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Abstract: The programming language Python offers the opportunity to analyze and model the
municipal sewage sludge (MSS) drying process in an illustrative chemical engineering practice. The
drying process is performed on a flat plate while maintaining a uniform, parallel drying air speed.
The Python program helps to analyze the digitalized weight measurements from each sample. The
program enables the sorting of input data, determination of the drying critical point, and evaluation
of the first and second drying periods. Moreover, the model calculates the fundamental drying
parameter and forms a drying master curve to support the transfer to different drying conditions.
The basic parameters calculated are mass transfer coefficient, heat transfer coefficient, and diffusion
coefficient. The results are consistent with published data for those coefficients over the drying
temperature range of 19.4–52.4 ◦C and relative humidity range of 8.2–33.6%. The findings of this
study demonstrate the potential of Python as a powerful tool for analyzing experimental data and
modeling chemical processes, which can lead to improved process design, optimization, and control.

Keywords: data series processing; Python process modeling; sewage sludge drying; drying
master curve

1. Introduction

Municipal sewage sludge (MSS) is generated as a by-product of wastewater treatment
from wastewater treatment plants (WWTP). It presents a significant challenge to urban
environments due to its high water content (around 80% water fraction), large volume, and
the presence of various contaminants [1]. Proper treatment and preparation of the MSS to
be incorporated into the Circular Economy (CE) are crucial for maintaining public health,
environmental sustainability, and efficient resource management [2]. Various approaches
have been employed to effectively manage MSS, focusing on agricultural soil amend-
ments (either directly or following composting), land remediation, incineration, and heat
generation, producing biochar and construction composites, extracting phosphorus, and
producing fertilizers. Drying usually represents one of the initial steps of these processes.
Appropriate design and selection of drying technology for MSS are crucial for sustainable
and economical utilization. A significant aspect of this project revolves around producing a
dried MSS product with around 30% moisture content suitable for agricultural applications.
While debates persist, particularly regarding organic pollutants, numerous countries prefer
utilizing MSS in agriculture due to its positive impact on soil quality, attributed to the
presence of organic matter and the nitrogen (2.8–3.8%) and phosphorus (2–4%) content in
MSS [3,4]. Python offers a user-friendly syntax and robust libraries for data manipulation,
statistical analysis, machine learning, and visualization, enabling researchers to handle
complex datasets and derive meaningful insights efficiently. Furthermore, its open-source
nature facilitates collaboration and reproducibility in scientific endeavors, supporting and
encouraging digitalization. In the context of chemical engineering, Python has emerged as
a powerful tool for modeling, simulation, data analysis, optimization, control, and more.
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Although limited literature exists on the direct use of Python for drying analysis, Python has
been extensively utilized in environmental engineering and modeling, including wastewa-
ter treatment processes [5,6] and others like pyrolysis and extraction. The paper provides an
outstanding example of interdisciplinary research, combining programming and chemical
technology. A digitalized laboratory and other measuring equipment give large series of
processed data which are in most cases relatively scattered but contain vital process or
material specific information. As chemical engineers are mostly familiar with the process
or chemistry mechanisms behind a material and/or process, specific parameters can be
extracted from these large series of data. Some specific examples of Python applications in
chemical engineering are summarized below.

Modeling and simulation: Python’s powerful libraries, such as NumPy and SciPy,
enable engineers to build mathematical models and simulate chemical processes, including
drying, distillation, reaction kinetics, and heat transfer. This helps to optimize process
design and troubleshoot potential problems.

Data analysis and visualization: Python’s data analysis libraries, such as Pandas and
Matplotlib, facilitate the analysis of experimental data, quality control, and visualization of
process parameters. This helps engineers to gain insights into process performance and
identify areas for improvement.

Optimization: Python’s optimization libraries, such as SciPy and PuLP, can be used to
optimize chemical processes, including parameter tuning, minimizing energy consumption,
and maximizing product yield. This can lead to significant cost savings and environmental
benefits.

Machine learning and predictive analytics: Python’s machine learning libraries, such
as scikit-learn and TensorFlow, enable predictive maintenance, anomaly detection, and
real-time monitoring of chemical processes. This helps to improve process efficiency and
reduce downtime.

Control systems: Python can be used to develop control algorithms and implement
process control systems. Libraries like control and scipy.signal are useful for designing
controllers to maintain process variables within desired ranges. This ensures the stable and
efficient operation of chemical processes.

MSS drying techniques can be broadly classified according to heat transfer principles
(convective, conductive, radiation, or mixed), contacting (disc, thin film, and drum), and
transport methods (fluid bed, pneumatic, belt, screw, vacuum, and others) [7–9]. The
resulting water vapors are usually discharged by drying gas (air or flue gases). MSS drying
targets different water contents (<85% DM) declared as partial drying and complete drying
(>85% DM) and this determines the type of dryer selected. Capacity plays an important role
in the final decision; in Germany [9], mainly drum, belt, and solar dryers are used according
to the capacity needed. Drying parameters reported include drying temperature (drum
dryer, 85–115 ◦C; belt, 60–70 ◦C; and solar, 10–40 ◦C), final moisture content (<10% and
30–50% with solar drying), initial moisture content (75–80%), and various residence times,
which are crucial in determining the energy efficiency and overall performance of the drying
process [8]. A key decision in equipment selection is the source of heat, as it should be low
cost or even costless (e.g., solar heating). Expensive heat sources usually generate a problem
of high OPEX and can even overcome allowable costs. Researchers have also explored the
potential of combining different drying methods to enhance efficiency and reduce energy
consumption [9]. Additionally, studies have examined the environmental impact (e.g., odor
emissions) of different drying methods and their implications for sustainability [10].

Our paper adds value to the expanding field of drying processes in the academic
community, with a specific focus on Python programming. Currently, the global literature
predominantly centers on Python’s involvement in drying, with significant recognition
given to the ‘pydring’ package [11]. This package utilizes multiphysical and dynamic
modeling of drying phenomena, incorporating finite volume numerical methods to solve
drying equations and analyze drying kinetics for a range of solid products. It is extensively
utilized in food processing, biomass refining, and animal feed production. However,
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our study highlights a crucial gap in the literature. While ‘pydring’ and related research
investigate fundamental drying parameters, they fail to consider the specific demands
of MSS drying. Our study introduces an innovative program designed for MSS drying,
enabling the collection of a wider range of data, encompassing mass flux, thermal flux, and
critical points. As a result, we fill an existing gap in the field and contribute new insights
that advance the understanding of MSS drying. Notably, our program’s distinctive attribute
is its ability to carry out regression analysis on the initial and subsequent drying periods,
establish regression functions, and identify crucial drying points. During our scientific
literature review, we came across various drying scenarios in which Python programming
was used. These included the drying of organically grown apples [12], the process of
drying yellow passion fruit seeds [13], pharmaceutical granule drying with a focus on
kinetics [14], and predicting coal moisture content during convective drying [15]. However,
no previous research has connected Python to the specific field of MSS drying, emphasizing
the original and multidisciplinary nature of our study, which combines programming with
the chemical–technological complexities of sludge drying.

This research paper presents a comprehensive study on the design and analysis of the
MSS drying process, utilizing the Python programming language to process experimental
data and calculate essential drying parameters [16].

2. Materials and Methods

In our research, the drying experiment was conducted using a digitalized weighing
scale, enabling continuous monitoring and recording of the MSS sample’s weight at fixed
and short time intervals [17]. The novelty of this study lies in the first attempt to develop a
program using the Python programming language with the aim of successfully analyzing
measurements of chemical–technological processes such as drying processes of MSS in
our case. This demonstrates that Python is a suitable tool for analyzing such data. This
approach allowed accurate tracking of the drying process, providing valuable insights
into the behavior of MSS under varying conditions. This study was carried out using five
samples of MSS. Each sample underwent an analysis process that was repeated three times
for thorough validation, and no discrepancies were observed. The experimental conditions
were held constant at an airspeed of 1.15 m s−1 and a range of temperatures, including
19.4, 22.0, 29.0, 44.0, and 52.4 ◦C [17–19]. In the following segment, we will present a more
detailed description and operation of the program, the theoretical background of the model,
and the results we obtained from the drying analysis of the five MSS samples.

The experiment part was carried out in the laboratory of ZRS Bistra Ptuj, utilizing
state-of-the-art digital equipment to ensure accurate and reliable results. Municipal sewage
sludge (MSS) samples were obtained from the Ptuj municipality sewage treatment plant,
ensuring that the samples were fresh and representative of the typical composition of
the sludge in the region. Drying was performed on a digitized G&G electronic scale
(model: JJ200B), allowing precise measurement and data collection throughout the process.
Weighing data were recorded on a computer via USB at a fixed time interval of 20 s, ensuring
a comprehensive and consistent record of the mass changes during the drying process.
The MSS was dried using a LINEA portable air heater dryer (model: LP1-0521), which
provided controlled and consistent drying conditions for each experiment. The airflow was
measured with an RS PRO turbine anemometer, which allowed accurate measurement and
documentation of the airflow conditions throughout the drying process.

2.1. Experimental Procedures for Drying Characterization of the MSS Samples

The experimental procedure involved the following steps:

1. An MSS sample was carefully distributed on a flat tray (surface area: 56.7 cm2 and
precise height, L = 1.5 mm) using a leveling knife. Prior to the application of MSS, a
circular metal mesh (1 mm square opening) was inserted into the tray to ensure even
distribution of the sludge during the drying process due to extensive shrinkage. This
step was crucial to obtain accurate and reproducible results by minimizing variations
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in the surface of dry MSS that could impact the drying process because of enormous
shrinkage.

2. Weighing variations caused by air blowing from the dryer parallel to the sample
surface were accounted for via blind measurement. The blind measurement ran for
5 min. Mass readings were recorded every second, and the results were used to correct
weighing results for absolute error by subtracting from the data for further analysis.
This step ensured that the results precisely reflected changes in mass due to the drying
process rather than the influence of airflow on the weighing process.

3. Before placing the MSS sample on the balance, the air flow was measured using
an anemometer. Measurements help to ensure consistent drying conditions across
all experiments and accurately document the conditions under which the drying
occurred. Drying was conducted for 2–6 h, depending on temperature and humidity,
to ensure completion of the drying process and accurate representation of the drying
behavior of MSS under the given conditions.

4. After the drying process, the final mass of MSS and other parameters, such as relative
humidity and dry bulb temperature, were recorded. The airflow was measured again
to ensure consistency in drying conditions throughout the experiment. Comprehen-
sive documentation of the experimental conditions enabled thorough analysis and
interpretation of the results.

5. The entire procedure was conducted at five different drying temperatures, ranging
from 19.4 to 52.4 ◦C, with a constant air speed of 1.15 m s−1. Throughout the drying
process, relative humidity was measured, and its value was found to be highly
dependent on temperature.

6. All weighing data were transferred to an Excel file, from which a Python program read
the data for further analysis. This approach enabled efficient processing and analysis
of the data, ensuring thorough examination and accurate interpretation of the results.
Standardized data formats and widely used software tools also ensured transparency,
reproducibility, and adherence to the principles outlined in the text above.

2.2. Python Program Explained

The Python-based program used in this study consists of five main phases. In Stage
1, the experimental data are sorted and averaged to generate a robust dataset for analysis.
Stage 2 involves conducting regression analysis on the data from the initial drying period,
resulting in a linear function that represents the first drying period. Stage 3 focuses on
regression analysis of the data from the second drying period, yielding an exponential
function and identifying the critical drying point [20]. Stage 4 of the process involves the
Python program computing drying parameters to assess the efficiency and effectiveness
of the drying process. These calculated parameters are crucial for understanding various
aspects and dynamics of the drying procedure. Subsequently, in Stage 5, the program
performs a dual function: enable graphical visualizations of the data, facilitating a clear
depiction and comprehension of the results, while simultaneously exporting these results
to a separate Excel file. This export function enables comprehensive data analysis and
ensures that the results are readily available for further examination and utilization, thereby
enhancing the reproducibility and accessibility of the research.

2.3. Use of External Libraries

It is important to note that the Python program leverages on external libraries to stream-
line data processing and analysis. These libraries include pandas for data manipulation
and openpyxl for handling excel files, math for mathematical functions, matplotlib.pyplot
for data visualization, numpy for numerical operations, matplotlib.mlab for additional
plotting tools, sklearn.linear_model for regression analysis, and scipy.optimize for curve
fitting [21].
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2.4. Python Limitations and Comparison to Other Software

This subsection discusses the limitations of Python and compares it to other popular
programming languages and software. Table 1 provides a summary of the key differences
between Python and other software.

Table 1. Python Limitations and Comparison to Other Software.

Software Functions Applications Limitations

PYTHON

Python is a versatile
programming language that
excels in various functions,
including moisture content
calculation, drying rate model,
drying time estimation,
energy consumption
calculation, regression
analysis for both first and
second drying periods, and
seamless data visualization.

Python can be applied for convective
drying modeling in various ways,
including simulating drying kinetics,
optimizing drying processes, estimating
energy consumption, predicting drying
times, visualizing data, using machine
learning for predictions, performing
sensitivity analysis, conducting
comparative analyses, enabling real-time
monitoring and control, and creating
educational tools.

Limitations in using Python for
convective drying modeling
include potential challenges in
handling large datasets,
computational intensity for
complex simulations, the need
for specialized libraries or
expertise, and limitations in
real-time control applications.

COMSOL
Multiphysics
(Burlington, MA,
USA)

This software serves as a
simulation tool, offering
insights into the heat transfer
profile and fluid flow patterns
within the dryer.

This software has the capability to predict
the airflow from the inlet to the outlet
and determine the precise location of
ventilation holes. Additionally, it can be
employed to anticipate the exact shape
and dimensions of the dryer.

In comparison to CFD FLUENT,
learning this software is
relatively straightforward.

FORTRAN
(Armonk, NY,
USA)

It finds application in
simulation and modeling to
address and solve partial
differential equations.

This software is valuable for conducting
performance analyses of convective
drying systems, resulting in potential cost
savings through efficient material usage.
It optimizes structural performance with
in-depth analysis and eliminates the need
for expensive and time-consuming
trial-and-error processes.

The Fortran program is initially
developed in a prototype
software, often utilizing visual
languages like Matlab and IDL
(Interactive Data Language).
Subsequently, the code is ported
to FORTRAN for further
development and
implementation.

MATLAB
(Natick, MA,
USA)

MATLAB serves as a
mathematical modeling
software, enabling highly
accurate and efficient
nonlinear regression analysis
within a short timeframe.

This software is highly beneficial for
creating mathematical models to predict
crop temperature, air temperature, and
moisture evaporation. It is also a
valuable tool for training and testing
various models.

MATLAB mathematical
modeling demands strong
programming skills, and the
development and testing of
models can be a
time-consuming process.

Sigma Plot (San
Jose, CA, USA) It is an analytical software.

Simulation validation involves assessing
various statistical parameters for
greenhouse drying performance,
including factors such as moisture
evaporation rate and greenhouse room
temperature.

This software often involves
repetitive analysis as a common
characteristic.

TRNSYS
(Madison, WI,
USA)

TRNSYS stands as a versatile
scientific simulation tool in
the field of convective energy.
Its software is instrumental in
the development and
description of crop drying
behavior within various types
of dryers.

A significant advantage lies in its ability
to replace complex differential equations
with straightforward numerical
calculations. This software simplifies the
calculation of moisture and heat transfer
at the crop surface to the drying air, as
well as the transport of moisture and heat
within the crop’s interior.

More accurate results are
achieved when using shorter
time steps and when the
segments are closely aligned in
every numerical method.

2.5. Stage 1: Data Sorting

In our study, the accurate analysis of drying parameters is crucial, particularly when
dealing with empirical data obtained from experimental measurements of the mass of
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the MSS during drying. These measurements were recorded using a balance. Due to the
convective drying process, the recorded values exhibited fluctuations over time. To address
this variability and ensure a more regular representation of the data, it was necessary to sort
and average the measurements. This averaging process aimed to create a more consistent
curve showing how the mass varies with time and better capture the overall trend. The
process involved selecting a certain number of measurement points (N), arranging them,
and computing the mean value based on a given equation during the initial phase of
data analysis.

y =
y1 + y2 + . . . + yn

N
(1)

The software enables us to adjust the value of N according to our preferences. Decreas-
ing N results in more scattered data, whereas increasing N provides more structured data
that align better with the trend line of the drying curve. Nevertheless, exercising caution is
necessary to avoid N becoming too large, as it could cause a significant deviation in the
average data from the actual value. After careful analysis, we determined that an N value
ranging from 5 to 10 offers an ideal balance between data smoothing and preservation of
the original measurements. Additionally, it guaranteed precise computation of the drying
parameters based on initial data. Figure 1 presents a comparison of sorted and unsorted
mass data over time and the first mass derivative with respect to time.
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2.6. Stage 2: Linear Regression of the First Drying Period

The first drying period, also known as the constant speed drying period, occurs at the
beginning of the drying process when the drying speed is constant. During this period,
there is sufficient moisture on the surface of the material and the evaporation rate is mainly
determined by external conditions such as temperature, pressure, humidity, and air drying
rate [22]. Since the time dependence of the mass reduction is linear, the 1st drying period
can be given by Equation (2):

f1(t) = k1t1 + n (2)

In Stage 2 of the program, the critical drying point is determined by analyzing the
regression of the first drying period [18]. The program uses a specific algorithm that relies
on a key criterion: R2 must be greater than 0.99. By applying this criterion, the program can
identify the final point of the first drying period, determining the coordinate of the critical
moisture content of the sample. Once the R2 value falls below 0.99, this point is identified
as the critical drying point. The program also links this critical point with the start of the
second drying phase and the beginning of Stage 3 [22].
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2.7. Stage 3: Second Drying Period Analysis

Stage 3 is based on the exponential regression function derived in Section 2, specifically
in the subsection titled “Derivation of the Second Drying Period’s Regression Function,”
using experimental data from the second drying period.

f2(t) = Ae−k2t2 (3)

The curve representing the second drying period follows an exponential function in
the form of Equation (3). The exponential function captures the falling rate period of the
drying process as the rate of moisture loss decreases over time. In the following sections,
we will delve deeper into the derivation and details of this exponential function, exploring
its implications and applications in the context of drying processes.

2.8. Derivation of the Second Drying Period’s Regression Function

To derive the regression function of the second drying period, it is necessary to first
define the basic drying parameters as follows:

Xt =
mt − Ls

m0
(4)

where:
Xt—moisture content of the substance (g g−1);
mt—mass of the sample, which varies with time (g);
Ls—initial mass of the dry matter (g),
This equation calculates the moisture content of the substance at any given time

depending on mass of the sample, which varies with time (mt). The moisture content
decreases as the drying process continues [22].

Free moisture is calculated as follows:

Xf = Xt − X∗ (5)

where:
Xf—free moisture content of the substance (g g−1);
X∗—equilibrium moisture content at given constant drying conditions (g g−1).
Free moisture represents the amount of moisture in the substance that exceeds its equi-

librium moisture content (X∗). During the constant-rate drying period, the free moisture is
available for evaporation, and the drying process is typically limited by the external factors
mentioned earlier [22].

In our analysis, we assumed that the drying process during the second drying period
can be characterized as pseudo-steady-state diffusion. Pseudo-steady-state diffusion refers
to a scenario where the internal moisture diffusion within the material dominates the
drying process, while external factors like surface evaporation and convective heat transfer
have minimal influence. This assumption enables us to concentrate on the internal moisture
transport mechanisms and simplifies the mathematical modeling of the drying process
during the falling rate period. Pseudo-steady-state diffusion has been widely utilized
in drying research to describe the behavior of different materials during the falling rate
period [22–26]. The drying model and basic parameters are shown in Figure 2.
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To derive a function describing the free moisture content of a material during the
second drying period, we start with a simple mass balance equation, which states that the
difference in water mass flow is equal to the accumulation:

Φin −Φout = Accumulation (6)

The mass flow of water can be expressed as follows:

Φ = NAMw A (7)

where:
NA—mass flux of water (g s−1 m−2);
Mw—molar mass of water (18 g mol−1);
A—surface area exposed to the drying air flow (m2).
Assuming that during the drying process, the mass flow of water originates exclusively

from the material, then therefore Φin = 0, and the accumulation is equal to the change in
mass over time. The water mass balance for the material system is as follows:

−NAMw A =
dm1

dt
=

d(V1MwC)
dt

= V1Mw
dC
dt

(8)

Similarly, a mass balance of water can be derived for the air system, where it is
assumed that all of the mass of water is transferred from the material to the air. Φout is
simplified as follows:

Φout = NAMw A =
dLs
dt

=
d(V0MwC0)

dt
= V1Mw

dC0

dt
(9)

Assuming the concentration of water in the air remains constant, then dC0/dt = 0. The
equations for the material and air systems are summed and rearranged, and the following
is obtained:

−NA A = V1
dC
dt

(10)

Considering pseudo-steady-state diffusion and a thin film, the bulk flux can be ap-
proximated by the following equation [16]:

NA =
DAB

L
(C − C0) (11)

where:
DAB—diffusion coefficient of water (m2 s−1);
L—film thickness (m).
Combining the above equations yields a first-order differential equation:

−DAB A
LV1

(C− C0) =
dC
dt

(12)

Introducing a parameter k, where k2 = DAB A
LV1

, the solution to the differential equation
at initial conditions C1(tc) = C1 is as follows:

C(t) = (C1 − C0)e−k2(t−tc)+C0 (13)

where:
tc—the critical time where the second drying period starts (h);
C0—initial concentration of water in MSS (mol L−1);
C1—concentration of water in the air (mol L−1).
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To determine how the moisture content of a substance, Xt, varies with time, we can
express the water concentration as follows:

C =
mH2O

MwV
(14)

Combining Equations (14) and (4) gives the following equation:

Xt =
MwVC− Ls

Ls
(15)

To express C, the following equation can be obtained:

C =
Ls(1 + Xt)

MwV
(16)

Inserting the above equation into the previous one, we obtain the following:

Ls(1 + Xt(t))
MwV1

=

[
Ls(1 + Xt(tc))

MwV1
− Ls(1 + Xt(∞))

MwV1

]
e−k2(t −tc) +

Ls(1 + Xt(∞))

MwV1
(17)

where:
Xt(t)—moisture content of water changing over time (g g−1);
Xt(tc)—moisture content of water at point (g g−1);
Xt(∞)—moisture content of water at infinite time (g g−1).
Rearranging Equation (17) gives the following:

Xt(t) = [Xt(tc)− Xt(∞)]e−k2(t−tc) + Xt(∞) (18)

Subtracting the equilibrium humidity X∗ from both sides of Equation (18) gives the
following:

Xt(t)− X∗ = [Xt(tc)− Xt(∞)]e−k2(t−tc) + Xt(∞)− X∗ (19)

Considering the assumption that the humidity of a substance at infinite time Xt(∞) is
equal to the equilibrium humidity X∗, the critical humidity is defined as follows:

Xc = Xt(tc)− X∗ (20)

Taking into account the above equation and the assumption, we can write the final
equation describing the variation in free moisture content of the material during the second
drying period as a function of time [16,22–26]:

Xf(t) = Xc e−k2(t−tc) (21)

2.9. Stage 4: Calculating Drying Parameters

In Stage 4, the program calculates the drying parameters, which serve as key indicators
for evaluating the efficiency and effectiveness of the drying process [22].

These parameters are as follows:

Rs = −
Ls
A

dX
dt

(22)

where:
Rs—the drying rate (g m−2s−1);
A—the area exposed to the drying air flow (cm2).
Additionally, the program calculates the heat flux (q) according to the following

equation:
q = hA

(
Tdry − Twet

)
(23)
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where:
q—heat flow (W);
h—heat transfer coefficient (W m−2K−1);
Tdry—dry bulb temperature (◦C);
Twet—wet bulb temperature (◦C).
Alternatively, q is calculated as follows:

q = Mw NA ∆Hl,g A (24)

where:
∆Hl,g—latent heat of vaporization (kJ kg−1).
By rearranging Equations (23) and (24), we can express the heat transfer equation as

follows:
h =

q

A
(

Tdry − Twet

) (25)

The mass flux (NA ) is calculated using the following equation:

NA = ky
MB

MA

(
Xwet − Xdry

)
(26)

where:
MB—the molar mass of air (29 g mol−1);
ky—the mass transfer coefficient (mol m−2s−1);
Xwet—wet bulb humidity (g g−1);
Xdry—dry bulb humidity (g g−1).
From Equation (26), we can derive the mass transfer coefficient:

ky =
MA

MB

NA(
Xwet − Xdry

) (27)

The literature frequently presents the mass transfer coefficient in units of m s−1. To
compute the coefficient in these units, the following expression should be used:

NA = k′y
(

Cwet − Cdry

)
(28)

where:
k′y—mass transfer coefficient (m s−1);
Cwet—concentration of water at wet bulb temperature (mol L−1);
Cdry—concentration of water at dry bulb temperature (mol L−1).
An example of the derivation of the water vapor concentration equation is given by

the example of the water vapor concentration at wet bulb temperature. The derivation of
the dry bulb water vapor concentration is similar.

It is necessary to use the gas equation:

Cwet =
Pwet

RTwet
(29)

where:
R—gas constant (8.314 J mol−1K−1);
Pwet—partial vapor pressure at wet bulb temperature (kPa).
The partial pressure of water vapor can be expressed in terms of the following equa-

tion [22]:

Xwet =
MA

MB

Pwet

P− Pwet
(30)

where:
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P—atmospheric pressure (101.32 kPa).
Combining Equations (29) and (30) and highlighting Cwet give the following equation:

Cwet =

[
P MB

MA
Xwet

1 + MB
MA

Xwet

]
1

RTwet
(31)

To calculate the mass transfer coefficient in units of m s−1, we combine Equations (28)
and (31) and calculate Cdry via analogy with Cwet:

k′y =
NA[

P MB
MA

Xwet

1+ MB
MA

Xwet

]
1

RTwet
−
[

P MB
MA

Xdry

1+ MB
MA

Xdry

]
1

RTdry

(32)

Once these parameters are determined, the program systematically logs and writes
them in an Excel file for convenient data management and subsequent analysis [22–27]

2.10. Stage 5: Graph Plotting

In stage 5, the program enhances data analysis by generating various diagrams. These
include graphs that compare experimental and sorted data, plots of regression functions for
the first and second drying periods against sorted data, and an overall drying curve plot
that compares regression functions with experimental data. Additional diagrams depict
the first derivative of humidity against time and the drying rate versus moisture content.
Furthermore, a normalized drying rate curve is plotted using coordinates calculated using
the following formulas [28]:

ν =
Rs

Rmax
(33)

ξ =
Xt − X∗

Xc − X∗
(34)

where:
ν—relative drying rate (dimensionless);
ξ—characteristic moisture content (dimensionless);
Rmax—maximum drying rate (g m−2s−1).
These graphical representations enhance the comprehension of the drying process and

can be applied at various temperatures and air moisture conditions [22].

3. Results and Discussion

Table 2 displays the fundamental measurements that form the basis of the software’s
subsequent calculations. These measurements include the initial mass of the MSS, de-
termined before the drying process. Additionally, we incorporated the final mass of the
MSS, determined at the end of the drying process, and key parameters such as dry bulb
temperature, relative humidity, surface area, and airspeed. The table reveals an inverse
correlation between relative humidity and temperature (the temperature increases and
relative humidity decreases); as the temperature of the same humid air is heated to higher
temperature, the relative humidity becomes lower.

Table 2. Measured data for sample 1–5.

Sample mMSS,start (g) mMSS,end (g) A [cm2]
Drying

Temperature [◦C]
Twet
[◦C]

Ψ

[%]
Airspeed
(m s−1)

1 11.24 2.09 56.74 19.4 10.5 33.6 1.15
2 11.52 1.95 56.74 22.0 10.9 22.4 1.15
3 15.81 3.02 56.74 29.0 13.7 14.8 1.15
4 12.29 2.20 56.74 44.0 20.5 10.0 1.15
5 11.34 1.99 56.74 52.4 23.8 8.2 1.15
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3.1. Stage 1 Results

The outcomes of stage 1 are demonstrated in Figure 3. For the sake of clarity, we have
decided to show only the results of sample 1 and sample 5. The results of samples 2, 3,
and 4 are in the Supplementary Materials. The graphs illustrate the changes in sample
mass throughout the drying process. Each graph also shows a comparison between the
sorted and unsorted data. This significant difference may not be visually apparent, but it
is essential for subsequent calculations. The curves on the diagrams display a distinctive
shape, indicating two distinct drying phases. The first phase is characterized by a decrease
in sample mass proportional to time, while the second phase is identified by a reduction
in the rate of drying. The length of the initial drying phase differs among samples due
to the varying drying conditions applied to each one. Sample 1 experienced the longest
first drying period phase due to being dried at 19.4 ◦C, while sample 5 had the shortest
first drying period with a temperature of 52.4 ◦C (graphs for samples 2, 3, and 4 are in the
Supplementary Materials, Figure S1).
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3.2. Stage 2 Results

The outcomes of the second stage are demonstrated in Figure 4. The graphs exhibit the
linear regression of each sample from the initial drying period. The plots are remarkably
similar to one another, with an R2 value of 0.996 for all of them. The equality of R2 is
because the program needed to establish an upper limit on R2 as a condition for calculating
the linear regression. The second stage ends, and the program enters the third stage when
the R2 value of the linear regression falls below 0.996. The diagrams presented in Figure 4
indicate that the slope of the lines between sample 1 and sample 5 becomes steeper as the
rate of drying in the first period increases. This leads to shorter drying times, since sample
5 has fewer experimental points on its graph as compared to the preceding samples (graphs
for samples 2, 3, and 4 are in the Supplementary Materials, Figure S2).

3.3. Stage 3 Results

The results of stage 3 are presented in Figures 5 and 6. Figure 5 displays the exponential
regression of each sample during the second drying period. The variability in the results is
primarily due to differences in the R2 values. In contrast to stage 2, where R2 was a fixed
value, stage 3 involves a calculated R2 value that depends on the fit of the experimental
data and trend line. The diagrams reveal that some moisture content values drop below
zero towards the end of the second drying period, a theoretically impossible occurrence.
The fluctuations in mass measurements recorded by the balance are due to the fan air
blowing parallel to the sample.
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Figure 6 presents a comparison between experimental data and the composite regres-
sion function of the first and second drying periods (graphs for samples 2, 3, and 4 are in
the Supplementary Materials, Figures S3 and S4).

3.4. Stage 4 Results

The results from stage 4 are presented in Figures 7 and 8. Figure 7 displays how
the first derivative changes over time during the drying process. These curves exhibit a
critical point where the first derivative shifts from being constant to non-linearly increasing.
The analysis of drying requires the diagrams presented in Figure 8, where the drying rate
of each sample is displayed. It is noteworthy that the calculation of drying rate curves
relies on mathematical regression functions. As a result, the curves in Figures 7 and 8
have a well-structured form compared to the literature on the drying of solid materials,
where the presented results are solely based on experimental data and the derivation is
numerically calculated. It is worth noting that a derivative curve calculated based on
numerical methods will have a more irregular shape than a derivative curve calculated
based on a regression function (graphs for samples 2, 3, and 4 are in the Supplementary
Materials, Figures S5 and S6).
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3.5. Stage 5 Results

The normalized drying rate curves for each sample obtained from stage 5 are presented
in Figure 9. These curves exhibit some degree of variation among the individual samples.
Notably, the normalized drying rate curve of sample 1 displays the most pronounced
deviation when compared to the others, which appear to align more closely with the
expected behavior. Several factors may have contributed to the observed deviation in
the drying rate curve of sample 1. First, it is possible that the equipment and methods
employed to measure the equilibrium moisture content possess inherent limitations in terms
of sensitivity or accuracy. Such limitations can influence the precision of the determination
and introduce discrepancies in the data. In addition, variations in environmental conditions,
measurement equipment, or procedural errors may have introduced greater experimental
variability in the case of sample 1. These external influences and sources of variability can
manifest as deviations in the drying rate curve and complicate the accurate determination of
equilibrium moisture content. Furthermore, it is important to consider the impact of drying
temperature and relative humidity conditions on the observed deviation. Sample 1 was
subjected to the lowest drying temperature and the highest relative humidity conditions,
resulting in a drying procedure that took approximately three times longer compared to,
for example, sample 5. This prolonged drying duration increases the potential for error,
as variations in the drying conditions over an extended period can significantly affect the
equilibrium moisture content determination.
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In summary, the deviation in the drying rate curve of sample 1 can be attributed to
a combination of factors, including limitations in measurement equipment, procedural
variations, and the significant differences in drying conditions. Recognizing the influence
of these variables is essential for comprehending the observed deviations and improving
the precision of future determinations.

3.6. Overall Results

This section aims to present and discuss the results which the software has exported
to an Excel document after analyzing the data. Table 3 presents the main results of
samples 1–5.
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Table 3. Program-calculated data for sample 1–5.

Sample Na
[gs−1m−2]

q
[W]

h
[Wm−2K−1]

ky
[mol/m2s]

k’
y

[m s−1]
Xcrit

[g g−1]
tcrit
[h]

Dab
[m2s−1]

1 0.08 1.14 22.59 0.80 0.018 0.40 4.93 4.84 × 10−10

2 0.14 1.96 31.06 1.07 0.025 1.07 2.60 5.04 × 10−10

3 0.21 2.89 33.23 1.23 0.028 0.95 2.43 5.56 × 10−10

4 0.29 3.99 29.88 1.01 0.024 1.22 1.35 7.46 × 10−10

5 0.36 5.06 31.16 1.06 0.025 1.35 0.96 1.04 × 10−9

All of the results of the individual parameters are shown in Figure 10 and are essential
for understanding the drying process of MSS under forced convection on a flat plate
surface. The heat transfer coefficient is the first of the important drying parameters shown
in Figure 10a. The coefficient initially increases with temperature but stabilizes as the
temperature increases (around 40 ◦C). Its average value is 29.6 W m−2K−1. The values
were also checked using an online calculator [29]. The values calculated by the calculator
refer exclusively to the heat transfer coefficient of water (liquid–vapor) and are in good
correlation with the calculated values. Also, a comparison with other world literature [30],
which states that the value of the heat transfer coefficient for convective drying of MSS at
an air flow 0.6–2.0 m s−1 and temperature 100–160 ◦C is between 21.44–40.92 W m−2K−1,
demonstrates compatibility with the results of the software calculations. Although we have
used a slightly lower drying temperature in our case, it can be assumed that the value of
the heat transfer coefficient will not vary too much due to this temperature difference.
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The following important drying parameter that the software calculates is the mass
transfer coefficient, calculated by Equation (32). Since the heat and mass transfer coefficients
are linearly dependent on each other, the shapes of the graphs in Figure 10a are almost
identical. Initially, the value of the mass transfer coefficient increases with temperature and
then begins to fluctuate. It is difficult to conclude from the results whether the value really
increases with temperature, but we can speak of an average value of 0.024 m s−1. This value
is relatively high compared to other literature. A study [31] calculated the value of the mass
transfer coefficient for convective drying at different drying air velocities and temperatures.
The theoretically calculated value recorded was between 0.003–0.01 m s−1, which is slightly
lower compared to the results calculated by Python, which are between 0.018–0.028 m s−1.
The difference could be due to different drying conditions, especially relative humidity. In
our case, the MSS was dried at relatively low relative humidity values (8.2–33.6%) which
allowed faster drying and consequently, a higher material transfer coefficient. However,
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as can be seen in article [31], the relative humidity of the drying air during the process is
always above 40%.

The following drying parameters such as critical free moisture, critical drying time,
mass flux of the first drying period, and heat flux of the first drying period are discussed in
the Supplementary Materials.

The last drying parameter is the diffusion coefficient, which is calculated by Python
from the exponential interpolation of the data in the second drying period according to the
following equation:

DAB =
LV1k2

A
(35)

where:
L— is the film thickness of 1.5 mm.
Note that V1 = AL. The equation can be simplified as follows:

DAB = L2k2 (36)

The calculated values of the diffusion coefficient are shown in the diagram in Figure 10b.
The values of the diffusion coefficient increase with temperature, which can be confirmed
by the Arrhenius equation.

3.7. Comparative Analysis of the Results with Existing Literature

From the graph in Figure 10b the calculated values of the diffusion coefficient range
between orders of magnitude −9 to −10, which is slightly lower compared to the rest of
world literature, which claims that the value of the coefficient is in the order of magnitude
−8 to −9. For example, the literature gives calculated diffusion coefficient values between
5.112 × 10−9–1.229 × 10−8 at an average drying temperature of 40 ◦C. In this study, drying
experiments of direct and indirect natural convection solar drying of sewage sludge were
carried out in Algeria [8]. In the following study [32], in which the value of the diffusion
coefficient was determined experimentally based on MMS drying in a laboratory-scale
hot air-forced convection dryer, the investigation was conducted at hot air temperatures
between 100 and 160 ◦C and hot air velocities of 0.6, 1.4, and 2.0 m s−1. The results of this
study showed that the value of the diffusion coefficient for the second falling rate period
was 1.15 × 10−8 to 4.40 × 10−8 m2 s−1. Some scientists have shown [33] that when drying
with microwave convective dryer temperatures of 40, 55, and 70 ◦C and air velocities of 0.5,
1, and 1.5 m s−1, the average value of the diffusion coefficient is 1.71 × 10−9. This value
is the closest to our calculations. The material’s structure and drying circumstances may
have contributed to the calculated diffusion coefficient’s average value of 6.67 × 10−10. The
drying temperature in our case is in the range of 19.4–52.4 ◦C, whereas in the literature cited
above, the range is 40–160 ◦C. A higher temperature therefore means a higher diffusion
and diffusion coefficient (according to Arrhenius equation).

Through our comparative analysis of the results obtained using a range of program-
ming languages and software, including Matlab [34,35], Fortran [36], COMSOL Multi-
physics [37], Sigma Plot [38], TRNSYS [39], and Python, it is clear that these tools effectively
calculate fundamental drying parameters such as drying rates and free moisture content.
The drying data are presented in various charts and diagrams. A notable similarity among
these platforms is their ability to compute the diffusivity coefficient, having values usually
within the order of 10−10 to 10−11. Nevertheless, an exceptional aspect of our findings is
the presentation of standardized drying rate curves for each sample. Such standardization
permits a more lucid comparison and assessment of drying rates, thereby enabling an
overall comprehension of the drying procedure’s attributes. Additionally, our research
delved deeper, enabling us to compute additional drying parameters such as mass trans-
fer coefficient, heat transfer coefficient, and diffusion coefficient. Unlike other literature,
which frequently presents a single parameter or no parameters at all, we provide a more
comprehensive analysis. Moreover, our program can ascertain regressions for both the
initial and secondary drying phases, as well as identify the critical point’s coordinates.
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The identification of the critical point serves as a crucial marker for the transition from
one drying phase to another, providing valuable understanding of the drying process.
Unlike previous literature, where there is little to no mention of the determination of this
point, acknowledging its significance is essential. Notwithstanding, it is important to
recognize certain constraints of Python in our context. Python may be less efficient for
computationally intensive simulations compared to specialized languages such as Fortran
or dedicated platforms like COMSOL Multiphysics. Furthermore, Python may exhibit
lower performance with significantly large datasets than software optimized for specific
engineering applications, like TRNSYS.

4. Conclusions

This study shows that the Python programming language is effective in analyzing
and modeling chemical processes, particularly the drying process. A successful analysis
of drying data was accomplished using Python, and a program was created that could
be beneficial in developing chemical processes on a laboratory scale. The significant
drying parameters, such as the mass transfer coefficient, heat transfer coefficient, diffusion
coefficient, drying rate, critical humidity, and critical drying time, were determined by the
program. Furthermore, this research proves that Python is a suitable tool for modeling
the drying process. The software analyzed the initial drying phase by utilizing a linear
equation (Equation (2)). It also automatically detected the point where the drying rate
decreases, signifying the start of the second drying period. An exponential function
(Equation (3)), serving as a mathematical model, demonstrated exceptional conformity
with the experimental data (R2 > 0.99) during this phase. Thereafter, a master curve for
five different MSS samples was developed through analysis. This curve is instrumental in
the planning of a drying process at different temperatures. This research showcases how
Python can be a powerful tool for the analysis and modeling of chemical processes. The
program devised in this research can be employed to draft and refine chemical procedures
on an extensive scale. Moreover, the master curve can be utilized to blueprint the drying
procedure under diverse temperatures. Furthermore, future investigations could enhance
the precision of the master curve through the creation of a more advanced model or the
inclusion of additional data from diverse MSS samples.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr11123263/s1, Figure S1: Mass of MSS over time: (a) Sample
2, Tdry = 22.0 ◦C, Ψ = 22.4% (b) Sample 3, Tdry = 29.0 ◦C, Ψ = 14.8% (c) Sample 4, Tdry = 44.0 ◦C,
Ψ = 10.0%; Figure S2: Regression functions of the first drying period: (a) Sample 2, Tdry = 22.0 ◦C,
Ψ = 22.4% (b) Sample 3, Tdry = 29.0 ◦C, Ψ = 14.8% (c) Sample 4, Tdry = 44.0 ◦C, Ψ = 10.0%; Figure S3:
Regression functions of the second drying period: (a) Sample 2, Tdry = 22.0 ◦C, Ψ = 22.4% (b)
Sample 3, Tdry = 29.0 ◦C, Ψ = 14.8% (c) Sample 4, Tdry = 44.0 ◦C, Ψ = 10.0%; Figure S4: Composite
function of the first and second drying periods: (a) Sample 2, Tdry = 22.0 ◦C, Ψ = 22.4% (b) Sample
3, Tdry = 29.0 ◦C, Ψ = 14.8% (c) Sample 4, Tdry = 44.0 ◦C, Ψ = 10.0%; Figure S5: First derivative
functions: (a) Sample 2, Tdry = 22.0 ◦C, Ψ = 22.4% (b) Sample 3, Tdry = 29.0 ◦C, Ψ = 14.8% (c) Sample
4, Tdry = 44.0 ◦C, Ψ = 10.0%; Figure S6: Drying curves: (a) Sample 2, Tdry = 22.0 ◦C, Ψ = 22.4% (b)
Sample 3, Tdry = 29.0 ◦C, Ψ = 14.8% (c) Sample 4, Tdry = 44.0 ◦C, Ψ = 10.0%; Figure S7: Programe-
calculated drying parameters as a function of temperature: (a); critical moisture content (b); critical
time (c); mass flux of the 1. drying period (d); heat flux of the 1. drying period; Information S1:
Pyhton Program Code.
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2. Ðurd̄ević, D.; Žiković, S.; Blecich, P. Sustainable Sewage Sludge Management Technologies Selection Based on Techno-Economic-
Environmental Criteria: Case Study of Croatia. Energies 2022, 15, 3941. [CrossRef]

3. Gomes, L.A.; Santos, A.F.; Pinheiro, C.T.; Góis, J.C.; Quina, M.J. Screening of waste materials as adjuvants for drying sewage
sludge based on environmental, technical and economic criteria. J. Clean. Prod. 2020, 259, 120927. [CrossRef]

4. Singh, A. Mastering PostgreSQL with Python Volume 1: A Comprehensive Guide; Independently Published: Chicago, IL, USA, 2023;
320p, ISBN 9798850565985.

5. Rivillas-Ospina, G.; Casas, D.; Maza-Chamorro, M.A.; Bolívar, M.; Ruiz, G.; Guerrero, R.; Horrillo-Caraballo, J.M.; Guerrero, M.;
Díaz, K.; del Rio, R.; et al. APPMAR 1.0: A Python application for downloading and analyzing of WAVEWATCH III® wave and
wind data. Comput. Geosci. 2022, 162, 105098. [CrossRef]

6. Chen, Z.; Hou, Y.; Liu, M.; Zhang, G.; Zhang, K.; Zhang, D.; Yang, L.; Kong, Y.; Du, X. Thermodynamic and economic analyses of
sewage sludge resource utilization systems integrating Drying, Incineration, and power generation processes. Appl. Energy 2022,
327, 120093. [CrossRef]

7. Ferrentino, R.; Langone, M.; Fiori, L.; Andreottola, G. Full-Scale Sewage Sludge Reduction Technologies: A Review with a Focus
on Energy Consumption. Water 2023, 15, 615. [CrossRef]

8. Ameri, B.; Hanini, S.; Boumahdi, M. Influence of drying methods on the thermodynamic parameters, effective moisture diffusion
and drying rate of wastewater sewage sludge. Renew. Energy 2020, 147, 1107–1119. [CrossRef]

9. Schnell, M.; Horst, T.; Quicker, P. Thermal treatment of sewage sludge in Germany: A review. J. Environ. Manag. 2020, 263, 110367.
[CrossRef] [PubMed]

10. Havukainen, J.; Saud, A.; Astrup, T.F.; Peltola, P.; Horttanainen, M. Environmental performance of dewatered sewage sludge
digestate utilization based on life cycle assessment. Waste Manag. 2022, 137, 210–221. [CrossRef]

11. Hedi, R. Pydrying 1.0.4. Available online: https://pypi.org/project/pydrying/ (accessed on 18 October 2023).
12. Raponi, F.; Moscetti, R.; Nallan Chakravartula, S.S.; Fidaleo, M.; Massantini, R. Monitoring the hot-air drying process of

organically grown apples (cv. Gala) using computer vision. Biosyst. Eng. 2022, 223, 1–13. [CrossRef]
13. de Araujo, M.E.V.; Barbosa, E.G.; de Oliveira, A.C.L.; Milagres, R.S.; Pinto, F.d.A.d.C.; Corrêa, P.C. Physical properties of yellow

passion fruit seeds (Passiflora edulis) during the drying process. Sci. Hortic. 2020, 261, 109032. [CrossRef]
14. Vandeputte, T.; Ghijs, M.; van Hauwermeiren, D.; dos Santos Schultz, E.; Schäfer, E.; Stauffer, F.; de Beer, T.; Nopens, I. Mechanistic

modeling of semicontinuous fluidized bed drying of pharmaceutical granules by incorporating single particle and bulk drying
kinetics. Int. J. Pharm. 2023, 646, 123447. [CrossRef] [PubMed]

15. Pekel, E.; Akkoyunlu, M.C.; Akkoyunlu, M.T. Decision tree regression model to predict low-rank coal moisture content during
convective drying process. Int. J. Coal Prep. Util. 2020, 40, 505–512. [CrossRef]

16. Cussler, E.L. Diffusion: Mass Transfer in Fluid Systems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2009.
17. Zheng, Q.; Hu, Z.; Li, P.; Ni, L.; Huang, G.; Yao, Y.; Zhou, L. Effects of air parameters on sewage sludge drying characteristics and

regression analyses of drying model coefficients. Appl. Therm. Eng. 2021, 198, 117501. [CrossRef]
18. Gomes, L.A.C.N.; Gonçalves, R.F.; Martins, M.F.; Sogari, C.N. Assessing the suitability of convective dryers applied to wastewater

plants: A review. J. Environ. Manag. 2023, 326, 116640. [CrossRef]
19. Singh Chauhan, P.; Kumar, A.; Tekasakul, P. Applications of software in convective drying systems: A review. Renew. Sustain.

Energy Rev. 2015, 51, 1326–1337. [CrossRef]
20. McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference,

Austin, TX, USA, 28 June–3 July 2010; pp. 51–56.
21. The Python Standard Library—Python 3.11.5 Documentation. Available online: https://docs.python.org/3/library/index.html

(accessed on 19 September 2023).
22. Mujumdar, A.S. (Ed.) Handbook of Industrial Drying, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006. [CrossRef]
23. Zhang, H.; He, G. Existence and construction of quasi-stationary distributions for one-dimensional diffusions. J. Math. Anal. Appl.

2016, 434, 171–181. [CrossRef]
24. Senadeera, W. Prediction of fluidization behaviour and a quasi-stationary approach to drying kinetics of irregular particulate food

materials. In Proceedings of the 7th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics,
Krakow, Poland, 28 June–3 July 2009; Szmyd, J., Spalek, J., Kowalewski, T., Eds.; AGH University of Science and Technology
Press: Krakow, Poland, 2009; pp. 897–904.

25. Reyes, A.; Eckholt, M.; Alvarez, P.I. Drying and Heat Transfer Characteristics for a Novel Fluidized Bed Dryer. Dry. Technol. 2005,
22, 1869–1895. [CrossRef]

26. Cattiaux, P.; Collet, P.; Lambert, A.; Martínez, S.; Méléard, S.; Martín, J.S. Quasi-stationary distributions and diffusion models in
population dynamics. Ann. Probab. 2009, 37, 1926–1969. [CrossRef]

https://doi.org/10.1039/C9EW00905A
https://doi.org/10.3390/en15113941
https://doi.org/10.1016/j.jclepro.2020.120927
https://doi.org/10.1016/j.cageo.2022.105098
https://doi.org/10.1016/j.apenergy.2022.120093
https://doi.org/10.3390/w15040615
https://doi.org/10.1016/j.renene.2019.09.072
https://doi.org/10.1016/j.jenvman.2020.110367
https://www.ncbi.nlm.nih.gov/pubmed/32174521
https://doi.org/10.1016/j.wasman.2021.11.005
https://pypi.org/project/pydrying/
https://doi.org/10.1016/j.biosystemseng.2021.07.005
https://doi.org/10.1016/j.scienta.2019.109032
https://doi.org/10.1016/j.ijpharm.2023.123447
https://www.ncbi.nlm.nih.gov/pubmed/37770009
https://doi.org/10.1080/19392699.2020.1737527
https://doi.org/10.1016/j.applthermaleng.2021.117501
https://doi.org/10.1016/j.jenvman.2022.116640
https://doi.org/10.1016/j.rser.2015.07.025
https://docs.python.org/3/library/index.html
https://doi.org/10.1201/9781420017618
https://doi.org/10.1016/j.jmaa.2015.09.010
https://doi.org/10.1081/DRT-200032837
https://doi.org/10.1214/09-AOP451


Processes 2023, 11, 3263 20 of 20

27. Drying of Solid Materials. In Ullmann’s Encyclopedia of Industrial Chemistry; Tsotsas, E.; Metzger, T.; Gnielinski, V.; Schlünder, E.-U.
(Eds.) Wiley: Hoboken, NJ, USA, 2010. [CrossRef]

28. James, Q. Diffusion-Controlled Quasi-Stationary Mass Transfer for an Isolated Spherical Particle in an Unbounded Medium.
Chem. Eng. Commun. 2013, 200, 65–76. [CrossRef]

29. Convective Heat Transfer. Available online: https://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html (ac-
cessed on 19 September 2023).

30. Huang, Y.W.; Chen, M.Q.; Jia, L. Assessment on thermal behavior of municipal sewage sludge thin-layer during hot air forced
convective drying. Appl. Therm. Eng. 2016, 96, 209–216. [CrossRef]

31. Poós, T.; Varju, E. Mass transfer coefficient for water evaporation by theoretical and empirical correlations. Int. J. Heat Mass Transf.
2020, 153, 119500. [CrossRef]

32. Huang, Y.W.; Chen, M.Q. Thin-layer isothermal drying kinetics of municipal sewage sludge based on two falling rate stages
during hot-air-forced convection. J. Therm. Anal. Calorim. 2017, 129, 567–575. [CrossRef]

33. Taghinezhad, E.; Kaveh, M.; Jahanbakhshi, A.; Golpour, I. Use of artificial intelligence for the estimation of effective moisture
diffusivity, specific energy consumption, color and shrinkage in quince drying. J. Food Process. Eng. 2020, 43, 13358. [CrossRef]

34. Wang, P.; Mohammed, D.; Zhou, P.; Lou, Z.; Qian, P.; Zhou, Q. Roof convective drying processes for sewage sludge within
sandwich-like chamber bed. Renew. Energy 2019, 136, 1071–1081. [CrossRef]

35. Ploteau, J.P.; Noel, H.; Fuentes, A.; Glouannec, P.; Louarn, S. Sludge convection drying process: Numerical modeling of a heat
pump assisted continuous dryer. Dry. Technol. 2020, 38, 1261–1273. [CrossRef]

36. Ajunwa, I.; Yawas, D.S.; Kulla, D.M.; Ibrahim, I.U.; Edet, A.A.; Irmiya, I.R.; Ismail, N.A. Programming of Proforma Used in
the Simulation of Solar Dryer. Uniabuja J. Eng. Technol. 2021, 1, 19–37. Available online: http://uniabuja.ujet.ng (accessed on 9
September 2020).

37. Wang, G.; Xu, S.; Pang, H.; Lian, J.; Deng, L.; Rao, B. Multiphysics Simulation Research on Microwave Drying of Municipal
Sludge. In Proceedings of the Recent Advances in Sustainable Energy and Intelligent Systems: 7th International Conference on
Life System Modeling and Simulation, LSMS 2021 and 7th International Conference on Intelligent Computing for Sustainable
Energy and Environment, ICSEE 2021, Hangzhou, China, 22–24 October 2021; Proceedings, Part II 7. Springer: Singapore, 2021.

38. Gaur, R.Z.; Khoury, O.; Zohar, M.; Poverenov, E.; Darzi, R.; Laor, Y.; Posmanik, R. Hydrothermal carbonization of sewage sludge
coupled with anaerobic digestion: Integrated approach for sludge management and energy recycling. Energy Convers. Manag.
2020, 224, 113353. [CrossRef]

39. Lingayat, A.; Zachariah, R.; Modi, A. Current status and prospect of integrating solar air heating systems for drying in various
sectors and industries. Sustain. Energy Technol. Assess. 2022, 52, 102274. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/14356007.b02_04.pub2
https://doi.org/10.1080/00986445.2012.690355
https://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html
https://doi.org/10.1016/j.applthermaleng.2015.11.090
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119500
https://doi.org/10.1007/s10973-017-6150-6
https://doi.org/10.1111/jfpe.13358
https://doi.org/10.1016/j.renene.2018.09.081
https://doi.org/10.1080/07373937.2019.1630425
http://uniabuja.ujet.ng
https://doi.org/10.1016/j.enconman.2020.113353
https://doi.org/10.1016/j.seta.2022.102274

	Introduction 
	Materials and Methods 
	Experimental Procedures for Drying Characterization of the MSS Samples 
	Python Program Explained 
	Use of External Libraries 
	Python Limitations and Comparison to Other Software 
	Stage 1: Data Sorting 
	Stage 2: Linear Regression of the First Drying Period 
	Stage 3: Second Drying Period Analysis 
	Derivation of the Second Drying Period’s Regression Function 
	Stage 4: Calculating Drying Parameters 
	Stage 5: Graph Plotting 

	Results and Discussion 
	Stage 1 Results 
	Stage 2 Results 
	Stage 3 Results 
	Stage 4 Results 
	Stage 5 Results 
	Overall Results 
	Comparative Analysis of the Results with Existing Literature 

	Conclusions 
	References

