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This Special Issue, entitled “The Design and Optimization of Fire Protection Processes”,
has been created to help readers gain new insights into the field of fire protection. The
world’s current situation, considering climate change and ongoing economic changes,
brings new challenges in the field of fire protection. Fire hazards are related to the presence
of combustible materials and the creation of suitable conditions for the initiation of the
combustion process. Possessing a good knowledge of these processes provides a basis for
the development of fire prevention measures.

In this Special Issue entitled “The Design and optimization of fire protection Processes”,
the high-quality contributions contained within focus on the latest advancements and
processes related to the thermal degradation of renewable natural materials, processes
of fire initiation, fire development, and heat propagation in fires, with some attention
also being paid to certain software models. The papers within this Special Issue discuss
the following topics: the processes applied for fires; fire testing (fire characteristics); fire
dynamics and heat release; and fire protection.

The Processes applied for fires
Fires are dynamic systems with a set of physicochemical processes [1,2]. The above

processes interact with each other on the basis of the identified fire phases [3,4]. The
presence of flammable substances in open air environments increases the potential for
the formation of a fire [5–7]. A suitable initiator starts the combustion process [8]. The
subsequent steps depend on the amount of heat released [9] and other parameters that
affect the combustion process [10]. One of these important parameters is the amount of
oxygen required to realize the chemical reaction needed for a fire to occur [11,12]. The
influence of the amount of oxygen and inert gas in the process of the multiple-bay fuel tank
is discussed in the first contribution of this Special Issue.

Fire testing (fire characteristics)
In fire testing, fire characteristics are parameters that can help to evaluate the behaviour

of the materials in a fire [13]. The parameters listed in fire tests are specific to each phase
of a fire [14]. The initial parameters of a fire assessment include the initiation temperature
and the time to ignition [15,16]. Contributions 2 and 3 study these initial fire parameters.

Subsequent fire development and/or fully developed fires [17] are assessed by the heat
of combustion and calorific value [18,19], maximum temperature reached in the fire [20,21],
mass loss [22], and rate of fire spread [23]. The final factors that need to be evaluated in fire
assessments include the amount of smoke produced, the optical density of the smoke [24–26],
and the methods used to extinguish the fire [27–29]. Research in the field has focused
on conducting laboratory tests according to prescribed standards [30–32] or large-scale
tests [33,34].

Dynamics of fire and heat release
The basic parameter monitored in the assessment of smoke dynamics in fire develop-

ment is the heat release rate (HRR) [35–37]. This parameter quantifies the amount of heat
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produced by the pro-processes in a fire [38,39]. The role of dynamics is to track how a fire
propagates in an open [40] or confined space [41,42]. Research in the field regarding this
has rarely conducted through real experiments [43–45]. Most research has took the form of
experiments to monitor “reaction-on-fire” parameters [46,47]. Contribution 4 is dedicated
to this area of research, and in this paper, attention is drawn to the creation of software
models, as in the work of other authors [48–50].

Fire protection
Fire protection is a very hot topic. Fire protection requirements are based on the

general requirements in all areas [51]. Cohesion in terms of safety precautions is needed
in the construction and operation of production and non-production facilities [52,53]. In
general, the field of fire protection can be divided into two parallel units: the preventive
field [54] and the field of emergency services [55] which are prepared to take rapid and
effective measures to prevent the spread of fires and eliminate them in the event of a fire.
Contributions 5 and 6 address the areas pertaining to fire protection mentioned above.

The above topics are also discussed in six articles within this Special Issue, which are
presented according to the chronology of the topics presented in this manuscript. A full list
of the contributions is provided below:

Contribution 1. Shao, L.; He, J.; Lu, X.; Liu, W. Optimization Study of Inert Gas Distribution
for Multiple-Bay Fuel Tank. Processes 2023, 11, 2441. https://doi.org/10.3390/pr11082441
Contribution 2. Markova, I.; Giertlova, Z.; Jadudova, J.; Turekova, I. Monitoring the Ignition
of Hay and Straw by Radiant Heat. Processes 2023, 11, 2741. https://doi.org/10.3390/pr1
1092741
Contribution 3. Jad’ud’ová, J.; Marková, I.; Št’astná, M.; Giertlová, Z. The Evaluation of the
Fire Safety of the Digestate as An Alternative Bedding Material. Processes 2023, 11, 2609.
https://doi.org/10.3390/pr11092609
Contribution 4. Martinka, J.; Rantuch, P.; Martinka, F.; Wachter, I.; Štefko, T. Improvement
of Heat Release Rate Measurement from Woods Based on Their Combustion Products
Temperature Rise. Processes 2023, 11, 1206. https://doi.org/10.3390/pr11041206
Contribution 5. Leitner, B.; Ballay, M.; Kvet, M.; Kvet, M. Optimization of Fire Brigade
Deployment by Means of Mathematical Programming. Processes 2023, 11, 1262. https:
//doi.org/10.3390/pr11041262
Contribution 6. Ballay, M.; Leitner, B.; Jakubovičová, L. Design and Optimization of
the Training Device for the Employment of Hydraulic Rescue Tools in Traffic Accidents.
Processes 2023, 11, 1103. https://doi.org/10.3390/pr11041103

Contribution 1 discusses the processes applied for fires and presents research focusing
on the fire suppression process, specifically on the inerting effect. This paper is about the
distribution of inert gas for the multiple-bay fuel tank. The authors propose an optimization
method based on the TOPSIS method to improve the entropy and weight of the multiple-
bay fuel tank. They established an experimental inert gas distribution system to measure the
velocity index and uniformity index. They implemented the results of the optimalization
method on an inerting Boeing 747 aircraft, where the average velocity index improved by
3.01%, and the average uniformity index improved by 26.18%.

Fire characteristics and specifically the sizes of the potential fires that could be caused
by flammable materials can be determined by conducting experiments. In regard to this,
this Special Issue has two contributions, both about natural materials. Contribution 2
describes the results of a test conducted to determine the thermal degradation and ignition
of hay and straw via radiant heat. This study involved investigating the effects of sample
type (hay and straw) and sample quantity on the thermal degradation process, temperature
increase within the samples, and ignition temperature of the samples as a function of time.
The ignition temperature of hay was determined to be higher (407 ◦C) than that of straw
(380 ◦C).

For Contribution 3, the experimental determination of digestate ignition temperature
was carried out according to EN 50281-2-1 (1998) using a hotplate device. Different amounts
of samples (3, 5, and 10 g) were monitored to track the course of thermal degradation. The
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results showed higher temperatures of thermal degradation in samples of additionally
dried digestate, where these processes were observed earlier in terms of time. The aim
of this study was to research the use of digestate as a bedding material, and 3 and 10 g
samples of digestate were deemed not suitable as bedding materials due to the fire safety
aspects of the material.

Fire dynamics and heat release cannot be investigated by only conducting experiments,
as software tools are also needed. Contribution 4 highlights one of the most important
fire characteristics (in principle): heat release rate (HRR). The authors of this contribution
describe a method for measuring the individual HRRs of combustible products based on
rises in temperature. This method has a fundamental problem with respect to predicting
the temperature dependence of the heat capacities of combustible products and the thermal
inertia of the measurement system. This problem was solved by training neural networks
to predict molar heat capacity and the amount of substance (chemical amount) flow rate
of combustion products in the cone calorimeter exhaust duct. Experimental data were
obtained from six different wood species—birch, oak, spruce, locust, poplar, and willow
woods—at heat fluxes ranging from 25 to 50 kW m−2.

Two articles presented in this Special Issue focus on the methods and techniques of
fire departments. Contribution 5 is thematically centred around “fire protection” and deals
with research on the application of the selected methods of operational research among
emergency services. The article has a theoretical part and a practical part. The aim of the
theoretical part was to identify the most important aspects of a real system that should
be taken into account whenever a rescue system is being redesigned or optimized. The
practical part presents a short case study conducted with real data on the rescue service
system in Slovakia, in which the results obtained are compared with the current deployment
of firefighting units.

The design and design optimization of a training device for operators of a hydraulic
rescue tool for use in traffic accidents was investigated by the authors of Contribution 6.
This article includes research on processes for improving the technical procedures used in
such situations. It is based on contained experimental results aimed at assessing the time
required to cut through the structural parts of a vehicle—the “A” and “B” pillars—when
using a hydraulic extrication tool.

Author Contributions: Writing—original draft preparation I.M. and writing—review and editing,
A.B. All authors have read and agreed to the published version of the manuscript.
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8. Gašpercová, S.; Marková, I.; Vandlíčková, M.; Osvaldová, L.M.; Svetlík, J. Effect of Protective Coatings on Wooden Elements

Exposed to a Small Ignition Initiator. Appl. Sci. 2023, 13, 3371. [CrossRef]
9. Rantuch, P.; Martinka, J.; Ház, A. The Evaluation of Torrefied Wood Using a Cone Calorimeter. Polymers 2021, 13, 1748. [CrossRef]

https://doi.org/10.3390/polym15214203
https://www.ncbi.nlm.nih.gov/pubmed/37959884
https://doi.org/10.3390/en16227489
https://doi.org/10.3390/app13169123
https://doi.org/10.3390/app11156874
https://doi.org/10.3390/su152014729
https://doi.org/10.3390/ma16072813
https://www.ncbi.nlm.nih.gov/pubmed/37049105
https://doi.org/10.3390/app13116712
https://doi.org/10.3390/app13053371
https://doi.org/10.3390/polym13111748


Processes 2023, 11, 3338 4 of 5

10. Lee, C.-M.; Jung, B.-G.; Choi, J.-H. Experimental Study on Prediction for Combustion Optimal Control of Oil-Fired Boilers of
Ships Using Color Space Image Feature Analysis and Support Vector Machine. J. Mar. Sci. Eng. 2023, 11, 1993. [CrossRef]

11. Yang, H.; Jiang, D. Research on Oxygenation Components under a High-Pressure Oxygen Environment. Appl. Sci. 2023, 13, 7703.
[CrossRef]

12. Martin, J.; Armbruster, W.; Suslov, D.; Stützer, R.; Hardi, J.S.; Oschwald, M. Flame Characteristics and Response of a High-Pressure
LOX/CNG Rocket Combustor with Large Optical Access. Aerospace 2022, 9, 410. [CrossRef]

13. Perka, B.; Piwowarski, K. A Method for Determining the Impact of Ambient Temperature on an Electrical Cable during a Fire.
Energies 2023, 14, 7260. [CrossRef]
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