Optimization of an Indoor DWC Hydroponic Lettuce Production System to Generate a Low N and P Content Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydroponic Setup
2.2. Experiments
2.3. Light, Temperature and Crop Growth Monitoring
2.4. Water Quality and Nutrients Monitoring
2.5. Calculations and Statistical Analysis
3. Results and Discussion
3.1. Light and Lettuce Growth Parameters
3.2. Water-Use Efficiency (WUE) and Light-Use Efficiency (LUE)
3.3. Water Quality and Nutrient Uptake
3.3.1. Water Temperature, pH and Electrical Conductivity (EC)
3.3.2. Nitrogen and Phosphorus
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Islam, S.M.F. World’s Demand for Food and Water: The Consequences of Climate Change. In Desalination-Challenges and Opportunities; Farahami, M.H.D.A., Vatanpour, V., Taheri, A.H., Eds.; IntechOpen: Rijeka, Croatia, 2019; Chapter 4; ISBN 978-1-78984-739-0. [Google Scholar]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Marshall, E.; Aillery, M.; Malcolm, S.; Williams, R. Agricultural Production under Climate Change: The Potential Impacts of Shifting Regional Water Balances in the United States. Am. J. Agric. Econ. 2015, 97, 568–588. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Yuan, X.; Liu, X. The key drivers for the changes in global water scarcity: Water withdrawal versus water availability. J. Hydrol. 2021, 601, 126658. [Google Scholar] [CrossRef]
- Majid, M.; Khan, J.N.; Ahmad Shah, Q.M.; Masoodi, K.Z.; Afroza, B.; Parvaze, S. Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L. var. Longifolia) and comparison with protected soil-based cultivation. Agric. Water Manag. 2021, 245, 106572. [Google Scholar] [CrossRef]
- AlShrouf, A. Hydroponics, Aeroponic and Aquaponic as Compared with Conventional Farming. Am. Sci. Res. J. Eng. Technol. Sci. 2017, 27, 247–255. [Google Scholar]
- Barbosa, G.L.; Gadelha, F.D.A.; Kublik, N.; Proctor, A.; Reichelm, L.; Weissinger, E.; Wohlleb, G.M.; Halden, R.U. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods. Int. J. Environ. Res. Public Health 2015, 12, 6879–6891. [Google Scholar] [CrossRef] [Green Version]
- El-Kazzaz, K.A.; El-kazzaz, A.A. Soilless Agriculture a New and Advanced Method for Agriculture Development: An Introduction. Agric. Res. Technol. Open Access J. 2017, 3, 555610. [Google Scholar] [CrossRef]
- Velazquez-Gonzalez, R.S.; Garcia-Garcia, A.L.; Ventura-Zapata, E.; Barceinas-Sanchez, J.D.O.; Sosa-Savedra, J.C. A Review on Hydroponics and the Technologies Associated for Medium- and Small-Scale Operations. Agriculture 2022, 12, 646. [Google Scholar] [CrossRef]
- Rusu, T.; Moraru, P.I.; Mintas, O.S. Influence of environmental and nutritional factors on the development of lettuce (Lactuca sativa L.) microgreens grown in a hydroponic system: A review. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12427. [Google Scholar] [CrossRef]
- Nagano, S.; Mori, N.; Tomari, Y.; Mitsugi, N.; Deguchi, A.; Kashima, M.; Tezuka, A.; Nagano, A.J.; Usami, H.; Tanabata, T.; et al. Effect of differences in light source environment on transcriptome of leaf lettuce (Lactuca sativa L.) to optimize cultivation conditions. PLoS ONE 2022, 17, e0265994. [Google Scholar] [CrossRef]
- Bian, Z.H.; Yang, Q.C.; Liu, W.K. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. J. Sci. Food Agric. 2015, 95, 869–877. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Blasioli, S.; Cellini, A.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting. Sci. Rep. 2019, 9, 14127. [Google Scholar] [CrossRef] [Green Version]
- Pennisi, G.; Orsini, F.; Landolfo, M.; Pistillo, A.; Crepaldi, A.; Nicola, S.; Fernandez, J.A.; Marcelis, L.F.M.; Gianquinto, G. Optimal photoperiod for indoor cultivation of leafy vegetables and herbs. Eur. J. Hortic. Sci. 2020, 85, 329–338. [Google Scholar] [CrossRef]
- Zhang, X.; He, D.; Niu, G.; Yan, Z.; Song, J. Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int. J. Agric. Biol. Eng. 2018, 11, 33–40. [Google Scholar] [CrossRef]
- Matysiak, B.; Ropelewska, E.; Wrzodak, A.; Kowalski, A.; Kaniszewski, S. Yield and Quality of Romaine Lettuce at Different Daily Light Integral in an Indoor Controlled Environment. Agronomy 2022, 12, 1026. [Google Scholar] [CrossRef]
- Kelly, N.; Choe, D.; Meng, Q.; Runkle, E.S. Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Sci. Hortic. 2020, 272, 109565. [Google Scholar] [CrossRef]
- Fu, W.; Li, P.; Wu, Y. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci. Hortic. 2012, 135, 45–51. [Google Scholar] [CrossRef]
- Sago, Y. Effects of light intensity and growth rate on tipburn development and leaf calcium concentration in butterhead lettuce. HortScience 2016, 51, 1087–1091. [Google Scholar] [CrossRef]
- Mattson, N.S. Tipburn of hydroponic lettuce. e-Gro Alert 2015, 4, 1–7. [Google Scholar]
- Miller, A.; Adhikari, R.; Nemali, K. Recycling Nutrient Solution Can Reduce Growth Due to Nutrient Deficiencies in Hydroponic Production. Front. Plant Sci. 2020, 11, 607643. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Verheust, Y.; Bonarrigo, G.; Hulle, S. Closed hydroponic systems: Operational parameters, root exudates occurrence and related water treatment. Rev. Environ. Sci. Biotechnol. 2017, 16, 59–79. [Google Scholar] [CrossRef]
- Gagnon, V.; Maltais-Landry, G.; Puigagut, J.; Chazarenc, F.; Brisson, J. Treatment of hydroponics wastewater using constructed wetlands in winter conditions. Water. Air. Soil Pollut. 2010, 212, 483–490. [Google Scholar] [CrossRef]
- Water Quality for Agriculture. Available online: https://www.fao.org/3/t0234e/t0234e00.htm (accessed on 3 January 2023).
- Diário da República Portuguesa. Decreto-Lei 236/98 de 1 de Agosto, Diário da República n.o 176/1998, Série I-A de 1998-08-01; Diário da República Portuguesa: Lisbon, Portugal, 1998; pp. 3676–3722. [Google Scholar]
- Diário da República Portuguesa. Decreto-Lei 119/2019 de 21 de agosto, Diário da República n.o 159/2019, Série I de 2019-08-21; Diário da República Portuguesa: Lisbon, Portugal, 2019; pp. 21–44. [Google Scholar]
- Richa, A.; Touil, S.; Fizir, M.; Martinez, V. Recent advances and perspectives in the treatment of hydroponic wastewater: A review. Rev. Environ. Sci. Bio Technol. 2020, 19, 945–966. [Google Scholar] [CrossRef]
- Kumar, R.R.; Cho, J.Y. Reuse of hydroponic waste solution. Environ. Sci. Pollut. Res. 2014, 21, 9569–9577. [Google Scholar] [CrossRef] [PubMed]
- Ispolnov, K.; Aires, L.M.I.; Lourenco, N.D.; Vieira, J.S. A Combined Vermifiltration-Hydroponic System for Swine Wastewater Treatment. Appl. Sci. 2021, 11, 64. [Google Scholar] [CrossRef]
- da Silva Cuba Carvalho, R.; Bastos, R.G.; Souza, C.F. Influence of the use of wastewater on nutrient absorption and production of lettuce grown in a hydroponic system. Agric. Water Manag. 2018, 203, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Engeseth, N.J. Comparison of growth characteristics, functional qualities, and texture of hydroponically grown and soil-grown lettuce. LWT 2021, 150, 111931. [Google Scholar] [CrossRef]
- Santos, O.D. Uso de Água Residual Doméstica para o Cultivo Hidropónico de Alfaces. Master’s Thesis, Escola Superior de Tecnologia e Gestão, Politécnico de Leiria, Leiria, Portugal, 2021. [Google Scholar]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- US EPA. Method 352.1: Nitrogen, Nitrate (Colorimetric, Brucine) by Spectrophotometer; US EPA: Washington, DC, USA, 1971. [Google Scholar]
- ISO Standard 7150-1:1984; Water Quality—Determination of Ammonium—Part 1: Manual Spectrometric Method. International Standard Organization: Geneva, Switzerland, 1984.
- APHA/AWWA/WEF. Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA, APHA-AWWA-WEF: Washington, DC, USA, 2005; ISBN 0875532357. [Google Scholar]
- Pennisi, G.; Pistillo, A.; Orsini, F.; Cellini, A.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Crepaldi, A.; Gianquinto, G.; Marcelis, L.F.M. Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Sci. Hortic. 2020, 272, 109508. [Google Scholar] [CrossRef]
- Barta, D.J.; Tibbitts, T.W. Calcium localization and tipburn development in lettuce leaves during early enlargement. J. Am. Soc. Hortic. Sci. 2000, 125, 294–298. [Google Scholar] [CrossRef] [Green Version]
- Gilliham, M.; Dayod, M.; Hocking, B.J.; Xu, B.; Conn, S.J.; Kaiser, B.N.; Leigh, R.A.; Tyerman, S.D. Calcium delivery and storage in plant leaves: Exploring the link with water flow. J. Exp. Bot. 2011, 62, 2233–2250. [Google Scholar] [CrossRef]
- Samarakoon, U.; Palmer, J.; Ling, P.; Altland, J. Effects of electrical conductivity, pH, and foliar application of calcium chloride on yield and tipburn of lactuca sativa grown using the nutrient-film technique. HortScience 2020, 55, 1265–1271. [Google Scholar] [CrossRef]
- Jin, W.; Lopez, D.F.; Heuvelink, E.; Marcelis, L.F.M. Light use efficiency of lettuce cultivation in vertical farms compared with greenhouse and field. Food Energy Secur. 2022, 00, e391. [Google Scholar] [CrossRef]
- Roosta, H.R. Interaction between water alkalinity and nutrient solution ph on the vegetative growth, chlorophyll fluorescence and leaf magnesium, iron, manganese, and zinc concentrations in lettuce. J. Plant Nutr. 2011, 34, 717–731. [Google Scholar] [CrossRef]
- Roosta, H.R.; Estaji, A.; Niknam, F. Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Photosynthetica 2018, 56, 606–615. [Google Scholar] [CrossRef]
- Yara. Nutrient Deficiencies-Lettuce. 2022. Available online: https://www.yara.co.uk/crop-nutrition/lettuce/nutrient-deficiencies-lettuce/ (accessed on 15 July 2022).
- da Silva Cerozi, B.; Fitzsimmons, K. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresour. Technol. 2016, 219, 778–781. [Google Scholar] [CrossRef] [Green Version]
- Andriolo, J.L.; da Luz, G.L.; Witter, M.H.; dos Santos Godoi, R.; Barros, G.T.; Bortolotto, O.C. Growth and yield of lettuce plants under salinity. Hortic. Bras. 2005, 23, 931–934. [Google Scholar] [CrossRef] [Green Version]
- Borghesi, E.; Carmassi, G.; Uguccioni, M.C.; Vernieri, P.; Malorgio, F. Effects of Calcium and Salinity Stress on Quality of Lettuce in Soilless Culture. J. Plant Nutr. 2013, 36, 677–690. [Google Scholar] [CrossRef]
- De Pascale, S.; Barbieri, G. Effects of soil salinity from long-term irrigation with saline-sodic water on yield and quality of winter vegetable crops. Sci. Hortic. 1995, 64, 145–157. [Google Scholar] [CrossRef]
- Shinohara, M.; Aoyama, C.; Fujiwara, K.; Watanabe, A.; Ohmori, H.; Uehara, Y.; Takano, M. Microbial mineralization of organic nitrogen into nitrate to allow the use of organic fertilizer in hydroponics. Soil Sci. Plant Nutr. 2011, 57, 190–203. [Google Scholar] [CrossRef]
Component | Concentration (mg L−1) |
---|---|
YaraTeraTM CalcinitTM mixture | 900 |
KNO3 | 134 |
K2SO4 | 280 |
MgSO4·7H2O | 495 |
KCl | 138 |
KH2PO4 | 168 |
FeCl3·6H2O | 12.0 |
MnSO4·H2O | 3.39 |
H3BO3 | 2.92 |
ZnSO4·7H2O | 0.49 |
CuSO4·5H2O | 0.08 |
Na2MoO4·2H2O | 0.12 |
Na2EDTA·2H2O | 16.4 |
DLI (mol m−2 d−1) | NS per Plant (L) | Start DW (g) | End DW (g) | DW Gain, Mean ± SD (g) | Total DW Gain per Container (g) | |
---|---|---|---|---|---|---|
A | 14.4 | 2 | 0.1246 | 8.359 | 8.31 ± 0.54 a | 24.935 |
0.0952 | 7.907 | |||||
0.1232 | 9.014 | |||||
B | 20.2 | 2 | 0.1406 | 6.939 | 7.81 ± 1.79 a | 23.425 |
0.1628 | 10.034 | |||||
0.1399 | 6.896 | |||||
C | 23.0 | 2 | 0.1917 | 8.104 | 24.799 | |
0.1035 | 6.983 | 8.27 ± 1.59 a | ||||
0.1324 | 10.141 | |||||
F | 14.4 | 1.5 | 0.1075 | 4.262 | 6.07 ± 1.64 a | 24.268 |
0.1263 | 7.803 | |||||
0.1292 | 5.403 | |||||
0.0898 | 7.253 | |||||
E | 20.2 | 1.5 | 0.1350 | 6.037 | 6.24 ± 1.19 a | 24.948 |
0.1391 | 8.098 | |||||
0.1104 | 6.003 | |||||
0.1236 | 5.318 | |||||
D | 23.0 | 1.5 | 0.1166 | 6.763 | 6.38 ± 0.5 a | 25.509 |
0.1035 | 5.732 | |||||
0.1363 | 6.790 | |||||
0.1219 | 6.704 |
DLI (mol m−2 d−1) | NS per Plant (L) | Start DW (g) | End DW (g) | DW Gain, Mean ± SD (g) | Total DW Gain per Container (g) | |
---|---|---|---|---|---|---|
A | 8.06 | 2 | 0.1181 | 6.011 | 5.78 ± 0.12 c | 17.342 |
0.1275 | 5.925 | |||||
0.1175 | 5.770 | |||||
B | 10.4 | 2 | 0.1196 | 7.767 | 8.03 ± 0.88 b | 24.104 |
0.1249 | 7.546 | |||||
0.1312 | 9.167 | |||||
C | 12.1 | 2 | 0.1197 | 8.033 | 7.94 ± 0.04 b | 23.806 |
0.1213 | 8.036 | |||||
0.1376 | 8.116 | |||||
F | 8.06 | 3 | 0.1144 | 7.480 | 8.26 ± 1.27 b | 16.522 |
0.1269 | 9.284 | |||||
E | 10.4 | 3 | 0.1241 | 9.845 | 9.81 ± 0.13 ab | 19.629 |
0.1150 | 10.024 | |||||
D | 12.1 | 3 | 0.1260 | 11.364 | 11.40 ± 0.22 a | 22.792 |
0.1322 | 11.687 |
Container | DLI (mol m−2 d−1) | NS per Plant (L) | WUE (g FW L−1) | LUE (g DW mol−1) |
---|---|---|---|---|
A | 14.4 | 2.0 | 33.4 | 0.491 |
B | 20.2 | 2.0 | 30.8 | 0.318 |
C | 23.0 | 2.0 | 31.1 | 0.295 |
F | 14.4 | 1.5 | 32.4 | 0.477 |
E | 20.2 | 1.5 | 31.9 | 0.340 |
D | 23.0 | 1.5 | 32.6 | 0.309 |
Container | DLI (mol m−2 d−1) | NS per Plant (L) | WUE (g FW L−1) | LUE (g DW mol−1) |
---|---|---|---|---|
A | 8.06 | 2.0 | 50.9 | 0.610 |
B | 10.4 | 2.0 | 68.2 | 0.656 |
C | 12.1 | 2.0 | 62.2 | 0.553 |
F | 8.06 | 3.0 | 65.4 | 0.588 |
E | 10.4 | 3.0 | 69.1 | 0.530 |
D | 12.1 | 3.0 | 71.9 | 0.529 |
DLI (mol m−2 d−1) | NS per Plant (L) | TN (%) | NH3-N (%) | NO3-N (%) | PO4-P (%) | |
---|---|---|---|---|---|---|
A | 14.4 | 2.0 | −95 ± 21 a | −99 ± 2 a | −99 ± 22 a | −94 ± 10 a |
B | 20.2 | 2.0 | −97 ± 21 a | −98 ± 2 a | −99 ± 22 a | −98 ± 10 a |
C | 23.0 | 2.0 | −97 ± 21 a | −98 ± 2 a | −99 ± 22 a | −98 ± 10 a |
F | 14.4 | 1.5 | −96 ± 21 a | −99 ± 2 a | −99 ± 22 a | −96 ± 10 a |
E | 20.2 | 1.5 | −98 ± 21 a | −99 ± 2 a | −99 ± 22 a | −98 ± 10 a |
D | 23.0 | 1.5 | −98 ± 21 a | −99 ± 2 a | −99 ± 22 a | −94 ± 10 a |
Initial NS (mg L−1) | - | - | 126 ± 19 | 8.6 ± 0.1 | 114 ± 18 | 40 ± 3 |
DLI (mol m−2 d−1) | NS per Plant (L) | TN (mgN/gDW) | NH3-N (mgN/gDW) | NO3-N (mgN/gDW) | PO4-P (mgP/gDW) | |
---|---|---|---|---|---|---|
A | 14.4 | 2.0 | −29 ± 5 a | −2.06 ± 0.02 bc | −27 ± 4 a | −9.2 ± 0.7 a |
B | 20.2 | 2.0 | −32 ± 5 a | −2.19 ± 0.03 a | −29 ± 5 a | −10.2 ± 0.8 a |
C | 23.0 | 2.0 | −30 ± 5 a | −2.07 ± 0.02 bc | −27 ± 4 a | −9.6 ± 0.7 a |
F | 14.4 | 1.5 | −30 ± 5 a | −2.12 ± 0.03 ab | −28 ± 4 a | −9.6 ± 0.7 a |
E | 20.2 | 1.5 | −30 ± 5 a | −2.07 ± 0.02 bc | −27 ± 4 a | −9.6 ± 0.7 a |
D | 23.0 | 1.5 | −29 ± 5 a | −2.03 ± 0.03 c | −27 ± 4 a | −9.0 ± 0.7 a |
DLI (mol m−2 d−1) | NS per Plant (L) | TN (%) | NH3-N (%) | NO3-N (%) | PO4-P (%) | |
---|---|---|---|---|---|---|
A | 8.06 | 2.0 | −89.1 ± 0.0 d | −99.4 ± 0.2 a | −86 ± 18 a | −99.3 ± 0.2 a |
B | 10.4 | 2.0 | −97.0 ± 0.3 a | −99.4 ± 0.2 a | −99 ± 20 a | −99.6 ± 0.2 a |
C | 12.1 | 2.0 | −97.0 ± 0.5 a | −99.4 ± 0.2 a | −99 ± 19 a | −99.4 ± 0.2 a |
F | 8.06 | 3.0 | −85.1 ± 0.1 e | −99.4 ± 0.2 a | −72 ± 17 a | −99.2 ± 0.2 a |
E | 10.4 | 3.0 | −90.4 ± 0.1 c | −99.2 ± 0.2 a | −89 ± 18 a | −99.4 ± 0.2 a |
D | 12.1 | 3.0 | −94.3 ± 0.4 b | −99.4 ± 0.2 a | −93 ± 19 a | −99.5 ± 0.2 a |
Initial NS (mg L−1) | - | - | 154 ± 0.1 | 10.3 ± 0.1 | 137 ± 19 | 37.8 ± 0.1 |
DLI (mol m−2 d−1) | NS per Plant (L) | TN (mgN/gDW) | NH3-N (mgN/gDW) | NO3-N (mgN/gDW) | PO4-P (mgP/gDW) | |
---|---|---|---|---|---|---|
A | 8.06 | 2.0 | −47.4 ± 0.1 a | −3.53 ± 0.01 b | −41 ± 7 a | −13.00 ± 0.02 b |
B | 10.4 | 2.0 | −37.2 ± 0.1 e | −2.54 ± 0.01 f | −34 ± 5 a | −9.38 ± 0.02 f |
C | 12.1 | 2.0 | −37.6 ± 0.2 d | −2.57 ± 0.01 e | −34 ± 5 a | −9.48 ± 0.02 e |
F | 8.06 | 3.0 | −47.6 ± 0.1 a | 3.71 ± 0.01 a | −36 ± 7 a | −13.62 ± 0.02 a |
E | 10.4 | 3.0 | −42.6 ± 0.1 b | −3.11 ± 0.01 c | −37 ± 6 a | −11.49 ± 0.02 c |
D | 12.1 | 3.0 | −38.2 ± 0.2 c | −2.69 ± 0.01 d | −34 ± 5 a | −9.91 ± 0.02 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aires, L.M.I.; Ispolnov, K.; Luz, T.R.; Pala, H.; Vieira, J.S. Optimization of an Indoor DWC Hydroponic Lettuce Production System to Generate a Low N and P Content Wastewater. Processes 2023, 11, 365. https://doi.org/10.3390/pr11020365
Aires LMI, Ispolnov K, Luz TR, Pala H, Vieira JS. Optimization of an Indoor DWC Hydroponic Lettuce Production System to Generate a Low N and P Content Wastewater. Processes. 2023; 11(2):365. https://doi.org/10.3390/pr11020365
Chicago/Turabian StyleAires, Luis M. I., Kirill Ispolnov, Tomás R. Luz, Helena Pala, and Judite S. Vieira. 2023. "Optimization of an Indoor DWC Hydroponic Lettuce Production System to Generate a Low N and P Content Wastewater" Processes 11, no. 2: 365. https://doi.org/10.3390/pr11020365
APA StyleAires, L. M. I., Ispolnov, K., Luz, T. R., Pala, H., & Vieira, J. S. (2023). Optimization of an Indoor DWC Hydroponic Lettuce Production System to Generate a Low N and P Content Wastewater. Processes, 11(2), 365. https://doi.org/10.3390/pr11020365