, corrected by employing stratigraphic data from Well B (Figure 7b). Figure 7c depicts the well log curve for Well A, modified with stratigraphic information from both Wells B and C (Figure 7c). Figure 7d represents the well log curve for Well A, refined using stratigraphic insights derived from Wells B, C, and D (Figure 7d). When using the artificial stratigraphic division from Well B to correct the automatic stratigraphic division of Well A, the deviation between the automatic and manual interpretations is controlled within 5 m. When both Well B and Well C are used to correct the stratigraphic division of Well A, the automatic interpretations of Well A align more closely with the manual interpretations, and the boundary errors between the two stratigraphic divisions are reduced to within 4 m. However, when the artificial stratigraphic division from Well B, Well C, and Well D, which are shale gas wells located within 100 km of Well A, are simultaneously used to correct the automatic stratigraphic division of Well A, it is found that the automatic interpretations become more accurate. The deviation between the automatic and manual stratigraphic division results is reduced to within 1 m. The utilization of multi-well analysis and shale characterization for well-logging curve analysis enables auxiliary support for the classification results of the target logging.



Evaluation of these well log curves reveals a progressive approximation of the adjusted outcomes to the authentically labeled well log curves, achieved by implementing stratigraphic corrections on Well A using data from its neighboring wells. This progressive alignment underscores the efficacy of the correction methodology adopted in this study.



The three subfigures below represent the manual stratification results for Wells B, C, and D, respectively. Hence, the proposed methodology in this study further substantiates the necessity of well log curve rectification as a crucial step. This precise technique contributes to a significant enhancement in the accuracy of stratification efforts.



The proposed research presents a distinctive methodology that manifests considerable advantages in managing high-dimensional well log data and conducting stratigraphic analysis. Central to the approach is the integration of PCA, an indispensable tool for data dimension reduction. This technique judiciously eliminates superfluous dimensions while conscientiously preserving critical data attributes. Through its adeptness in identifying robust correlations amongst a multitude of variables, the methodology excels in retaining the essential characteristics of the data. This process safeguards the preservation of pivotal information, even amidst a substantial reduction in overall data size.



The experimental findings offer compelling evidence for the precision and efficacy inherent in the proposed method. A testament to the robustness and high predictive accuracy of the technique is its ability to iteratively refine approximations to achieve closer alignment with the actual labelled well log curves. When juxtaposed with established algorithms such as the GRU and the BPNN, the proposed methodology demonstrates superior classification performance, further bolstering its merit.





5. Conclusions


The research introduces a cutting-edge method, DRAG, designed for well log analysis and automated stratigraphic layer identification within the Wufeng–Longmaxi shale of the Southern Sichuan Basin. By harnessing the PCA algorithm, the dimensions of the original well log curve data are reduced. A subsequent application of a GAN network facilitates the generation of synthetic samples, ensuring a balanced distribution across categories. The deep belief forest algorithm then undertakes well log curve stratification, further refined through a calibration threshold function and by incorporating stratigraphic schemes from neighboring wells. Notably, the deviation between automated and manual stratigraphic divisions is minimized to only 1 m, indicating a precision surpassing methods such as GRU, BPNN, and random forest.



Three pivotal facets underscore DRAG’s superiority in stratification precision: (1) the confidence-based filtering mechanism within the deep belief forest algorithm; (2) the integration of PCA, a critical tool for dimensionality reduction; and (3) the importance of well-to-well correlation rectification.



In the deep belief forest algorithm, the confidence-based filtering mechanism classifies instances at each cascade layer into two categories, easily predictable and challenging to discern. While easily predictable instances are immediately finalized, the more complex ones proceed to subsequent layers, enhancing classification accuracy. This accuracy is further refined by integrating neighborhood data to calibrate individual point results.



The DRAG approach is especially adept at managing high-dimensional well log data, chiefly owing to its integration of PCA, which efficiently trims redundant dimensions while preserving essential data attributes. By identifying potent correlations among numerous variables, the method ensures the retention of critical data features, even with significant data downsizing. Emphasizing well log curve rectification, the technique benefits from considering spatial information from surrounding wells, culminating in enhanced stratification accuracy.








Supplementary Materials


The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/pr11102998/s1, Table S1. Stratigraphic division data and original well-logging data of a well; Table S2. Process parameter Fic calculated from 10 types of well-logging data of Well A during PCA computation; Table S3. Process parameter F*ic calculated from 10 types of well-logging data of Well A during PCA computation; Table S4. Process parameter Pic calculated from 10 types of well-logging data of Well A during PCA computation; Table S5. Process parameter Ec calculated from 10 types of well-logging data of Well A during PCA computation; Table S6. Process parameter Wc calculated from 10 types of well-logging data of Well A during PCA computation; Table S7. Process parameter F’ calculated from 10 types of well-logging data of Well A during PCA computation.





Author Contributions


Conceptualization, T.Z., Q.Z. (Qingzhong Zhu) and S.Z.; Methodology, T.Z., Q.Z. (Qingzhong Zhu) and S.Z.; Software, Q.Z. (Qun Zhao), S.Z. and C.Z.; Validation, Z.S.; Formal analysis, Q.Z. (Qingzhong Zhu), H.Z., Q.Z. (Qun Zhao), C.Z. and S.W.; Investigation, Q.Z. (Qingzhong Zhu); Resources, Q.Z. (Qun Zhao) and C.Z.; Data curation, H.Z.; Writing—original draft, T.Z.; Writing—review & editing, T.Z., Q.Z. (Qun Zhao), Z.S. and S.W.; Visualization, T.Z., Q.Z. (Qingzhong Zhu), H.Z., Z.S., C.Z. and S.W.; Supervision, H.Z.; Project administration, Z.S. and S.Z. All authors have read and agreed to the published version of the manuscript.




Funding


This research received no external funding.




Data Availability Statement


Data is unavailable due to privacy or ethical restrictions.




Conflicts of Interest


The authors declare no conflict of interest.




Nomenclature




	DRAG
	a novel deep belief forest-based automatic layering recognition method for logging curves



	DBF
	Deep belief forest



	PCA
	Principal component analysis



	GAN
	Generative adversarial network



	FCNN
	Fully convolutional neural network



	RNN
	Recurrent neural network



	LSTM
	Long short-term memory



	C-LSTM
	Convolutional long short-term memory



	GRU
	Gated recurrent unit neural networks



	BPNN
	Backpropagation neural network



	    F  ic  *    
	The normalized score of the c principal component of the i sample



	    F  ic     
	The score of the c principal component of sample i



	    F  c  (  max  )      
	The maximum score of the c principal component



	    F  c  (   min   )      
	The minimum score of the c principal component



	    P  ic     
	The proportion of the c principal component in sample i



	    E c    
	The information entropy of the c principal component



	    w c    
	The weight of the c principal component



	    E f    
	The weight of the f principal component



	   F ′   
	The comprehensive score of principal components based on information entropy



	    f t    
	The amplitude



	    f u    
	The frequency



	    R   real        
	The actual log curve



	    R   generate        
	The generated log curve



	    n t    
	Predicted confidence threshold of layer t



	    ϵ t    
	The cross-validation error rate of layer t



	α
	Hyperparameter for indicating the cross-verification error rate



	    c i      
	The prediction confidence of    x i    of the sample



	    Y t    
	The classification category of the stratum



	    Y  f i n a     
	The final classification result



	Yn
	The stratigraphic classification result of the surrounding well



	GR
	Gamma ray



	AC
	Acoustic transit time



	DEN
	Bulk density



	Rt
	Deep resistivity



	MAE
	Mean absolute error



	RMSE
	Root mean square error



	R2
	Coefficient of determination
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Figure 1. A framework illustration of DRAG. After the application of the PCA algorithm, the well log data undergo a dimensionality reduction, leading to the extracted principal components. These components, representing the main features of the original well log data, are then used in two distinct pathways. The first pathway feeds into the generative adversarial network (GAN), where it provides the basis for generating synthetic samples. The second pathway channels the reduced data directly into the deep belief forest for further stratigraphic analysis. Both routes are crucial for the comprehensive stratigraphic division process, with the GAN ensuring a balanced data distribution and the deep belief forest refining stratigraphic categorization. This dual-path strategy optimizes the use of reduced data, ensuring a more precise and reliable stratigraphic division. 
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Figure 2. (a) Weights (wc) of principal components during PCA analysis of Well A and (b) Composite scores (F’) for each depth interval of Well A. PC1: Gamma ray (GR), PC2: Acoustic transit time (AC), PC3: Deep resistivity (Rt), PC4: Potassium–thorium–hydrogen (KTH), PC5: Compensated neutron log (CNL), PC6: Bulk density (DEN), PC7: Resistivity of flushed zone (RXO), PC8: Caliper log (CAL), PC9: Thorium–hydrogen (TH), PC10: Uranium (URAN). 
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Figure 3. The framework of a GAN for the deep belief forest-based automatic layering recognition method. 
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Figure 4. Schematic diagram of the deep belief forest used in this study. 
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Figure 5. Deep confidence level forest used for this study. 
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Figure 6. Comparison of automatic stratigraphic unit division results based on manual division, GRAG, GRU, and BPNN methods. 
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Figure 7. Comparison of corrections applied to stratigraphic division results from well log. (a) well A geological boundary identified by experts, (b) well A geological boundary identified by well B correlation after deep belief forest analysis, (c) well A geological boundary identified by well B and well c correlations after deep belief forest analysis, (d) well A geological boundary identified by well B, well C and well D correlations after deep belief forest analysis, (e) well locations of well A, well B, well C and well D, (f) geological boundary identification of well B, (g) geological boundary identification of well C, (h) geological boundary identification of well D. 
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Table 1. Results of different methods for identifying automatic shale boundary.
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Well

	
Layer

	
Artificial Geological Boundary Identified Results

	
Proposed Method

	
GRU

	
BPNN

	
Random Forest




	
Top Depth (m)

	
Bottom Depth (m)

	
Top Depth (m)

	
Bottom Depth (m)

	
Top Depth (m)

	
Bottom Depth (m)

	
Top Depth (m)

	
Bottom Depth (m)

	
Top Depth (m)

	
Bottom Depth (m)






	
Well A

	
L14

	
1273.471

	
1302.5

	
1274.058

	
1302.922

	
1273.956

	
1303.367

	
1279.607

	
1303.051

	
1274.081

	
1306.388




	
Well A

	
L13

	
1302.5

	
1311.652

	
1302.922

	
1311.677

	
1303.367

	
1312.749

	
1303.051

	
1305.885

	
1306.388

	
1313.845




	
Well A

	
L12

	
1311.652

	
1318.332

	
1311.677

	
1318.997

	
1312.749

	
1321.884

	
1305.885

	
1320.249

	
1313.845

	
1322.706




	
Well A

	
L11

	
1318.332

	
1320.368

	
1318.997

	
1320.597

	
1321.884

	
1322.138

	
1320.249

	
1322.236

	
1322.706

	
1326.11




	
Well A

	
W1

	
1320.368

	
1323

	
1320.597

	
1322.555

	
1322.138

	
1328.728

	
1322.236

	
1325.984

	
1326.11

	
1327.87




	
Well B

	
L14

	
2290.708

	
2321.879

	
2291.004

	
2322.636

	
2290.476

	
2322.676

	
2293.19

	
2325.156

	
2299.947

	
2316.072




	
Well B

	
L13

	
2321.879

	
2339.537

	
2322.636

	
2339.493

	
2322.676

	
2341.61

	
2325.156

	
2336.799

	
2316.072

	
2345.462




	
Well B

	
L12

	
2339.537

	
2345.506

	
2339.493

	
2345.201

	
2341.61

	
2343.233

	
2336.799

	
2347.478

	
2345.462

	
2346.248




	
Well B

	
L11

	
2345.506

	
2348.477

	
2345.201

	
2348.577

	
2343.233

	
2350.572

	
2347.478

	
2344.549

	
2346.248

	
2343.577




	
Well B

	
W1

	
2348.477

	
2357

	
2348.577

	
2356.591

	
2350.572

	
2354.883

	
2344.549

	
2361.742

	
2343.577

	
2357.78




	
Well C

	
L14

	
2906.318

	
2940.176

	
2906.81

	
2940.542

	
2908.149

	
2941.566

	
2908.784

	
2944.714

	
2907.024

	
2936.386




	
Well C

	
L13

	
2940.176

	
2954.237

	
2940.542

	
2953.414

	
2941.566

	
2952.814

	
2944.714

	
2951.976

	
2936.386

	
2957.748




	
Well C

	
L12

	
2954.237

	
2958.511

	
2953.414

	
2958.871

	
2952.814

	
2958.486

	
2951.976

	
2959.955

	
2957.748

	
2960.499




	
Well C

	
L11

	
2958.511

	
2959.96

	
2958.871

	
2959.993

	
2958.486

	
2960.405

	
2959.955

	
2964.13

	
2960.499

	
2962.396




	
Well C

	
W1

	
2959.96

	
2962.808

	
2959.993

	
2961.869

	
2960.405

	
2964.599

	
2964.13

	
2967.738

	
2962.396

	
2965.122




	
Well D

	
L14

	
2038.45

	
2073.933

	
2038.762

	
2072.952

	
2037.977

	
2069.651

	
2029.618

	
2071.743

	
2028.379

	
2074.321




	
Well D

	
L13

	
2073.933

	
2092.152

	
2072.952

	
2092.688

	
2069.651

	
2090.59

	
2071.743

	
2094.587

	
2074.321

	
2095.42




	
Well D

	
L12

	
2092.152

	
2101.53

	
2092.688

	
2100.649

	
2090.59

	
2100.941

	
2094.587

	
2102.906

	
2095.42

	
2102.095




	
Well D

	
L11

	
2101.53

	
2107.016

	
2100.649

	
2106.53

	
2100.941

	
2103.031

	
2102.906

	
2110.992

	
2102.095

	
2111.828




	
Well D

	
W1

	
2107.016

	
2111

	
2106.53

	
2111.796

	
2103.031

	
2113.375

	
2110.992

	
2109.787

	
2111.828

	
2108.992











 





Table 2. Comparison between the proposed algorithms and the comparison algorithm.






Table 2. Comparison between the proposed algorithms and the comparison algorithm.





	Evaluation Index
	Proposed Method
	GRU
	BPNN
	Random Forest





	MAE
	6.221
	8.876
	10.241
	10.221



	RMSE
	8.944
	11.345
	14.214
	14.341



	R2
	0.932
	0.911
	0.834
	0.831







MAE: mean absolute error, RMSE: root mean square error, R2: coefficient of determination.













 





Table 3. Automatic stratigraphic division results of well A modified by artificial stratigraphic division results of the adjacent shale gas drilling well.






Table 3. Automatic stratigraphic division results of well A modified by artificial stratigraphic division result