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Abstract: Based on the basic geological data and production data of coalbed methane wells in the
Shouyang Block, the characteristics and influencing factors of coalbed methane well production were
analyzed, and the primary controlling factors were identified by the grey correlation method. The
results show that the average daily gas production of the coalbed methane wells in the study area
for the single mining of No. 15 coal ranges from 0 to 604.34 m3/d, with an average of 116.82 m3/d.
The overall average gas production is relatively low, with only 7 of the 42 wells having an average
gas production greater than 200 m3/d. Gas production tends to increase as the gas content increases.
There is a significant positive correlation between gas saturation and average gas production. Burial
depth and coal seam thickness also show a positive correlation with average gas production. On
the other hand, there is a negative exponential relationship between average gas production and
critical desorption pressure. Permeability, as determined by well tests in the area, exhibits a negative
correlation with the gas production of coalbed methane wells. The correlation between gas production
and the mean three-dimensional stress is weak. As the fractal dimension D value of fractures increases,
gas production decreases. A smaller difference in horizontal principal stress is more favorable for the
formation of network fractures, facilitating reservoir fracturing and resulting in better reconstructive
properties. Moreover, an increase in the sand–mud ratio leads to a decrease in average gas production.
The correlation between fault fractal dimension and average gas production is weak. The grey
correlation method was employed to determine the controlling factors of coalbed methane production
in the study area, ranked from strong to weak, as follows: coal thickness > fracture fractal dimension D
value > gas saturation > coal seam gas content > horizontal stress difference coefficient > permeability
> critical desorption pressure > mean value of three-dimensional principal stress > coal seam burial
depth > sand–mud ratio > fault fractal dimension.

Keywords: Shouyang Block; coalbed methane; gas production; influencing factors; grey correlation
method

1. Introduction

Coalbed methane, recognized as a clean and efficient unconventional energy source,
has garnered significant global attention [1–5]. In recent years, some countries have made
significant achievements in the production of coalbed methane. For example, the United
States has become a major producer of coalbed methane and has extensive experience
in the extraction and utilization of coalbed methane. Australia, China, Canada, and
India have also made significant progress in this area. These countries have developed
advanced drilling and mining technologies [6,7]. China, being the largest coal producer and
consumer in the world, places great strategic importance on the development of coalbed
methane resources [8,9]. There are several basins in China that contain coalbed methane
resources, and most of the commercial development of coalbed methane is located in
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the southern part of the Qinshui Basin and the eastern part of the Ordos Basin [10,11].
However, the development area is constrained, and the number of gas-producing coal
seams is limited. Due to a lack of proper understanding of coalbed methane reservoirs,
expected production rates often cannot be achieved [12]. In the southern part of the
Qinshui Basin, less than one-fifth of the entire basin has been commercially developed
for coalbed methane. In the past, commercial development has also focused on the No. 3
coal seam of the Shanxi Formation. To meet the demand for increasing production in
the block, it is necessary to progressively mine multiple layers of coal [13]. The No. 9
and No. 15 coal seams of the Taiyuan Formation have good development conditions
in the deep and northern parts of the basin, but there are only sporadic experimental
projects and no actual resource development [14]. The Shouyang Block in the northern
part of the Qinshui Basin, as an important coal production base in China, has abundant
coalbed methane resources. Among them, the No. 15 coal seam has a large thickness,
high gas content, and good sealing performance, which provides favorable conditions for
coalbed methane development [15,16]. However, the development of coalbed methane
in this block is still at an early stage. Previous studies have focused on various aspects,
such as the characteristics of the No. 15 coal seam reservoir in the Shouyang Block,
the enrichment patterns of coalbed methane [14,17,18], the hydrogeological control and
production characteristics [19], the differences in coalbed methane well water production
and the prediction of favorable areas [16,20], the identification of water sources for coalbed
methane well discharge [21], and the feasibility of multi-layer combined mining of coalbed
methane reservoirs [3,22,23]. However, there is a lack of systematic and in-depth research
on gas production and its influencing factors. After fracturing and short-term production
and drainage, the gas production of coalbed methane wells in the Shouyang Block is
generally less than 500 m3/d [18], which seriously limits the development of coalbed
methane resources in the Shouyang Block.

Gas production from coalbed methane wells is closely related to factors such as the
degree of coalbed methane enrichment, reservoir permeability, reservoir modifiability, and
the water content of coal-bearing formations. Therefore, this paper analyses the geological
conditions for the coalbed methane development of No. 15 coal seam in the Shouyang Block,
identifies the influencing factors and mechanisms of gas production, clarifies the strong
or weak relationship between each influencing factor and gas production, and provides
theoretical support and practical guidance for efficient coalbed methane development.

2. Geological Background
2.1. Structural Geological Conditions

The Shouyang Block is located in Shouyang County, eastern Shanxi Province, China,
at the northern end of the Qinshui Basin, on the southern wing of the Yangqu–Yuxian
latitudinal structural belt. The east and west sides of the block are controlled by the Taihang
meridional structural belt and the Xinhua–Xia system structure, while the south is influ-
enced by the Shouyang–Xiluo north–south structural belt. The structure is significantly
influenced by the Yangqu–Yuxian latitudinal structural belt. The overall structure is mono-
clinic, with an east–west trend and southward inclination. Against this background, there
are also some secondary folds and faults in different directions, and the structure in the
area is relatively simple, with a general stratigraphic dip angle of 5–12 degrees (Figure 1).

2.2. Coal-Bearing Stratum

The Taiyuan Formation of the Upper Carboniferous is the main coal-bearing formation,
with a thickness of 100.92~152.78 m and a general thickness of 123.00 m. The main mineable
coal seam is No. 15. The lithology of the No. 15 coal roof predominantly consists of lime-
stone, mudstone, sandy mudstone, and sandstone. The floor lithology mainly comprises
sandy mudstone and mudstone. The sand body at the top of No. 15 coal eroded the lower
coal-bearing strata during sedimentation, forming a coal-seam erosion zone in the northern
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part of the study area (Figure 1). There are two groups of aquifers in the Shouyang Block,
mainly sandstone or limestone aquifers adjacent to coal seams in the coal measures.
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Figure 1. Location and structural geological map of the Shouyang Block.

3. Gas Production Characteristics

As of October 2022, the average daily gas production of the No.15 coal seam gas well
in the study area ranges from 0 to 604.34 m3/d, with an average of 116.82 m3/d. Only
seven out of 42 wells have an average gas production exceeding 200 m3/d, indicating a
relatively low overall average gas production (Figure 2). The highest point of average gas
production is mainly concentrated in the northeast of the Block, while the remaining areas
demonstrate comparatively lower levels of gas production (Table 1; Figure 3).
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Table 1. Statistics of gas production of No. 15 coal single-mining coalbed methane wells in Shouyang
Block.

Well Average Gas Production
(m3/d) Buried Depth (m) Coal Thickness (m) Gas

Content (m3/t)

S01 375.06 1115 3.7 12.14
S02 132.15 1415.7 3.2 19.08
S03 63.31 971.3 4.1 14.1
S04 103.25 1348.00 - -
S05 259.97 668.90 3.50 15.00
S06 29.23 583.45 5.45 15.50
S07 170.69 1124.95 3.95 15.30
S08 604.34 1441.55 4.00 15.30
S09 37 668.90 3.50 15.00
S10 243.16 1418.75 4.35 15.21
S11 50.36 1226.40 4.65 16.00
S12 61.17 1355.30 4.15 20.00
S13 521.74 1166.30 3.80 16.45
S14 171.15 1238.75 3.90 16.51
S15 162.59 1164.50 5.15 14.90
S16 221.48 1261.10 4.70 16.35
S17 51.17 674.10 3.20 5.97
S18 197.1 637.20 3.90 5.57
S19 40.00 675.15 3.8 6.46
S20 30.00 859 3 5.03
S21 10.51 774.77 3.20 4.78
S22 102.32 711.30 4.10 4.58
S23 144.91 705.60 2.90 3.79
S24 56.11 880.10 3.70 3.15
S25 105.53 819.20 4.30 3.25
S26 166.96 852.60 4.60 2.83
S27 71.81 850.60 3.10 2.77
S28 47.06 - - -
S29 0 802.9 3.9 2.67
S30 66.73 997.27 6.67 2.56
S31 107.68 1237.65 5.45 16.5
S32 24.01 - 4.20 16.4
S33 23.98 - - -
S34 0 - - -
S35 0 1120.15 3.4 14.2
S36 0 1210.5 3.45 13.1
S37 94.55 674.65 4.7 -
S38 0 896.8 1.6 -
S39 298.84 654.2 2.6 -
S40 13.03 749.3 3.8 -
S41 42.71 756.55 4.2 -
S42 4.8 893.8 3.4 -
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4. Analysis of Influencing Factors
4.1. Gas Enrichment Factors

Coalbed methane enrichment is controlled by four primary factors: gas content, coal
seam thickness, gas saturation, and critical desorption pressure. Coal seam thickness and
gas content are the cornerstones of resource abundance. The gas saturation of coal seams
reflects the degree of resource enrichment. The critical desorption pressure is commonly
used to describe the release capacity of coalbed methane [24–28].

4.1.1. Gas Content and Gas Saturation

The gas content of No. 15 coal ranges from 2.56 to 20.00 m3/t, with an average of
10.95 m3/t. The enriched area is located in the eastern part of the block, with the lowest
gas content observed in the northwest corner. The overall distribution exhibits a “high in
the east and southeast, low in the central and lowest in the northwest” characteristic, with
a gradual decrease and then increase from east to west. In addition, the change rate of gas
content in the central region of the study area is relatively slow, while the change rate in the
east and west is relatively fast (Figure 4). As the gas content increased, the gas production
also showed an increasing trend, but the correlation was poor (Figure 5).
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Gas saturation represents the adsorption “fullness” of adsorbed gas, which directly
affects the production and recoverable reserves of coalbed methane, as well as the difficulty
of desorption and depressurization in coalbed methane extraction. The gas saturation of
No. 15 coal is relatively low, ranging from 0.22 to 0.68, with an average of 0.43 (Table 2).
Gas saturation in the region shows a gradually increasing trend from north to south, with
relatively high gas saturation on both sides of the western and eastern regions, especially
in the southern region where high values appear, and relatively low gas saturation in
the central and northern regions. The higher the gas saturation, the lower the pressure
drop required for desorption and production of adsorbed gas. The shorter the time of the
saturated water single-phase flow stage experienced by coalbed methane wells, the more
favorable it is for coalbed methane wells to see gas in advance, and the higher the gas
production [24,25]. There is a significant positive correlation between gas saturation and
average gas production (Figures 6 and 7).
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Table 2. Statistics of various parameters of coalbed methane wells.

Well

Fractal
Dimension
D Value of

Fracture

Fault Fractal
Dimension

Value

Sand–mud
Ratio

Permeability
(mD)

Gas
Saturation

Critical
Desorption

Pressure
(MPa)

Maximum
Horizontal
Principal

Stress (MPa)

Minimum
Horizontal
Principal

Stress (MPa)

Vertical
Principal

Stress (MPa)

Horizontal
Stress

Difference
Coefficient

(MPa)

Mean Value of
Three-

Dimensional
Principal Stress

(MPa)

S01 1.74 0.78 0.68 0.20 0.36 0.45 28.02 26.87 26.84 0.04 27.24
S02 1.60 0.90 0.42 0.15 0.53 2.35 24.00 22.50 25.00 0.07 23.83
S03 1.68 0.70 0.54 0.30 0.46 2.55 23.80 22.00 28.00 0.08 24.60
S06 1.75 0.20 1.20 1.80 0.32 1.14 18.50 14.00 20.00 0.32 17.50
S07 1.70 0.20 1.34 0.62 0.22 1.23 18.50 14.50 21.00 0.28 18.00
S08 1.74 0.90 0.63 0.30 0.38 0.71 25.50 21.00 23.50 0.21 23.33
S09 1.75 0.20 1.05 0.10 0.58 2.62 30.11 26.32 28.42 0.14 28.28
S10 1.70 0.83 1.00 0.10 0.50 0.25 15.44 12.92 23.34 0.20 17.23
S11 1.71 1.00 1.80 0.05 0.54 3.67 17.18 13.21 33.06 0.30 21.15
S12 1.74 0.62 1.85 0.05 0.52 3.00 17.50 15.00 29.00 0.17 20.50
S13 1.77 0.79 0.77 0.28 0.46 2.80 22.00 21.50 29.00 0.02 24.17
S14 1.78 0.70 0.81 0.46 0.50 1.00 25.00 23.80 33.00 0.05 27.27
S15 1.79 0.80 2.23 0.30 0.68 0.49 25.00 23.80 33.00 0.05 27.27
S17 1.79 0.20 1.04 0.50 0.42 1.68 20.05 17.50 15.83 0.15 17.79
S18 1.81 0.30 0.35 0.32 0.36 0.78 16.44 17.89 18.13 0.21 17.49
S19 1.84 0.94 0.44 0.52 0.38 1.45 16.24 16.77 19.69 0.11 17.57
S20 1.82 0.81 3.00 0.21 0.36 1.70 25.45 24.39 20.68 0.04 23.51
S21 1.82 0.90 3.12 0.20 0.32 1.80 20.35 17.57 18.38 0.16 18.77
S22 1.80 0.70 0.41 0.40 0.50 1.30 18.17 17.14 21.03 0.06 18.78
S23 1.77 0.65 1.52 1.00 0.36 1.30 17.46 12.95 20.37 0.35 16.93
S25 1.81 0.60 2.10 0.88 0.40 1.45 19.50 17.00 21.00 0.15 19.17
S26 1.62 0.50 2.50 1.50 0.38 1.46 22.00 18.00 25.71 0.22 21.90
S27 1.78 0.50 3.00 1.05 0.40 1.09 20.00 13.80 21.80 0.45 18.53
S29 1.63 0.40 4.80 1.00 0.50 2.50 19.50 15.50 21.40 0.26 18.80
S31 1.85 0.80 2.20 1.43 0.46 0.71 13.17 10.23 20.45 0.29 14.62
S32 1.71 0.84 1.24 0.25 0.34 1.27 18.20 15.67 19.43 0.16 17.77
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4.1.2. Coal Thickness and Burial Depth

The greater the burial depth, the higher the geostress, and the lower the permeability
of the coal reservoir [29,30]. The gas content increases with increasing burial depth within
the critical depth range [31]. The burial depth of No.15 coal ranges from 583.45 m to
1441.55 m, with an average of 963.22 m. The coal thickness ranges from 1.60 to 6.67 m, with
an average of 3.98 m. The high thickness areas are mainly distributed in the eastern and
western strips of the block, with local areas exceeding 6.5 m. The areas with coal thickness
exceeding 4.8 m are distributed in the western and southern parts of the study area, while
the central part of the Shouyang block shows the thinnest coal thickness of less than 2 m
(Figure 8). There is a positive correlation between coal seam thickness and average gas
production. With increasing burial depth and coal thickness, the average gas production
exhibits a significant increasing trend (Figures 9 and 10).
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4.1.3. Critical Desorption Pressure

Coalbed methane wells utilize surface suction to enhance the production pressure
differential, stimulate coal seam water production, reduce coal seam pressure, and ulti-
mately achieve the goal of reducing the coal seam pressure below the critical desorption
pressure, leading to continuous and stable gas production from coal seams [25]. The critical
desorption pressure in the study area ranges from 0.25 to 3.67 MPa, with an average of
1.57 MPa. There is a negative exponential relationship between average gas production
and critical desorption pressure (Figure 11).
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4.2. Permeability Factors

Coal seam “permeability” is the primary factor affecting coalbed methane production,
and the permeability involves the conductivity of coal seams. Ground stress affects the
distribution of coal seam fractures and the permeability of coal seams, which in turn affects
the gas production of coalbed methane wells [29,32,33]. The fractal dimension D value of
the fracture reflects the degree of fracture enrichment [34]. The permeability of the coal
seams determines the strength of the coalbed methane transport capacity [27].

4.2.1. Permeability

The permeability data of the study area primarily rely on injection pressure drop tests.
The permeability of coal seam 15 ranges from 0.015 to 1.80 mD, with an average of 0.54 mD.
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The permeability of well tests in this area is negatively correlated with the average gas
production of coalbed methane wells (Figure 12).
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4.2.2. Mean Value of Three-Dimensional Principal Stress

The maximum horizontal principal stress of No.15 coal in the study area ranges from
5.29 to 32 MPa, with an average of 21.6 MPa. The minimum horizontal principal stress
ranges from 8.21 to 31.37 MPa, with an average of 18.99 MPa. Additionally, the vertical
principal stress ranges from 6.67 to 22.75 MPa, with an average of 15.28 MPa.

Ground stress affects the shape, length, and degree of opening and closing of fractures.
Fractures tend to close more easily and exhibit lower permeability and gas production
when subjected to higher mean values of three-dimensional stress [29]. The correlation
between the gas production of coal seams in the study area and the mean value of the
three-dimensional stress is poor, indicating that gas production is greatly influenced by
other factors (Figure 13).
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gas production.

4.2.3. Fractal Dimension D Value of Fracture

By utilizing the R/S fractal method to analyze the natural gamma logging data, the
Hurst index for each well was obtained, and the corresponding D value was calculated [34].
The distribution of D values ranges from 1.61 to 1.89. As the fractal dimension D value
of fractures increases, the gas production decreases. This finding suggests that a higher
degree of coal structure fracturing corresponds to lower gas production from the coal seam
(Figure 14).
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4.3. Fracturing Factors

The initiation and extension of fracturing cracks must overcome not only the tensile
strength of the rock, but also the constraints of the geological stress. The difference in
geological stress will have a significant effect on fracture initiation. The smaller the differ-
ence in horizontal principal stress, the more favorable it is for the formation of network
fracture, and the easier the reservoir can be fractured, resulting in better reconstructive
properties. The horizontal stress difference coefficient refers to the ratio of the horizontal
principal stress difference between two directions to the minimum horizontal principal
stress [35]. The horizontal stress difference coefficient difference in the Shouyang block
ranges from 0.01 to 0.45, with an average of 0.17 (Table 2). The correlation between the coal
seam gas production and the horizontal stress difference coefficient in the study area is
poor (Figure 15).
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4.4. Effluent Factors

In order to predict areas at risk of water outflow, it is beneficial to select reasonable
water avoidance and gas recovery zones, which are influenced by sand–mud ratio and
fault fractal dimension. Sandstone serves as a representative aquifer, whereas mudstone
acts as an impermeable layer. The sand–mud ratio is an important indicator for describing
the water abundance within the lithology. The fault fractal dimension quantifies the faults
in a block, which have a significant impact on the communication of aquifers.
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4.4.1. Sand–mud Ratio

The higher the sandstone content in the coal seam roof, the greater its thickness, and
the greater its water abundance [36]. In this study, the sand–mud ratio serves as a primary
indicator for evaluating the water abundance of the coal-seam roof aquifer. The smaller
the sand–mud ratio, the more favorable it is for drainage and gas production [36]. The
thickness of the sandstone and mudstone between the bottom of the No.15 coal and the K3
limestone was calculated, and the sand–mud ratio was determined. The sand-to-mud ratio
ranges from 0.09 to 18, with an average of 2.2. As the sand-to-mud ratio increases, there
is a notable decrease in average gas production, demonstrating a strong and exponential
correlation (Figure 16).
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4.4.2. Fault Fractal Dimension

Fault structures are important channels for coalbed methane and water in the study
area. To accurately quantify the complexity of these fault structures, similarity dimension
parameters are employed for evaluation, and the fractal dimension of faults is calculated
using the grid coverage method. For research objects exhibiting self-similarity, such as fault
structures, the similarity dimension is calculated based on their division into N units, where
each unit resembles the entirety of the object according to the similarity ratio, denoted as
r [25]. The similarity dimension is defined as follows:

Ds = −lgN(r)/lg(r) (1)

In Equation (1), Ds represents the similarity dimension, N(r) represents the number of
grids containing fault traces, and r represents the similarity ratio.

The fractal dimension of the faults in the study area ranges from 0 to 1.303, with an
average of 0.71. However, the correlation between the fractal dimension of faults and
average gas production is weak, indicating that other factors may have a more significant
impact on gas production levels (Figure 17).
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5. Discussion

The grey correlation analysis method is a statistical analysis approach that takes into
account multiple factors. Grey correlation refers to the uncertain relationship between
variables, and its main objective is to determine the degree of influence or contribution
of factors to the main behavior. If two factors exhibit a consistent trend of changes, their
correlation is considered significant. Conversely, if the trend differs significantly, the
correlation is relatively weak [37,38]. Based on the previous analysis, 11 parameters
including coal thickness, fracture fractal dimension D value, gas saturation, gas content,
horizontal stress difference coefficient, permeability, critical desorption pressure, the mean
value of three-dimensional principal stress, burial depth, sand–mud ratio, and fault fractal
dimension were selected for grey correlation analysis. The correlation coefficient between
each factor and average gas production was calculated to determine the primary and
secondary levels of influence for each factor. The specific calculation steps are outlined as
follows [39]:

(1) Determine the comparison sequence and reference sequence
Due to the varying level of detail in the parameters of each coalbed methane well in

the study area, the reference sequence for this calculation is the average gas production
of 32 wells extracted from No. 15 coal in Shouyang Block. The above 11 parameters
corresponding to 32 wells is the comparison sequence. Set the reference sequence as {xi (n)}
and the comparison sequence as {yi (n)}, where the variation range of i is 1–11, and the
variation range of n is 1–32;

(2) Depersonalization and normalization of parameters
Due to the different physical meanings, numerical ranges, and units of each evaluation

indicator, in order to facilitate comparison between various parameters, it is necessary to
process each parameter into dimensionless data and convert it into a number between 0
and 1.

(3) Determine correlation coefficient
When n = k, the reference sequence is represented as {xi (k)}, and the comparison

sequence is represented as {y (k)}, with their correlation coefficients εi(k) calculated using
the following formula:

εi(k) =
∆i(min) + ρ∆i(max)

∆i(k) + ρ∆i(max)
(2)

In Equation (2), ∆i (max) and ∆i (min) represent the maximum and minimum absolute
values of the difference between the reference sequence and the comparison sequence,
respectively; ∆i (k) is the absolute value of the difference between the two when n = k, i.e.,
∆i (k) = y (k) − xi(k); and ρ The resolution coefficient is usually 0.5.

(4) Calculate the correlation coefficient
Calculate the average correlation coefficient between the comparison sequence and

the reference sequence at different points, and calculate it using the following formula.

Ri =
1
n

n

∑
k=1

εi(k) (3)

Calculate the degree of correlation between each parameter and daily gas production
according to Equation (3), and sort them according to their relationship.

Based on the correlation coefficient comparison results, the factors influencing coalbed
methane production in the study area can be ranked from strong to weak, as follows: coal
thickness > fracture fractal dimension D value > gas saturation > gas content > horizontal
stress difference coefficient > permeability > critical desorption pressure > mean value of
three-dimensional principal stress> burial depth > sand–mud ratio > fault fractal dimension
(Table 3; Figure 18).



Processes 2023, 11, 3269 14 of 16

Table 3. Correlation and ranking statistics between comparative sequences and reference sequences.

Factors Affecting
Gas Production Coal Thickness

Fracture Fractal
Dimension D

Value
Gas Saturation Gas Content

Horizontal
Stress Difference

Coefficient
Permeability

Correlation 0.806 0.799 0.791 0.79 0.788 0.782

Factors affecting
gas production

Critical
desorption

pressure

Mean value of
three-dimensional

principal stress
Burial depth Sand–mud ratio Fault fractal

dimension

Correlation 0.763 0.763 0.746 0.746 0.723
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In coalbed methane development, factors such as coal thickness, fracture fractal
dimension D value, gas saturation and gas content can be prioritized to achieve efficient
development. According to Figures 5, 7, 9 and 14, when the coal thickness is greater than
4.1 m, the fracture fractal dimension D value is less than 1.65, the gas saturation is greater
than 0.54, the gas content is greater than 12 m3/t, and the average gas production will reach
over 200 m3/d.

6. Conclusions

(1) The characteristics of coalbed methane production in the Shouyang Block have
been identified. The average daily gas production of coalbed methane wells in the study
area ranges from 0 to 604.34 m3/d, with an average of 116.82 m3/d. The overall average gas
production is relatively low, with only 7 of the 42 wells having an average gas production
greater than 200 m3/d. The highest average point is mainly concentrated in the northeast
of the block, while the remaining areas exhibited relatively lower production levels.

(2) Gas production tends to increase as the gas content increases. There is a significant
positive correlation between gas saturation and average gas production. Burial depth and
coal seam thickness also show a positive correlation with average gas production. On the
other hand, there is a negative exponential relationship between average gas production
and critical desorption pressure. Permeability, as determined by well tests in the area,
exhibits a negative correlation with the gas production of coalbed methane wells. The
correlation between gas production and the mean three-dimensional stress is weak. As
the fractal dimension D value of fractures increases, gas production decreases. A smaller
difference in horizontal principal stress is more favorable for the formation of network
fractures, facilitating reservoir fracturing and resulting in better reconstructive properties.
Moreover, an increase in the sand–mud ratio leads to a decrease in average gas production.
The correlation between fault fractal dimension and average gas production is weak.
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(3) The grey correlation method was employed to determine the controlling factors of
coalbed methane production in the study area, ranked from strong to weak, as follows: coal
thickness > fracture fractal dimension D value > gas saturation > coal seam gas content >
horizontal stress difference coefficient > permeability > critical desorption pressure > mean
value of three-dimensional principal stress > coal seam burial depth > sand–mud ratio >
fault fractal dimension.

Author Contributions: Conceptualization, B.Z. and W.L.; methodology, W.L., G.W. and X.J.; software,
W.L., G.W. and X.J.; investigation, B.Z., W.L. and X.J.; writing—original draft preparation, W.L. and
G.W; writing—review and editing, G.W.; project administration, B.Z.; funding acquisition, B.Z. All
authors have read and agreed to the published version of the manuscript.
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