Mining Waste as an Eco-Friendly Adsorbent in the Removal of Industrial Basazol Yellow 5G Dye and Incorporation in Mortars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Adsorbent and Synthetic Solution Dye
2.2. Characterization of the Adsorbent
2.2.1. N2 Physisorption
2.2.2. FTIR
2.2.3. SEM and EDS
2.2.4. XDR
2.3. Adsorption Experiments
2.4. Kinetic Studies
2.5. Equilibrium Studies
2.6. Thermodynamic Analysis
2.7. Desorption Studies
2.8. Disposal of Adsorption Residue
2.8.1. Pozzolanic Activity Index (IAP)
2.8.2. Cement Performance Index
2.8.3. Compressive and Tensile Strength Test
3. Results and Discussion
3.1. Characterization of Adsorbents
3.1.1. N2 Physisorption
3.1.2. FTIR Analysis
3.1.3. SEM–EDS
3.1.4. XDR Analysis
3.2. Effect of pH
3.3. Kinetic Studies
3.4. Equilibrium Studies
3.5. Thermodynamic Analysis
3.6. Desorption Studies
3.7. Pozzolanic Activity Index (IAP) and Cement Performance Index
3.8. Physical Mechanical Characterization of Cement Pastes
4. Conclusions
- Granitic rock powder proved efficient in removing BY5G dye from synthetic and industrial effluents.
- The adsorption mechanism was likely attributed to the Si-O group.
- The equilibrium time of the system decreases with the increasing temperature.
- The highest adsorption capacity was achieved at 323 K (18.52 mg g−1).
- The adsorption process followed the pseudo-second-order kinetic model and the Langmuir isotherm.
- Negative ΔG° values indicate the spontaneity of the process, and positive ΔH° values suggest the endothermic nature of adsorption.
- The activation energy (Ea = 71.35 kJ mol−1) and the low desorption rates imply chemical adsorption.
- GRP, both before and after adsorption, did not exhibit pozzolanic characteristics.
- There is a potential for using GRP as a partial replacement for cement in mortars.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FIEP. Elementos de Economia Circular; FIEP/PR: Curitiba, Brazil, 2019; p. 100. ISBN 978-85-61268-19-0. [Google Scholar]
- Jorgensen, S.; Pedersen, L.J.T. The Circular Rather than the Linear Economy. Restart Sustain. Bus. Model Innov. 2018, 1, 103–120. [Google Scholar] [CrossRef]
- Bellver-Domingo, Á.; Hernández-Sancho, F. Circular economy and payment for ecosystem services: A framework proposal based on water reuse. J. Environ. Manag. 2022, 305, 114416. [Google Scholar] [CrossRef] [PubMed]
- Sarici, D.E.; Ozdemir, E. Utilization of granite waste as alternative abrasive material in marble grinding processes. J. Clean. Prod. 2018, 201, 516–525. [Google Scholar] [CrossRef]
- Haldar, S.K. Introduction to Mineralogy and Petrology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2, ISBN 9780323851367. [Google Scholar]
- Menossi, R.T.; Melges, J.L.P.; Akasaki, J.L.; Camacho, J.S.; Fazzan, J.V.; Tashima, M.M.; Salles, F.M. Pó de Pedra: Uma alternativa ou um complemento ao uso da areia na elaboração de misturas de concreto? Holos Environ. 2010, 10, 209–222. [Google Scholar] [CrossRef]
- Dettmer, C.A.; Abreu, U.G.P.; Guilherme, D.O.; Neto, J.F.; Dettmer, T.L. Uso de “Pó de Rocha” em Sistemas de Produção Agrícola: Breve Análise Sobre Viabilidade Técnica; IV Encontro Internacional de Gestão, Desenvolvimento e Inovação: Navirai, Brazil, 2020; pp. 1–6. [Google Scholar]
- Ramos, C.G.; Hower, J.C.; Blanco, E.; Oliveira, M.L.S.; Theodoro, S.H. Possibilities of using silicate rock powder: An overview. Geosci. Front. 2021, 13, 101185. [Google Scholar] [CrossRef]
- Akar, N.A.S.; Abdel-Latif, M.L.; Sanad, S.A.; Mohammed, A.A.R. Utilization of industrial granitic waste as adsorbent for phosphate ions from wastewater. Int. J. Sci. Eng. Res. 2020, 11, 184–194. [Google Scholar]
- Park, J.H.; Lee, J.K. Weathered Sand of Basalt as a Potential Nickel Adsorbent. Processes 2020, 8, 1238. [Google Scholar] [CrossRef]
- Martínez, K.Y.; Toso, E.A.; Morabito, R. Production planning in the molded pulp packaging industry. Comput. Ind. Eng. 2016, 98, 554–566. [Google Scholar] [CrossRef]
- Maeda, C.H.; Moretti, A.L.; Diório, A.; Braga, M.U.C.; Scheufele, F.B.; Barros, M.A.S.D.; Arroyo, P.A. The influence of electrolytes in the adsorption kinetics of reactive BF-5G blue dye on bone char: A mass transfer model. Environ. Technol. 2022, 1–17. [Google Scholar] [CrossRef]
- Knuston, K.P. Enzyms Biobleaching Recalcitrant Paper Dye; Institute of Paper Science and Technology ate Georgia Institute of Techonology: Atlanta, GA, USA, 2004; p. 345. [Google Scholar]
- de Souza, R.M.; Quesada, H.B.; Cusioli, L.F.; Fagundes-Klen, M.R.; Bergamasco, R. Adsorption of non-steroidal anti-inflammatory drug (NSAID) by agro-industrial by-product with chemical and thermal modification: Adsorption studies and mechanism. Ind. Crop. Prod. 2021, 161, 113200. [Google Scholar] [CrossRef]
- Borba, C.E.; Guirardello, R.; Silva, E.A.; Veit, M.T.; Tavares, C.R.G. Removal of nickel(II) ions from aqueous solution by biosorption in a fixed bed column: Experimental and theoretical breakthrough curves. Biochem. Eng. J. 2006, 30, 184–191. [Google Scholar] [CrossRef]
- da Silva, B.C.; Zanutto, A.; Pietrobelli, J.M. Biosorption of reactive yellow dye by malt bagasse. Adsorpt. Sci. Technol. 2019, 37, 236–259. [Google Scholar] [CrossRef]
- da Silva, D.C.C.; Pietrobelli, J.M.T.d.A. Residual biomass of chia seeds (Salvia hispanica) oil extraction as low cost and eco-friendly biosorbent for effective reactive yellow B2R textile dye removal: Characterization, kinetic, thermodynamic and isotherm studies. J. Environ. Chem. Eng. 2019, 7, 103008. [Google Scholar] [CrossRef]
- Fairbairn, E.M.R.; De Paula, T.P.; Cordeiro, G.C.; Americano, B.B.; Filho, R.D.T. Evaluation of partial clinker replacement by sugar cane bagasse ash: CO2 emission reductions and potential for carbon credits. Rev. IBRACON Estrut. Mater. 2012, 5, 229–251. [Google Scholar] [CrossRef]
- Nakanishi, E.Y.; Frías, M.; Martínez-Ramírez, S.; Santos, S.F.; Rodrigues, M.S.; Rodríguez, O.; Savastano, H. Characterization and properties of elephant grass ashes as supplementary cementing material in pozzolan/Ca(OH)2 pastes. Constr. Build. Mater. 2014, 73, 391–398. [Google Scholar] [CrossRef]
- Assaad, J.J.; Vachon, M. Valorizing the use of recycled fine aggregates in masonry cement production. Constr. Build. Mater. 2021, 310, 125263. [Google Scholar] [CrossRef]
- AlArab, A.; Hamad, B.; Chehab, G.; Assaad, J.J. Use of Ceramic-Waste Powder as Value-Added Pozzolanic Material with Improved Photocatalytic Performance. J. Mater. Civ. Eng. 2020, 32, 04020243. [Google Scholar] [CrossRef]
- Isaia, G.C. Concreto: Ciência e Tecnologia; Instituto Brasileiro do Concreto (IBRACON): São Paulo, Brazil, 2011; Volume 1, pp. 261–309. [Google Scholar]
- Fonseca, G.C. Adições Minerais e as Disposições Normativas Relativas à Produção de Concreto no Brasil: Uma Abordagem Epistêmica; Programa de Pós-Graduação em Construção Civil, Universidade Federal de Minas Gerais: Belo Horizonte, Brazil, 2010. [Google Scholar]
- Campos, H.F.; Rocha, T.M.S.; Reus, G.C.; Klein, N.S.; Filho, J.M. Determinação do teor ótimo de substituição do cimento Portland por pó de pedra usando métodos de empacotamento de partículas e análise do excesso de água na consistência de pastas. Rev. IBRACON Estrut. Mater. 2019, 12, 210–232. [Google Scholar] [CrossRef]
- Ho, Y.S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, L.; Wei, X.; Yao, Q.; Li, T. Removal of lead ions from aqueous solution by the dried aquatic plant, Lemna perpusilla Torr. J. Hazard. Mater. 2013, 244–245, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.V.; Sivanesan, S. Prediction of optimum sorption isotherm: Comparison of linear and non-linear method. J. Hazard. Mater. 2005, 126, 198–201. [Google Scholar] [CrossRef] [PubMed]
- AlArab, S.T.; Özcan, A.S.; Akar, T.; Kaynak, Z. Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste. Desalination 2009, 249, 757–761. [Google Scholar] [CrossRef]
- Akar, S.T.; Gorgulu, A.; Anilan, B.; Kaynak, Z.; Akar, T. Investigation of the biosorption characteristics of lead(II) ions onto Symphoricarpus albus: Batch and dynamic flow studies. J. Hazard. Mater. 2009, 165, 126–133. [Google Scholar] [CrossRef]
- ABNT NBR 5751; Materiais Pozolânicos—Determinação da Atividade Pozolânica Com cal Aos Sete Dias. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2015.
- ABNT NBR 5752; Materiais Pozolânicos—Determinação do Índice de Desempenho com Cimento Portland aos 28 dias. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2014.
- ABNT NBR 7215; Cimento Portland—Determinação da Resistência à Compressão de Corpos de Prova Cilíndricos. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2019.
- ABNT NBR 7222; Concreto e Argamassa—Determinação da Resistência à Tração por Compressão Diametral de Corpos de Prova Cilíndricos. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2011.
- ABNT NBR 9778; Argamassa e Concreto endurecido—Determinação da Absorção de água, Índice de Vazios e Massa Especifica. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2005.
- Oliveira, E.; Bonk, B.; Felix, E.P.; Domingues, R.C.P.R. Adsorção de monóxido de carbono em carvão ativado convencional e impregnado com 5% de nióbio. Matéria 2021, 26, e13091. [Google Scholar] [CrossRef]
- Mokrzycki, J.; Fedyna, M.; Marzec, M.; Szerement, J.; Panek, R.; Klimek, A.; Bajda, T.; Mierzwa-Hersztek, M. Copper ion-exchanged zeolite X from fly ash as an efficient adsorbent of phosphate ions from aqueous solutions. J. Environ. Chem. Eng. 2022, 10, 108567. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional). Pure Appl. Chem. 1982, 54, 2201–2218. [Google Scholar] [CrossRef]
- Lopes, W.A.; Fascio, M. Esquema para interpretação de espectros de substâncias orgânicas na região do infravermelho. Quim. Nova 2004, 27, 670–673. [Google Scholar] [CrossRef]
- da Silva, B.C.; Delgobo, E.S.; Corrêa, J.; Zanutto, A.; Medeiros, D.C.C.d.S.; Lenzi, G.G.; Matos, E.M.; Pietrobelli, J.M.T.d.A. Recovery of a synthetic dye through adsorption using malt bagasse, a by-product of brewing industry: Study in batch and continuous systems. J. Water Process Eng. 2023, 56, 104366. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Jaafar, J.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A. Fourier Transform Infrared (FTIR) Spectroscopy, Membrane Characterization; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Wagh, P.B.; Kumar, R.; Patel, R.P.; Singh, I.K.; Ingale, S.V.; Gupta, S.C.; Mahadik, D.B.; Rao, A.V. Hydrophobicity Measurement Studies of Silica Aerogels using FTIR Spectroscopy, Weight Difference Method, Contact Angle Method and KF Titration Method. J. Chem. Biol. Phys. Sci. 2015, 5, 2350–2359. [Google Scholar]
- Ramirez-Hernandez, C.; Aguilar-Flores, A. Aparicio-Saguilan, Fingerprint analysis of FTIR spectra of polymers containing vinyl análisis en la huella dactilar de espectros FTIR de polímeros que contienen etileno. Rev. DYNA 2019, 86, 198–205. [Google Scholar] [CrossRef]
- Passaretti, M.G.; Ninago, M.D.; Paulo, C.I.; Petit, H.A.; Irassarc, E.F.; Vega, D.A.; Villar, M.A.; Lopez, O.V. Biocomposites based on thermoplastic starch and granite sand quarry waste. J. Renew. Mater. 2019, 7, 393–402. [Google Scholar] [CrossRef]
- Almeida, L.N.B.; Josue, T.G.; Nogueira, O.H.L.; Ribas, L.S.; Fuziki, M.E.K.; Tusset, A.M.; Santos, O.A.A.; Lenzi, G.G. The Adsorptive and Photocatalytic Performance of Granite and Basalt Waste in the Discoloration of Basic Dye. Catalysts 2022, 12, 1076. [Google Scholar] [CrossRef]
- Luz, A.B.; Coelho, J.M. Capítulo 19. Feldspato; Rochas e Minerais Industriais—CETEM: Curitiba, Brazil, 2005; pp. 413–429. [Google Scholar]
- Crini, G.; Peindy, H.N.; Gimbert, F.; Robert, C. Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Sep. Purif. Technol. 2007, 53, 97–110. [Google Scholar] [CrossRef]
- Benkhaya, B.; Harfi, S.E.; Harfi, A.E. Classifications, Properties and Applications of Textile Dyes: A Review. Appl. J. Environ. Eng. Sci. 2017, 3, 311–320. [Google Scholar] [CrossRef]
- Fugaro, D.A.; Bruno, M. Remoção do azul de metileno de solução aquosa usando zeólitas sintetizadas com amostras de cinzas de carvão diferentes. Quím. Nova 2009, 32, 955–959. [Google Scholar]
- Ren, B.; Jin, Y.; Zhao, L.; Cui, C.; Song, X. Enhanced Cr(VI) adsorption using chemically modified dormant Aspergillus niger spores: Process and mechanisms. J. Environ. Chem. Eng. 2022, 10, 106955. [Google Scholar] [CrossRef]
- Giles, C.H.; Smith, D.; Huitson, A.A. General Treatment and Classification of the Solute Adsorption Isotherm I. Theoretical. J. Colloid Interface Sci. 1974, 47, 766–778. [Google Scholar] [CrossRef]
- Eren, E.; Cubuk, O.; Ciftci, H.; Eren, B.; Caglar, B. Adsorption of basic dye from aqueous solutions by modified sepiolite: Equilibrium, kinetics and thermodynamics study. Desalination 2010, 252, 88–96. [Google Scholar] [CrossRef]
- Fontana, K.B.; Chaves, E.S.; Sanchez, J.D.; Watanabe, E.R.; Pietrobelli, J.M.; Lenzi, G.G. Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies. Ecotoxicol. Environ. Saf. 2016, 124, 329–336. [Google Scholar] [CrossRef]
- Lu, P.J.; Lin, H.; Yu, W.; Chern, J. Chemical regeneration of activated carbon used for dye adsorption. J. Taiwan Inst. Chem. Eng. 2011, 42, 305–311. [Google Scholar] [CrossRef]
- ABNT NBR 12653; Materiais Pozolânicos—Requisitos. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2014.
- ABNT NBR 16697; Cimento Portland—Requisitos. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2018.
Cement (g) | Sand (g) | Water (g) | GRP after Adsorption (g) | |
---|---|---|---|---|
Reference | 624 | 1872 | 300 | - |
Mortar B | 468 | 1872 | 300 | 156 |
GRP (g) | Cement for GRP (g) | GRPA (g) | Cement for GRP (g) | Water (g) | |
---|---|---|---|---|---|
5% | 22.67 | 477.33 | 22.84 | 477.16 | 153 |
10% | 45.34 | 454.66 | 45.69 | 454.31 | |
15% | 68.02 | 431.98 | 68.53 | 431.47 | |
20% | 90.69 | 409.31 | 91.38 | 408.62 |
Element | GRP Natural (%) | GRP after Adsorption (%) |
---|---|---|
O | 53.9 | 54.9 |
Si | 29.3 | 30.5 |
Al | 7.1 | 6.5 |
Na | 4.0 | 3.6 |
K | 3.4 | 2.6 |
Fe | 1.7 | 1.9 |
Models | Parameters | Temperature (K) | |||
---|---|---|---|---|---|
298 | 303 | 313 | 323 | ||
Pseudo-first-order | qe (mg L−1) | 1.9993 | 1.9419 | 1.9208 | 1.8546 |
k1 (min−1) | 0.0325 | 0.0371 | 0.0722 | 0.0833 | |
R2 | 0.9833 | 0.9539 | 0.9699 | 0.9632 | |
Pseudo-second-order | qe (mg L−1) | 10.1711 | 9.8708 | 9.8691 | 9.3920 |
k2 (min−1) | 0.0264 | 0.0392 | 0.0990 | 0.2397 | |
R2 | 0.9995 | 0.9997 | 0.9999 | 0.9999 | |
Elovich | α (mg g−1 min−1) | 222.7094 | 156.2338 | 843.9453 | 1069.6420 |
β (mg g−1 min−1) | 1.0709 | 1.0347 | 1.1823 | 1.2505 | |
qe (mg L−1) | 10.2297 | 9.9338 | 9.3039 | 8.7065 | |
R2 | 0.9720 | 0.9690 | 0.9327 | 0.9046 | |
Experimental data | qe (mg L−1) | 10.1235 | 9.8534 | 9.8714 | 9.3441 |
t equilíbrium (min) | 240 | 180 | 60 | 40 |
Parameters | 298 K | 303 K | 313 K | 323 K | |
---|---|---|---|---|---|
Langmuir | qmax (mg g−1) | 14.6003 | 16.6808 | 17.5156 | 18.5213 |
K (L mg−1) | 2.1183 | 0.2665 | 0.5124 | 0.7039 | |
R2 | 0.9992 | 0.9997 | 0.9999 | 0.9997 | |
Freundlich | kF (L mg−1) | 2.0241 | 2.0719 | 2.1307 | 2.3890 |
nF | 4.4096 | 4.5229 | 4.2541 | 5.3490 | |
R2 | 0.7822 | 0.7799 | 0.7339 | 0.8143 |
T (K) | Kd | ΔG° (kJ mol−1) | ΔH° (kJ mol−1) | ΔS° (J mol−1 K—1) |
---|---|---|---|---|
298 | 5.30 | −4.14 | 37.06 | −137.75 |
303 | 6.07 | −4.54 | ||
313 | 10.29 | −6.07 | ||
323 | 16.29 | −7.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawerroth, M.; Pereira, E.; de Almeida, L.N.B.; Martins, R.J.E.; Pietrobelli, J.M.T.d.A. Mining Waste as an Eco-Friendly Adsorbent in the Removal of Industrial Basazol Yellow 5G Dye and Incorporation in Mortars. Processes 2023, 11, 3349. https://doi.org/10.3390/pr11123349
Hawerroth M, Pereira E, de Almeida LNB, Martins RJE, Pietrobelli JMTdA. Mining Waste as an Eco-Friendly Adsorbent in the Removal of Industrial Basazol Yellow 5G Dye and Incorporation in Mortars. Processes. 2023; 11(12):3349. https://doi.org/10.3390/pr11123349
Chicago/Turabian StyleHawerroth, Mariane, Eduardo Pereira, Lariana Negrão Beraldo de Almeida, Ramiro José Espinheira Martins, and Juliana Martins Teixeira de Abreu Pietrobelli. 2023. "Mining Waste as an Eco-Friendly Adsorbent in the Removal of Industrial Basazol Yellow 5G Dye and Incorporation in Mortars" Processes 11, no. 12: 3349. https://doi.org/10.3390/pr11123349
APA StyleHawerroth, M., Pereira, E., de Almeida, L. N. B., Martins, R. J. E., & Pietrobelli, J. M. T. d. A. (2023). Mining Waste as an Eco-Friendly Adsorbent in the Removal of Industrial Basazol Yellow 5G Dye and Incorporation in Mortars. Processes, 11(12), 3349. https://doi.org/10.3390/pr11123349