Toxicity Assessment of a Biolubricant Exposed to Eisenia fetida
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Acute Toxicity Analysis
2.2.1. Filter Paper Test
2.2.2. Artificial Substrate Test
2.3. Histology
2.4. Statistical Analysis
3. Results
3.1. Filter Paper Test
3.2. Artificial Substrate
3.3. Statistic Analysis
3.4. Histological Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez, D.S.; Baizabal, F.G.; Velázquez, A.L.; Franco, R.A.; Sánchez, E.J.A.; González, L.G.; Torres, J.H. El ciclo de evolución de los lubricantes. ContactoS 2015, 97, 62–68. [Google Scholar]
- Nowak, P.; Kucharska, K.; Kaminski, M. Ecological and health effects of lubricant oils emitted into the environment. Int. J. Environ. Res. Public Health 2019, 16, 3002. [Google Scholar] [CrossRef] [PubMed]
- ACR Latinoamérica. Available online: https://www.acrlatinoamerica.com/ (accessed on 3 May 2022).
- Villafuerte-Araoz, J.C. Selection of Biolubricants According to the Function of Mechanical Components. Ph.D. Thesis, Universidad Continental, Arequipa, Peru, 2019. [Google Scholar]
- Hernández-Cruz, M.C.; Meza-Gordillo, R.; Torrestiana-Sánchez, B.; Rosales-Quintero, A.; Ventura-Canseco, L.M.C.; Castañón-González, J.H. Chicken fat and biodiesel viscosity modification with additives for the formulation of biolubricants. Fuel 2017, 198, 42–48. [Google Scholar] [CrossRef]
- Álvarez-Lomeli, N.I. Design and Production of Biolubricants in Esters from Pentaerythritol. Master’s Thesis, Universidad Autónoma de Baja California, Baja California, Mexico, 2018. [Google Scholar]
- Hernández-Cruz, M.C.; Meza-Gordillo, R.; Abud-Archila, M.; Villalobos-Maldonado, J.J.; Lagunas-Rivera, S.; Domínguez, Z. Synthesis of trimethylolpropane ester based on chicken fat as biolubricants. Rev. Mex. Ing. Química 2018, 17, 1011–1019. [Google Scholar] [CrossRef]
- SIAP. Available online: http://infosiap.siap.gob.mx/gobmx/datosAbiertos.php (accessed on 5 December 2022).
- ISO 15380:2016; Lubricants, Industrial Oils and Related Products (Class L). ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/obp/ui/#iso:std:iso:15380:ed-3:v1:en (accessed on 16 October 2019).
- Armas, J.V.G.; Maravi, J.L.C. Biodiesel from chicken fat and its mechanical and environmental effects with an internal combustion engine. An. R. Soc. Esp. 2019, 80, 580–593. [Google Scholar]
- Shafiq, F.; Mumtaz, M.W.; Mukhtar, H.; Touqeer, T.; Raza, S.A.; Rashid, U.; Nehdi, I.A.; Choong, T.S.Y. Response Surface Methodology Approach for Optimized Biodiesel Production from Waste Chicken Fat Oil. Catalysts 2020, 10, 633. [Google Scholar] [CrossRef]
- Toala-Briones, G.; Vivas-Bautista, P.; García-Muentes, S. Physicochemical characterization of the epoxidation of biodiesel from waste chicken fat. Ing. Energ. 2022, 43, 31–39. [Google Scholar]
- Hernández-Cruz, M.C. Biotechnological Development of Biolubricants from Chicken Fat. Ph.D. Thesis, Tecnológico Nacional de México, Tuxtla Gutiérrez, Chiapas, Mexico, 2020. [Google Scholar]
- Organization for Economic Cooperation and Development (OECD). Earthworm Acute Toxicity Test; Guide to Chemical Test No. 207; OECD: Paris, France, 1984. [Google Scholar]
- Liu, W.; Zhu, L.S.; Wang, J.; Wang, J.H.; Xie, H.; Song, Y. Assessment of the genotoxicity of endosulfan in earthworm and white clover plants using the comet assay. Arch. Environ. Contam. Toxicol. 2009, 56, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Villegas, P.T.; Meza-Gordillo, R.; Gutiérrez-Miceli, F.A.; Ruiz-Valdiviezo, V.M.; Villalobos-Maldonado, J.J.; Montes-Molina, J.A.; Fernández-Toledo, A.A.J. Determination of LC50 and EC50 of endosulfan lactone and diazinon in earthworms (Eisenia foetida). Agroproductividad 2018, 11, 105–111. [Google Scholar]
- Reddy, N.C.; Rao, J.V. Biological response of earthworm, Eisenia foetida (Savigny) to an organophosphorus pesticide, profenofos. Ecotoxicol. Environ. Saf. 2008, 71, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Montalvo-Arenas, C.E. Histological Technique. Available online: https://recursoseducativos.unam.mx/ (accessed on 10 August 2019).
- Wang, Y.Y.; Wang, H.H.; Chuang, T.L.; Chen, B.H.; Lee, D.J. Biodiesel produced from catalyzed transesterification of triglycerides using ion-exchanged zeolite Beta. Energy Procedia 2014, 61, 933–936. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Q.; Huang, D.; Zheng, X.; Shi, Y. Survival, growth, detoxifying and antioxidative responses of earthworms (Eisenia fetida) exposed to soils with industrial DDT contamination. Pestic. Biochem. Physiol. 2016, 128, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, W.; Chen, L.; Liang, J.; Lin, K. Biological effects of decabromodiphenyl ether and Pb on earthworm (Eisenia fetida) in a soil system. Environ. Pollut. 2015, 207, 220–225. [Google Scholar] [CrossRef]
- Gupta, R.D.; Chakravorty, P.P.; Kaviraj, A. Susceptibility of epigeic earthworm Eisenia fetida to agricultural application of six insecticides. Chemosphere 2011, 84, 724–726. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, S.; Chen, L.; Wu, C.; Yu, R.; Wang, Q.; Zhao, X. Toxicity assessment of 45 pesticides to the epigeic earthworm Eisenia fetida. Chemosphere 2012, 88, 484–491. [Google Scholar] [CrossRef]
- García-Velasco, N.; Gandariasbeitia, M.; Irizar, A.; Soto, M. Uptake route and resulting toxicity of silver nanoparticles in Eisenia fetida earthworm exposed through Standard OECD Test. Ecotoxicology 2016, 25, 1543–1555. [Google Scholar] [CrossRef] [PubMed]
- Rico, A.; Sabater, C.; Castillo, M.A. Lethal and subletal effects of five pesticides used in rice farming on the earthworm Eisenia fetida. Ecotoxicol. Environ. Saf. 2016, 127, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Saxena, P.N.; Gupta, S.K.; Murthy, R.C. Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphire posthuman and Eisenia fetida—A possible mechanism. Ecotoxicol. Environ. Saf. 2014, 100, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Vásquez-Romero, R.; Ballesteros-Chavarro, H. Vermiculture Manual; Editorial Produmedios: Bogotá, Colombia, 2008; pp. 17–29. [Google Scholar]
- Barrios-Ziolo, L.F.; Robayo-Gómez, J.; Prieto-Cadavid, S.; Cardona-Gallo, S.A. Biorremediación de suelos contaminados con aceites usados de motor. Rev. Cintex 2015, 20, 69–96. [Google Scholar]
- Franco-Hernández, M.O.; Rodríguez-Quiroz, G. Uptake of heavy metals by the earthworm Eisenia fetida exposed to mine tailings at Mocorio, Sinaloa, México. In Proceedings of the 5 Congreso Interamericano de Residuos Sólidos, Lima, Peru, 22–24 May 2013. [Google Scholar]
- Gómez-Hernández, A.P. Evaluation of the Toxicity of Soils by Means of a Bioassay with the Earthworm Eisenia fetida. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2014. [Google Scholar]
Properties | Value * | Mineral Lubricant ISO VG 10 ** |
---|---|---|
Viscosity 40 °C (cSt) | 10.81 | 10 ± 2 |
Viscosity 100 °C (cSt) | 2.8 | 2.62 ± 2 |
Oxidative stability (h, 110 °C) | 0.25 | ND |
Biodegradability (%, 28 days) | 100 | 20 |
Concentration (mg L−1) | Starting Weight (g) | Final Weight (g) |
---|---|---|
50 | 0.29 ± 0.01 a | 0.25 ± 0.02 b |
100 | 0.22 ± 0.02 a | 0.15 ± 0.03 b |
200 | 0.19 ± 0.01 a | 0.10 ± 0.04 b |
400 | 0.26 ± 0.03 a | 0.19 ± 0.02 b |
600 | 0.24 ± 0.01 a | 0.17 ± 0.02 b |
800 | 0.27 ± 0.01 a | 0.20 ± 0.03 b |
1000 | 0.19 ± 0.03 a | 0.19 ± 0.04 b |
Control | 0.24 ± 0.02 a | 0.24 ± 0.01 a |
Concentration (mg mL−1) | Mortality (%) | Survivor (%) |
---|---|---|
1000 | 20 | 80 |
800 | 100 | 0 |
600 | 100 | 0 |
400 | 100 | 0 |
200 | 100 | 0 |
100 | 30 | 70 |
50 | 100 | 0 |
0 | 0 | 100 |
Concentration (mg kg−1) | Mortality (%) | Survivor (%) |
---|---|---|
50 | 100 | 0 |
25 | 15 | 85 |
5 | 0 | 100 |
2.5 | 0 | 100 |
0.5 | 0 | 100 |
0 | 0 | 100 |
Filter Paper at 48 h | Artificial Substrate at 14 d |
---|---|
878.675 mg mL−1 or 0.0268 mg cm−2 | 35.235 mg kg−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Villegas, P.T.; Hernández-Cruz, M.d.C.; Lam-Gutiérrez, A.; Rodríguez-Hernández, L.; Valdespino-León, M.; Zenteno-Rojas, A.; Meza-Gordillo, R.; Cruz-Salomón, A.; Serrano-Ramírez, R.d.P.; Cruz-Rodríguez, R.I. Toxicity Assessment of a Biolubricant Exposed to Eisenia fetida. Processes 2023, 11, 3020. https://doi.org/10.3390/pr11103020
Vázquez-Villegas PT, Hernández-Cruz MdC, Lam-Gutiérrez A, Rodríguez-Hernández L, Valdespino-León M, Zenteno-Rojas A, Meza-Gordillo R, Cruz-Salomón A, Serrano-Ramírez RdP, Cruz-Rodríguez RI. Toxicity Assessment of a Biolubricant Exposed to Eisenia fetida. Processes. 2023; 11(10):3020. https://doi.org/10.3390/pr11103020
Chicago/Turabian StyleVázquez-Villegas, Paola T., Maritza del C. Hernández-Cruz, Anayancy Lam-Gutiérrez, Ludwi Rodríguez-Hernández, Mariana Valdespino-León, Adalberto Zenteno-Rojas, Rocío Meza-Gordillo, Abumalé Cruz-Salomón, Rocío del P. Serrano-Ramírez, and Rosa I. Cruz-Rodríguez. 2023. "Toxicity Assessment of a Biolubricant Exposed to Eisenia fetida" Processes 11, no. 10: 3020. https://doi.org/10.3390/pr11103020
APA StyleVázquez-Villegas, P. T., Hernández-Cruz, M. d. C., Lam-Gutiérrez, A., Rodríguez-Hernández, L., Valdespino-León, M., Zenteno-Rojas, A., Meza-Gordillo, R., Cruz-Salomón, A., Serrano-Ramírez, R. d. P., & Cruz-Rodríguez, R. I. (2023). Toxicity Assessment of a Biolubricant Exposed to Eisenia fetida. Processes, 11(10), 3020. https://doi.org/10.3390/pr11103020