The Effect of Reverse Sorption on an Extraction Kinetics Melanin Case
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mechanical Treatment
2.3. Studying the Extraction Kinetics
2.4. Mathematical Models
2.5. Structure and Morphology Analysis
3. Results and Discussion
3.1. Analysis of the Effect of Temperature on Extraction
3.2. Calculation of the Diffusion Coefficient Using the Baker–Lonsdale Model
3.3. Calculation of the Diffusion Coefficient Using the Akselrud’s Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, F. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 2010, 463, 1075–1078. [Google Scholar] [CrossRef] [PubMed]
- Wogelius, R.A.; Manning, P.L.; Barden, H.E. Trace metals as biomarkers for eumelanin pigment in the fossil record. Science 2011, 333, 1622–1626. [Google Scholar] [CrossRef] [PubMed]
- Glass, K.; Ito, S.; Wilby, P.R. Direct chemical evidence for undegraded eumelanin pigment from the jurassic period. Proc. Natl. Acad. Sci. USA 2012, 109, 10218–10223. [Google Scholar] [CrossRef] [PubMed]
- Schlessinger, D.I.; Anoruo, M.; Schlessinger, J. Biochemistry, Melanin. 1 May 2023. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Yang, X.; Tang, C.; Zhao, Q.; Jia, Y.; Qin, Y.; Zhang, J. Melanin: A promising source of functional food ingredient. J. Funct. Foods 2023, 105, 105574. [Google Scholar] [CrossRef]
- El-Naggar, N.E.; Saber, W.I.A. Natural Melanin: Current Trends, and Future Approaches, with Especial Reference to Microbial Source. Polymers 2022, 14, 1339. [Google Scholar] [CrossRef] [PubMed]
- Cavallini, C.; Vitiello, G.; Adinolfi, B.; Silvestri, B.; Armanetti, P.; Manini, P.; Pezzella, A.; d’Ischia, M.; Luciani, G.; Menichetti, L. Melanin and melanin-like hybrid materials in regenerative medicine. Nanomaterials 2020, 10, 1518. [Google Scholar] [CrossRef] [PubMed]
- Mostert, A.B. Melanin, the What, the Why and the How: An Introductory Review for Materials Scientists Interested in Flexible and Versatile Polymers. Polymers 2021, 13, 1670. [Google Scholar] [CrossRef] [PubMed]
- Prota, G. The chemistry of melanins and melanogenesis. In Fortschritte der Chemie Organischer Naturstoffe. Progress in the Chemistry of Organic Natural Products/Progrès Dans la Chimie des Substances Organiques Naturelles; Herz, W., Kirby, G.W., Moore, R.E., Steglich, W.T.C., Eds.; Springer: Vienna, Austria, 1995; pp. 93–148. [Google Scholar]
- Giteru, S.G.; Ramsey, D.H.; Hou, Y.; Cong, L.; Mohan, A.; Bekhit, A.E.D.A. Wool keratin as a novel alternative protein: A comprehensive review of extraction, purification, nutrition, safety, and food applications. Compr. Rev. Food Sci. Food Saf. 2023, 22, 643–687. [Google Scholar] [CrossRef] [PubMed]
- Raman, N.M.; Shah, P.H.; Mohan, M.; Ramasamy, S. Improved production of melanin from Aspergillus fumigatus AFGRD105 by optimization of media factors. AMB Express 2015, 5, 72. [Google Scholar] [CrossRef] [PubMed]
- Tran-Ly, A.N.; Reyes, C.; Schwarze, F.W.; Ribera, J. Microbial production of melanin and its various applications. World J. Microbiol. Biotechnol. 2020, 36, 170. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhang, X.; Sun, S.; Zhang, L.; Shan, S.; Zhu, H. Production of natural melanin by Auricularia auricula and study on its molecular structure. Food Chem. 2016, 190, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Sapmak, A.; Boyce, K.J.; Andrianopoulos, A.; Vanittanakom, N. The pbrB gene encodes a laccase required for DHN-melanin synthesis in conidia of Talaromyces (Penicillium) marneffei. PLoS ONE 2015, 10, e0122728. [Google Scholar] [CrossRef] [PubMed]
- Jan, B.; Parveen, R.; Zahiruddin, S.; Khan, M.U.; Mohapatra, S.; Ahmad, S. Nutritional constituents of mulberry and their potential applications in food and pharmaceuticals: A review. Saudi J. Biol. Sci. 2021, 28, 3909–3921. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, Y.; Tang, B. Physicochemical properties and biological activities of melanin extracted from sunflower testae. Food Sci. Technol. Res. 2018, 24, 1029–1038. [Google Scholar] [CrossRef]
- Lomovskiy, I.; Podgorbunskikh, E.; Lomovsky, O. Effect of ultra-fine grinding on the structure of plant raw materials and the kinetics of melanin extraction. Processes 2021, 9, 2236. [Google Scholar] [CrossRef]
- Montes-Avila, J.; Ojeda-Ayala, M.; López-Angulo, G.; Pío-León, J.F.; Díaz-Camacho, S.P.; Ochoa-Terán, A.; Delgado-Vargas, F. Physicochemical properties and biological activities of melanins from the black-edible fruits Vitex mollis and Randia echinocarpa. J. Food Meas. Charact. 2018, 12, 1972–1980. [Google Scholar] [CrossRef]
- Manivasagan, P.; Venkatesan, J.; Senthilkumar, K.; Sivakumar, K.; Kim, S.K. Isolation and characterization of biologically active melanin from Actinoalloteichus sp. MA-32. Int. J. Biol. Macromol. 2013, 58, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.L. Mathematical models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing: Cambridge, UK, 2015; pp. 63–86. [Google Scholar]
- Nedich, R.L. Mechanism of dissolution I: Mathematical interpretation of concentration gradients developed during dissolution of a solid. J. Pharm. Sci. 1972, 61, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.W.; Lonsdale, H.K. Controlled release: Mechanisms and rates. In Controlled Release of Biologically Active Agents; Taquary, A.C., Lacey, R.E., Eds.; Plenum: New York, NY, USA, 1974; pp. 15–71. [Google Scholar]
- Ritger, P.L. A simple equation for describing of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Akselrud, G.A.; Lysyansky, V.M. Ekstragirovaniye (Sistema Tvordoye Telo–Zhidkost’) [Extraction, a Solid-Liquid System]; Leningrad Press: Saint Petersburg, Russia, 1974; pp. 244–256. [Google Scholar]
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Krumbein, W.C.; Sloss, L.L. Stratigraphy and Sedimentation, 2nd ed.; W.H. Freeman and Company: San Francisco, CA, USA, 1963. [Google Scholar]
Weight of the Sample of Buckwheat Hulls for Melanin Extraction, g | Ultimate Equilibrium Concentration of Melanin in the Solution, µg/mL | Changes in Melanin Concentration in the Solution after the Equilibrium Was Attained, µg/mL | ||
---|---|---|---|---|
Temperature: 40 °C | Temperature: 50 °C | Temperature: 60 °C | ||
0.5 | 39 ± 1.95 | 1.7 ± 1.2 | 3.0 ± 1.2 | 0.1 ± 0.9 |
1.0 | 70.3 ± 3.52 | 9.0 ± 0.7 | 6.8 ± 1.0 | 8.2 ± 0.9 |
1.5 | 119.6 ± 5.98 | 15.1 ± 0.8 | 13.7 ± 0.8 | 26.8 ± 0.6 |
2.0 | 142.1 ± 7.10 | 22.4 ± 1.3 | 15.3 ± 1.0 | 40.5 ± 0.8 |
3.0 | 172.6 ± 8.63 | 27.7 ± 1.0 | 33.7 ± 1.4 | 35.7 ± 1.2 |
3.5 | 211.4 ± 10.57 | 29.4 ± 1.0 | 46.8 ± 1.5 | 51.8 ± 2.1 |
7.0 | 384.2 ± 19.21 | 31.2 ± 2.2 | 45.9 ± 2.7 | 40.4 ± 1.7 |
14.0 | 598.7 ± 29.93 | 37.6 ± 1.0 | 45.2 ± 1.3 | 42.4 ± 3.4 |
20.0 | 705.5 ± 35.28 | 42.8 ± 3.1 | 44.4 ± 1.0 | 43.1 ± 2.1 |
Equation Form | Temperature, °C | Correlation | Sorption Parameters | |
---|---|---|---|---|
Freundlich equation | or | 40 | R2 = 0.8309 | a = 0.067 ± 0.021, 1/n = 0.60 ± 0.11 |
50 | R2 = 0.9846 | a = 4.1 ± 1.4, 1/n = 1.9 ± 0.10 | ||
60 | R2 = 0.9334 | a = 1494 ± 13 1/n = 4.0 ± 0.9 | ||
Langmuir equation | 40 | R2 = 0.9037 | A∞ = 0.012 ± 0.002 mmol/g *, k = 10.9 ± 1.8 | |
50 | R2 = 0.9858 | A∞ = 0.008 ± 0.001 mmol/g *, k = 102 ± 1 | ||
60 | R2 = 0.9799 | A∞ = 0.007 ± 0.001 mmol/g *, k = 925 ± 1 |
No. | Crystallinity Index, % | Average Particle size, µm | D Baker–Lonsdale · /min. Before Applying the Correction Coefficient | D Baker–Lonsdale · /min. After Applying the Correction Coefficient | ||
---|---|---|---|---|---|---|
Buckwheat Hulls | ||||||
3 | 64 ± 2 | 262 | 98 | 0.907 | 56 | 0.906 |
2 | 56 ± 3 | 300 | 328 | 0.964 | 219 | 0.964 |
1 | 51 ± 4 | 529 | 1113 | 0.910 | 1115 | 0.901 |
5 | 45 ± 3 | 398 | 352 | 0.912 | 277 | 0.911 |
4 | 27 ± 4 | 35 | 19 | 0.814 | 8 | 0.815 |
No. | Crystallinity Index, % | Average Particle Size, µm | D Akselrud · /s Before Applying the Correction Coefficient | D Akselrud · /s After Applying the Correction Coefficient | ||
---|---|---|---|---|---|---|
Buckwheat Hulls | ||||||
3 | 64 ± 2 | 262 | 10.0 | 0.936 | 1.51 | 0.945 |
2 | 56 ± 3 | 300 | 14.7 | 0.925 | 2.12 | 0.928 |
1 | 51 ± 4 | 529 | 55.4 | 0.941 | 49.5 | 0.952 |
5 | 45 ± 3 | 398 | 22.2 | 0.931 | 4.32 | 0.923 |
4 | 27 ± 4 | 34 | 1.8 | 0.920 | 0.09 | 0.918 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lomovskiy, I.; Kiryanov, A.; Skripkina, T. The Effect of Reverse Sorption on an Extraction Kinetics Melanin Case. Processes 2023, 11, 3192. https://doi.org/10.3390/pr11113192
Lomovskiy I, Kiryanov A, Skripkina T. The Effect of Reverse Sorption on an Extraction Kinetics Melanin Case. Processes. 2023; 11(11):3192. https://doi.org/10.3390/pr11113192
Chicago/Turabian StyleLomovskiy, Igor, Aleksey Kiryanov, and Tatiana Skripkina. 2023. "The Effect of Reverse Sorption on an Extraction Kinetics Melanin Case" Processes 11, no. 11: 3192. https://doi.org/10.3390/pr11113192
APA StyleLomovskiy, I., Kiryanov, A., & Skripkina, T. (2023). The Effect of Reverse Sorption on an Extraction Kinetics Melanin Case. Processes, 11(11), 3192. https://doi.org/10.3390/pr11113192