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Abstract: Accurate prediction of the compressive strength of concrete is of great significance to
construction quality and progress. In order to understand the current research status in the concrete
compressive strength prediction field, a bibliometric analysis of the relevant literature published in
this field in the last decade was conducted first. The 3135 journal articles published from 2012 to 2021
in the Web of Science core database were used as the database, and the knowledge map was drawn
with the help of the visualisation software CiteSpace 6.1R2 to analyse the field at the macro level in
terms of spatial and temporal distribution, hotspot distribution and evolutionary trends, respectively.
Afterwards, we go into the detail and divide concrete compressive strength prediction methods
into two categories: traditional and machine-learning methods, and introduce the typical methods
of each. In addition, a boosting-based ensemble machine-learning algorithm, namely the gradient
boosting regression tree (GBRT) algorithm, is proposed for predicting the compressive strength of
concrete. 1030 sets of concrete compressive strength test data were collected as the dataset, of which
60% were used to train the model, 20% to validate the model and 20% to test the trained model. The
coefficient of determination (R2) of the GBRT model was 0.92, the mean square error (MSE) was
22.09 MPa, and the root mean square error (RMSE) was 4.7 MPa, which is an excellent prediction
accuracy compared to prediction models constructed by other machine-learning algorithms. In
addition, a five-fold cross-validation analysis was carried out, and the eight input variables were
analyzed for their characteristic importance.

Keywords: machine learning; compressive strength of concrete; prediction; gradient boost regression
tree; artificial intelligence; bibliometric

1. Introduction

Concrete is one of the essential building materials of our time. Due to its integrity,
good durability and economy, it is used in a wide range of applications, not only in
civil engineering but also in the mechanical industry, shipbuilding and other projects. In
order to ensure that engineering structures serve safely and stably during their designed
service life, it is vital to study the mechanical properties of concrete, of which compressive
strength is the most important indicator, as it is directly related to the safety of engineering
structures, so how quickly and accurately the strength of concrete can be judged is of
great importance to the quality and progress of construction [1]. Generally speaking,
concrete is a composite material consisting of cement as the cementitious material, sand
and stone as coarse and fine aggregates, respectively, plus a certain proportion of water
and admixtures. Accurately predicting the compressive strength of concrete is challenging
due to its complex composition and the fact that there is not a simple linear relationship
between the components and the strength of the concrete [2–4].

The most traditional method of measuring the compressive strength of concrete is
by physical testing, by making a cubic or cylindrical concrete test block according to
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the design specification, which can be measured very easily using a compression-testing
machine after a period of standard curing [5–7]. This method is simple, but the time
and economic costs are high. Some researchers have since proposed several empiri-
cal regression methods to predict the compressive strength of concrete for a given mix
ratio [8–10]. However, the components of concrete do not show a simple linear relation-
ship with concrete strength but rather a strongly non-linear relationship, which makes
it extremely difficult to summarise the exact regression expressions directly [11,12]. In
recent years, with the rapid development of artificial intelligence, the method of machine
learning has been widely used in major research areas in structural engineering, such as
structural system identification [13], structural element design [14–18] and concrete com-
pressive strength prediction [19–24]. Compared to traditional regression methods, machine
learning can build prediction models with the help of some algorithms to handle regression
problems well [25], so predicting concrete compressive strength by machine learning has
become a fashionable research trend [25–27]. To name a few, Chithra et al. [28] successfully
used the artificial neural network (ANN) algorithm applied to predict the compressive
strength of high-performance concrete (HPC) containing silica nanoparticles and copper
slag. Ayat et al. [29] used ANN to predict the compressive strength of limestone-filled
concrete with a correlation coefficient value as high as 0.976. Nguyen et al. [30] proposed
four machine-learning algorithms for predicting the compressive and tensile strength of
HPC, with the prediction models based on gradient boosting regressor (GBR) and extreme
gradient boosting (XGBoost) having good output accuracy. Kumar et al. [31] collected 120
sets of data and developed several machine-learning algorithms for predicting the compres-
sive strength of lightweight concrete (LWC), of which the support vector machine (SVM)
model was the best. Ashrafian [32] used heuristic regression methods to predict fibrous
concrete’s strength and ultrasonic pulse velocity successfully. Zhang et al. [33] used random
forest (RF) to predict the uniaxial compressive strength of lightweight self-compacting
concrete and performed characteristic importance analysis on eight input variables.

However, most of the algorithms currently used for concrete compressive strength
prediction are individual learning algorithms. In contrast, integrated learning algorithms
have better prediction accuracy and robustness [13]. This is because ensemble learning
algorithms use training data to train multiple weak learners, which are individual learning
algorithms, simultaneously and then integrate them to build a strong learner to output
results [34]. In addition, previous studies have only about two to three hundred datasets
in the database, which is very small and can seriously affect the performance of the final
prediction model. In this paper, the gradient boosting regression tree (GBRT) algorithm,
a high-performing but rarely studied algorithm, is used and combined with 1030 sets of
concrete experimental data to develop a model for concrete compressive strength predic-
tion. Model performance evaluation metrics, including the coefficient of determination
(R2), the mean square error (MSE), and the root mean square error (RMSE) values, were
calculated to determine the prediction accuracy of the GBRT model and compared with
the performance of models using individual learning algorithms as well as other ensemble
learning algorithms. In addition, a five-fold cross-validation analysis and a characteristic
importance analysis of the input variables were carried out.

The structure of this paper is as follows. Chapter 1 introduces the importance of
predicting the strength of concrete and briefly mentions several methods for predicting
the compressive strength of concrete. Chapter 2 provides a literature review of the cur-
rent state of research in the field of concrete compressive strength prediction, starting
with a bibliometric analysis of the literature published in the field over the last decade,
based on CiteSpace software, followed by a detailed description of the research methods
for concrete strength prediction, which are divided into two categories: traditional ap-
proaches and machine-learning methods. In addition, gaps in current research are identified.
Chapter 3 discusses the development of a concrete compressive strength prediction model
using the GBRT algorithm and the highly accurate prediction results obtained, and a series
of analyses are performed. Chapter 4 summarises the work carried out throughout the text
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and draws several conclusions from the analysis of the results obtained, and concludes
with an outlook for the future. Figure 1 illustrates the structure of this paper and the main
steps in conducting the analysis.
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2. Current Status of Research

In order to gain a more comprehensive understanding of the current state of research
in the concrete compressive strength prediction field, this paper reviews the literature in
the field from both macro and micro aspects. In the macro aspect, the 3135 publications
in the Web of Science core database from 2012–2021 were used as a database to create
a knowledge map with the help of the visualisation software CiteSpace, including the
temporal distribution of the number of publications, the collaborative network of authors
and research institutions, the keyword co-occurrence network, keyword clustering and a
time-line map of hot research areas to illustrate the hotspots and the evolution of frontiers in
re-search. At the micro level, the methods developed to rapidly and accurately predict the
compressive strength of concrete have been divided into two main categories: traditional
approaches and machine-learning methods. Traditional techniques include the preparation
of concrete test blocks through physical experiments and summarising some empirical
regression formulas. Machine-learning methods allow for high accuracy in predicting
the compressive strength of concrete through a combination of stochasticity and non-
linearity, such as artificial neural networks and support vector machines. It is worth noting
that the significant advantage of machine-learning methods over traditional methods is
that they can take into account the effects of multi-factor variables on the compressive
strength of concrete, which has made machine-learning methods increasingly popular with
research scholars.

2.1. Prediction of Concrete Compressive Strength Based on Bibliometric Analysis

Research into the strength of concrete can be traced back to the 19th century. After
more than 100 years of development, a large amount of relevant literature has emerged.
We are inevitably limited in reading them by traditional reading and statistical methods,
making it difficult to classify and summarise the enormous amount of literature accurately.
This problem can be effectively solved using CreateSpace software, a Java-based visuali-
sation software developed by Professor Chaomei Chen of Drexel University, USA. It can
analyse collaborative networks, keyword co-occurrence and literature co-citation among
the literature [35,36], helping research scholars to quickly familiarise themselves with the
current state of research in a research area. Therefore, this paper uses CiteSpace software
to visualise and analyse the literature related to the subject term concrete compressive
strength prediction in the Web of Science core database from 2012–2021. Combined with the
knowledge graph output from the software, the basic background, development overview
and frontier evolution of the research field of concrete compressive strength prediction on
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a global scale are analysed and illustrated, providing references for further research in the
field of concrete compressive strength prediction.

2.1.1. Research Methodology and Data Sources

• Research methodology

The scientific knowledge mapping software CiteSpace 6.1R2 was selected to visualise
and analyse the concrete compressive strength prediction field. Using this software, we can
demonstrate the development process of the knowledge field through knowledge mapping
and identify the research frontiers expressed by citation node literature and co-citation
clusters [37]. By importing the collected database into CiteSpace, an econometric analysis
of the literature in terms of authors and their collaborations, research countries and their
collaborations and research institutions and their collaborations can be performed, which
in turn provides an understanding of the spatial and temporal distribution characteristics
of the field of concrete compressive strength prediction. In addition, a keyword clustering
analysis and a literature co-citation analysis can be performed to show the basic background,
the distribution of research hotspots and future evolution trends in the concrete compressive
strength prediction field. Figure 2 illustrates the five parts of the analysis that will be
performed in the bibliometric section.
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Figure 2. Five parts of the analysis in the bibliometric section. Data Source.

This paper selected the Web of Science core database as the literature database source.
The subject term was set as a prediction of the compressive strength of concrete in the
literature search. In order to obtain a more comprehensive and macroscopic research per-
spective, the literature search was set for the last decade (2012–2021), and the search results
were screened and checked against the basic knowledge of concrete strength prediction to
eliminate irrelevant content, resulting in a total of 3135 publications as the data source. The
specific screening method of the database is shown in Table 1.

Table 1. Data sources.

Database Web of Science Core Collection

Search method Subject
Search vocabulary Prediction of compressive strength of concrete

Time span 2012–2021
Search results 3135 articles
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2.1.2. Overview of Research into the Prediction of Compressive Strength of Concrete

• Time distribution characteristics

Using Microsoft Excel software, we can count the number of publications by year
and plot the time distribution of the number of publications (Figure 3). It can be found
that the number of relevant literature publications in the last decade generally showed
an increasing trend and can be roughly divided into three periods, namely the stable
period (2012–2014), the slowly increasing period (2015–2018) and the period of rapid
increase (2019–2021).
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Figure 3. Number of publications in the literature on concrete compressive strength prediction 2012–2021.

The number of publications in the literature from 2012–2014 (stable period) was low,
remaining at around 150 per year, a period that relied mainly on traditional methods such
as linear regression and non-linear regression for concrete strength prediction, while the
number of papers from 2015–2018 (slow growth period) increased year by year, mainly
due to a 10–100-fold increase in the computational requirements of companies to train
machine-learning models at the end of 2015, with large machine-learning models being
developed one after another [38], and researchers in the concrete direction were able to
apply these large machine-learning systems with better performance to the field of concrete
strength prediction, and there is a spurt in the number of literature publications in 2019–
2021 (rapid growth period), which is closely related to the fact that supervised-learning
machine-learning models tend to be improved and deep learning starts to be applied to the
field of concrete strength prediction.

• Analysis of the authors of the literature

Selecting the node type as the author in the CiteSpace software gives a co-occurring
knowledge graph of the literature authors (Figure 4), where each dot indicates each author,
and if there is a collaboration between the authors, lines of the same colour connects them.
The collaboration network shows a large number of research scholars worldwide in the
direction of concrete compressive strength prediction. However, most scholars collaborate
less with each other, and only small-scale research collaborations exist. Of these, Professor
Ali Nazari from Islamic Azad University has published the most papers as first author and
co-author with 30 articles, occupying the most prominent node position in the knowledge
graph. Under his leadership, Islamic Azad University has achieved many research results
in the concrete compressive strength prediction field. The second most published article
was by Professor To-gay Ozbakkaloglu with 19 papers, laying a solid research foundation
for developing the field as one of the first scholars to work in the field (2012).
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• Analysis by research institutions

By setting the node type to the institution in the CiteSpace software settings, it was
possible to obtain a co-occurring knowledge map of the institutions to which the literature
was published between 2012 and 2021 (Figure 5), where each dot represents an institution. If
there is cooperation between institutions, there will be the same colour link to connect them.
The institutional co-occurrence network diagram has 346 nodes and 542 links, indicating a
relatively concentrated network of research institutions working on concrete compressive
strength prediction and mainly concentrated in the Middle East and the Asia Pacific regions.
In the Middle East region, Islam-ic Azad University published 90 articles and obtained
the highest intermediary centrality of 0.22. In the Asia Pacific region, Tongji University,
Southeast University and Harbin Institute of Technology in mainland China achieved good
results in this area, with each institution publishing approximately 35 articles.
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• Keyword co-occurrence network analysis

By setting the node type to keywords in the CiteSpace software, the software can
out-put a knowledge map of hot keyword co-occurrence networks based on the frequency
and mediated centrality of keyword occurrences in the published literature, as shown
in Figure 6. The knowledge map is tree-like, without many freely scattered points, with low-
frequency keywords subordinated to high-frequency keywords and with high-frequency
keywords interconnected, indicating that the theoretical system in the concrete compressive
strength prediction field is relatively mature and that the internal sub-disciplines are closely
linked. The most frequent keyword is compressive strength (737 times), followed by
prediction (529 times), behaviour (435 times) and mechanical properties (364 times), which
indicates that the study of compressive strength is most closely related to other aspects.
This suggests that the study of compressive strength is closely linked to the other keywords,
with compressive strength being the source of research leading to studies of prediction,
behaviour and mechanical properties, which is also verified by the linkage of the keywords.
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• Keyword clustering mapping analysis

The CiteSpace software can use pathfinder clustering to generate a knowledge graph
by clustering keyword tag words, as shown in Figure 7. Table 2 summarises the top ten
clusters and their associated parameters, where the size value indicates the number of nodes
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in each cluster, and the silhouette value is the average profile value of the clusters, which is
an essential measure of cluster homogeneity. It is generally accepted that clusters with a
silhouette value greater than 0.5 are reasonable, and if the value is more significant than
0.7, the clusters are convincing. The silhouette values for the first ten clusters in this study
were all greater than 0.7, which indicates that all clustering results were convincing [39].
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Table 2. Hot keyword clustering and tagged word information.

Cluster ID Size Silhouette Representative Label (LLR) Year Ave.

0 33 0.923 Tensile strength 2016
1 30 0.794 Durability 2016
2 24 0.96 Pulse velocity 2014
3 21 0.876 Pretensioned 2016
4 21 0.856 Self-consolidating concrete 2015
5 19 0.937 Circular 2018
6 16 0.875 Confinement 2016
7 15 0.966 Beetle antennae search 2016
8 14 0.903 Energy 2013
9 12 0.917 Ultrasonic technique 2019

CreateSpace can also plot a timeline view of clusters based on the clustered tag words
extracted by the log-likelihood ratio test (LLR) method, as shown in Figure 8, where the
horizontal line represents the timeline of the cluster, the length represents only the years in
which high-frequency words appear in the popular keyword set for that cluster, and the
size of the circle indicates the frequency of the keyword. The line diagram arranges the
nodes in each cluster in chronological order, presenting the development of the cluster in
the temporal dimension, and can help us to understand the hot representative words in
each cluster at different stages.
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2.2. Status of Research on Prediction Methods
2.2.1. Traditional Methods

The traditional methods of concrete strength prediction mainly include experimen-
tal methods and methods of summarizing empirical regression equations [40]. In 1971,
scholars from the United States carried out a large number of tests related to the pre-
diction of concrete strength [41]. They have summarised the three most representative
experimental methods for predicting the strength of concrete: the self-heating method,
the 35 ◦C warm-water method and the boiling-water method, which are popular among
engineers [42–44]. Although the prediction accuracy of these three methods is good,
the experimental procedure is complicated, and there are limitations in the scope of the
application [45]. Therefore, more and more researchers have started to study how to
summarise the empirical formulae based on the existing concrete experimental data to
achieve the purpose of accurate concrete strength prediction. To name a few, Liu et al. [46]
applied the FCT101 fresh concrete tester from Colebrang, a company in the UK, to detect
the FCT (Fresh Concrete Test) values of concrete to predict the compressive strength of
concrete with a relative error within 10% compared to the strength at 28 d of conventional
standard curing. Soh and Bhalla [47] proposed a non-destructive testing method based
on concrete impedance, using the electro-mechanical impedance (EMI) technique for the
non-destructive determination of in-situ concrete strength. Zheng [48] derived an empirical
equation based on the equivalent age theory of concrete, which summarised the variation
of concrete strength with age, and the difference between the expected concrete strength
values obtained, based on the empirical equation, and the real values of concrete strength
measured by experiment was only 10%. Elaty [49] presented a mathematical model and
three empirical formulas based on two constants defined by themselves, which success-
fully obtained the strength development pattern of portland cement concrete mixtures
containing silica fume with age at room temperature and also successfully predicted the
compressive strength of portland cement concrete containing nano-silica fume cured with
water at room temperature at any age. Nambiar and Ramamurthy [50] extended Balshin’s
strength-porosity model and successfully predicted the compressive strength of foamed
concrete with a final R2 of 0.893. Table 3 presents information on conventional concrete
strength prediction methods.
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Table 3. Traditional concrete-strength prediction methods.

Author Research Methods Data Volume Results

Liu et al. [46] FCT prediction method 100 Relative error less
than 10%

Soh and Bhalla [47] EMI non-destructive testing 15 R2 = 0.955

Zheng [48] Equivalent age theory 54 Maximum error rate
less than 10%

Elaty [49] Summarising mathematical
formulas 6 Not quantified

Nambiar and
Ramamurthy [50] Balshin’s generalised model 11 R2 = 0.893

In summary, traditional concrete strength prediction methods include classical ex-
perimental methods and regression methods based on mathematical statistics, which can
be more accurate in predicting the compressive strength of concrete in simpler situations,
but when more factors need to be considered, and the concrete is subject to more complex
external effects, accurate prediction of the compressive strength of concrete will become
very difficult [8]. In addition, the amount of data used to test the accuracy of the research
method in previous work is generally only a few dozen groups, and the test data are
generally not fully repeatable and reproducible, which leads to a small range of application
and poor generalisation of the traditional concrete-strength prediction method.

2.2.2. Machine-Learning Methods

Compared to traditional prediction methods, machine-learning methods to predict the
compressive strength of concrete are more favoured by scholars because machine-learning
algorithms can tap into the deeper patterns of the input data and generate reliable prediction
models through training, to output highly accurate results [43,51]. Many machine-learning
algorithms have been applied to the field of concrete compressive strength prediction,
To name a few, Lai and Serra [52] found that the performance of neural networks was
independent of the number of neurons in the hidden layer (range 4–8), and the accuracy
was the same (5%). Kewalramani and Gupta [53] used ANN to predict the compressive
strength of concrete specimens and obtained results almost identical to the compressive
strength obtained through physical experimental tests. Naderpour et al. [54] used ANN
combined with 139 sets to predict recycled concrete’s compressive strength (RAC) with
a model MSE of 0.004447. Asteris and Kolovos [55] proposed a new heuristic algorithm
to find the best heuristic for a multilayer feedforward backpropagation neural network
based on the value of Pearson’s correlation coefficient. The output values of the ANN
prediction model trained using 205 sets of parameters were very close to the experimental
results of the compressive strength of self-compacting concrete with R equal to 0.9828.
Zhu et al. [56] proposed a genetic algorithm-optimised support vector machine model
(GA-SVM) to establish the relationship between seven parameters and concrete strength
and compared the prediction results with those of BP neural networks and found that
the GA-SVM model performed better. Aiyer et al. [57] first applied the least square SVM,
an advanced SVM concept, to the field of concrete strength prediction. Pham et al. [58]
further optimised the least square SVM with the help of metaheuristic optimisation and
successfully predicted the compressive strength of high-performance concrete. Li and
Peng [59] used the neural network toolbox provided by Matlab to build a back propagation
(BP), radial basis function (RBF) neural network model with a 4-dimensional input vector
and a 1-dimensional output vector for the prediction of concrete compressive strength with
good results. Gao and Hao [60] developed a back propagation artificial neural network
(BP-ANN) model combining 30 sets of data to achieve a non-linear mapping between
concrete rebound values, ultrasonic velocity values and compressive strength of concrete
with an absolute error of less than 5.0% between predicted and measured values, and
the model performed well for predicting the compressive strength of self-compacting
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concrete. Based on BP neural networks, Ma and Liu [61] established a neural network
prediction model with a non-linear mapping relationship between each input parameter
and combination form and the compressive strength of the restrained column based on
251 sets of experimental data of carbon-fibre-reinforced plastics (CFRP) restrained concrete
columns and proposed a theoretical calculation formula and a simplified formula. The
overall results are better than the traditional linear regression results.

The machine-learning algorithms mentioned above are all learned individually. The
training process for prediction models built using them is relatively simple, requiring only
a tiny amount of data to obtain good prediction results. However, integrated learning
algorithms, which offer better robustness and prediction accuracy, are more popular among
researchers. The basic idea of integrated learning algorithms is first to train several weak
learners (such as ANN, SVM and other individual learning algorithms) using the training
set data and then combine several weak learners to generate a strong learner for prediction
work. The common integrated learning algorithms can be divided into two categories,
bagging-based algorithms and boosting-based algorithms [13], where the representative
algorithms based on bagging are RF, while the representative algorithms based on boost-
ing are adaptive boosting (AdaBoost) [62], GBRT, etc. Wu et al. [63] found that feature
screening of variable importance indicators was critical to improving prediction accuracy
when using the random forest algorithm for concrete-strength prediction. Cui et al. [64]
compared the capabilities of three machine-learning algorithms, random forest, support
vector regression and multilayer perceptron, on the same dataset (1030 sets of concrete
compressive strength test data) and found that the RF algorithm has the best effect among
these three algorithms. Farooq et al. [65] used RF and gene expression programming
(GEP) to predict the compressive strength of high-strength concrete and investigated the
relationship between cement content, coarse and fine aggregate ratio, water and superplas-
ticizer and compressive strength. The final model has a R2 of 0.96. Feng et al. [66] used
the AdaBoost algorithm in an integrated learning algorithm to predict the compressive
strength of concrete materials. The predicted model had an average R2 of 0.952, an average
mean absolute percentage error (MAPE) of 11.39% and an average RMSE of 4.856 MPa
after 10-fold cross-validation. Table 4 lists specific information on the concrete-strength
prediction methods based on machine-learning algorithms, including the machine-learning
algorithms used, the number of datasets and the performance results of the predictive
models, etc.

Table 4. Concrete-strength prediction methods using machine-learning algorithms.

Author Algorithm Data Volume Results

Lai and Serra [52] ANN 240 Relative error less than 5%
Kewalramani and Gupta [53] ANN 864 Maximum error rate 25.69%

Naderpour et al. [54] ANN 139 R = 0.8926, MSE = 0.004447
Asteris and Kolovos [55] ANN 205 R2 = 0.919

Zhu et al. [56] GA-SVM 24 Maximum relative error 2.42%
Aiyer et al. [57] SVM 80 R = 0.94
Pham et al. [58] SVM 239 R2 = 0.87, RMSE = 4.86, MAPE = 9.81%
Li and Peng [59] BP, RBF 19 Relative error less than 6%

Gao and Hao [60] BP-ANN 30 Absolute error less than 5.0%
Ma and Liu [61] BP 251 Coefficient of variation = 0.112

Wu et al. [63] RF 56 R2 = 0.969, RMSE = 0.0149
Cui et al. [64] RF 1030 R2 = 0.902, MAE = 3.761, MAPE = 12.807, RMSE = 5.342

Farooq et al. [65] RF, GEP 357 R2 = 0.96(RF), R2 = 0.9(GEP)
Feng et al. [66] AdaBoost 1030 R2 = 0.952, MAPE = 11.39%, RMSE =4.856

Although more and more research scholars have tried to apply machine-learning
algorithms to the field of concrete strength prediction in recent years, in general, research
in this direction is still relatively limited and suffers from two main problems. As seen
in Table 4, most researchers have collected a small amount of data, at most 1030 datasets.
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Another problem is that most of the algorithms used by scholars are learned individually,
with less research on integrated learning algorithms with better robustness and prediction
accuracy. Therefore, this paper uses the boosting-based GBRT algorithm, one of the en-
semble learning algorithms rarely used by scholars, combined with 1030 sets of concrete
compressive strength data to build a prediction model and predict the compressive strength
of concrete.

3. Compressive Strength Prediction Model for Concrete Based on GBRT Algorithm

The section uses the GBRT algorithm, combined with 1030 sets of concrete compressive
strength data, to build a prediction model for the compressive strength of concrete and
analyses the results obtained after running the model. It finds that the prediction model
can predict the compressive strength of concrete better.

3.1. Introduction to the GBRT Algorithm

The GBRT is a typical ensemble learning boosting algorithm that features a cart
regression tree model that weak learners can only use GBRT uses a forward distribution
algorithm, the basic principle of which is to select an appropriate decision tree based on the
current model and the fitting function to minimise the loss function [67].

Since the GBRT algorithm uses the negative gradient value of the loss function in
the current model as an approximation to the residuals in the boosted tree algorithm,
a regression tree is fitted. This allows the performance of the GBRT model not to be
significantly affected even if additional noise is present in the database.

As can be seen from the name GBRT, the algorithm consists mainly of gradient boosting
(GB) and regression trees (RT), which are described separately below.

• GB

FreidMan originally proposed GB in 2000. The core idea of this algorithm is that each
tree is learned from the residuals of all previous trees, and the negative gradient value of
the loss function in the current model is used as an approximation to the residuals in the
boosted tree algorithm as a way to adapt the regression or classification tree.

Based on the idea of GB above, M weak learner models need to be generated iteratively.
The predictions of each weak learner model can then be summed up, where each later
model fm+1(x) is generated based on the fm(x) of the previous learning model plus a new
weak learner hm(x), as shown in Equation (1) [68].

fm+1(x) = fm(x) + hm(x), m є [1, M] (1)

where x is the vector with input variables, and m is the number of iterations.
If the objective function is the mean square error of the regression problem, it is easy

to think that the ideal hm(x) should be able to fit y− fm(x) exactly, which is residual-based
learning. The specific mathematical expression is shown in Equation (2).

hm(x) = y− fm(x) (2)

where y is the target output or the test value of the output.

• RT

Decision trees can be divided into two main categories: regression trees, which are
used to classify labelled values, and classification trees, which are used to predict actual
values, i.e., classification and regression tree (CART) algorithms [69]. CART divides the
feature space into cells. The test data is grouped into a cell according to its characteristics,
resulting in the corresponding output [67]. Therefore, GBRT is essentially an iterative
regression tree algorithm consisting of multiple regression trees, with the conclusions of all
regression trees being aggregated as the final result.
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3.1.1. GBRT Algorithm Steps

The steps of the GBRT algorithm can be summarised as follows.

1. Initialization of the weak learner function.

f0(x) = argmin
c ∑N

i=1 L(yi, c) (3)

where x is the vector with input variables, N is the total number of samples in the input
training set D = {(x1, y1), (x2, y2), · · · , (xN , yN)}, L is the loss function, yi is the sample’s
actual value, and c is the root node’s class.

2. For the m-th iteration (m є [1,M]):

For each sample (xi, yi) (i є [1,N]) in the input dataset, the value of the negative gradient
of the loss function in the current model is calculated as an estimate of the residuals.

rm,i = −
[

∂L(yi, f (xi)))

∂ f (xi)

]
f (x)= fm−1(x)

(4)

For {(x1, rm,1), (x2, rm,2), · · · , (xi, rm,i)}, a regression tree is fitted to obtain the i-th leaf
node region Rm,j of the m-th tree, with j denoting the number of leaf nodes in each tree
(j є [1, J]).

For each leaf node of the regression tree, the value of the leaf node region is estimated
using a linear search to minimise the loss function and calculate the best-fit value cm,j.

cm,j = argmin
c ∑

xi є Rm,j

L[yi, fm−1(xi) + c], j є [1, J] (5)

Update the learner based on the following formula.

fm(x) = fm−1(x) + ∑J
j=1 cm,j I(xi є Rm,j) (6)

3. After M iterations, the strong learner is finally obtained.

fM(x) =
M

∑
m=1

J

∑
j=1

cm,j I(xi є Rm,j) (7)

where m is the number of iterations (m є [1, M]), j is the number of leaf nodes in each tree (j
є [1, J]), cm,j is the optimal fitting value, xi is the sample in the input dataset (i є [1, N]), and
Rm,j is the leaf node region of the m-th tree.

3.1.2. Implementation Process of GBRT

The implementation of GBRT can be summarised in the following four steps. Figure 9
clearly illustrates this process [67].

1. Collection and processing of experimental data, including data normalisation, setting
up input/output variables and training test dataset partitioning.

2. The GBRT algorithm combines data from the training set to obtain a preliminary
model, and data from the validation set are used to validate the preliminary model
and adjust the hyperparameters to improve the algorithm’s learning performance and
obtain the final predictive model.

3. Test the performance of the trained prediction model with the test dataset.
4. Apply the predictive model to a real problem.
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3.1.3. Advantages and Disadvantages of the GBRT Algorithm

According to the researcher’s summary, the advantages and disadvantages of the
GBRT algorithm are as follows.

Advantages

1. Ability to handle mixed data types, including continuous and discrete values, flexibly;
2. High predictive power;
3. Good robustness benefits from a strong loss function, including least squares, least ab-

solute deviation function, Huber and quantile in the case of outliers in the
output space.

Disadvantages

4. Poor scalability. Parallel training data is challenging due to dependencies between
weak learners.

3.2. Datasets

In order to ensure the accuracy of the prediction model, a large amount of experimental
data on the compressive strength of concrete is required to train and test the model [66,70].
In this paper, a dataset containing 1030 sets of concrete compressive strength test data was
used as the data source, which was obtained in an experiment by a group led by Professor
Yi-Zheng Yeh [71,72] at the Chinese University of Taiwan and later donated free of charge
to the Machine Learning Laboratory at the University of California, Irvine. Professor
Yi-Zheng Yeh and his team fabricated cylindrical concrete specimens with a height of
150 mm and subjected them to classical compressive tests after a period of standard curing,
during which the following nine parameters were collected cement, blast furnace slag,
fly ash, water, superplasticizer, coarse aggregate, fine aggregate, age, and compressive
strength of concrete. In order to understand these nine parameters more intuitively, this
paper uses descriptive statistics for the data and draws box plots corresponding to these
nine parameters, as shown in Figure 10, where the top horizontal line in each graph
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is the maximum value, the bottom horizontal line represents the minimum value, the
middle horizontal line is the median, and then the hollow square in the middle represents
the mean value. In addition, with the distribution fitting function in Origin software,
histograms of each parameter were plotted, which not only reflected the distribution of the
involved parameters but also fitted the corresponding normal distribution curves, as shown
in Figure 11.

To ensure the generalisation ability of the prediction model, eight parameters (cement,
blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate and
age) were taken as the input parameters of the model and the compressive strength of
concrete was taken as the output parameter of the model, which means the relationship
between the eight variables and the dependent variable of concrete compressive strength
was considered simultaneously, as shown in Table 5.
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Table 5. Numerical characteristics of the parameters.

Parameter Range Mean Variance Standard Deviation Type

Cement (kg/m3) 102.0–540.0 281.2 10911.1 104.5 Input
Blast Furnace Slag (kg/m3) 0.0–359.4 73.9 7436.9 86.2 Input

Fly Ash (kg/m3) 0.0–200.1 54.2 4091.6 64.0 Input
Water (kg/m3) 121.8–247.0 181.6 455.6 21.3 Input

Superplasticizer (kg/m3) 0.0–32.2 6.2 35.6 6.0 Input
Coarse Aggregate (kg/m3) 801.0–1145.0 972.9 6039.8 77.7 Input

Fine Aggregate (kg/m3) 594.0–992.6 773.6 6421.9 80.1 Input
Age (days) 1–365 45.7 3986.6 63.1 Input

Concrete compressive
strength (MPa) 2.3–82.6 35.8 278.8 16.7 Output

3.3. Model Building

There are eight input parameters, each with a different physical meaning. In order to
avoid small absolute errors in the minor part of the parameters and significant absolute
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errors in the larger part, the input and output parameters need to be normalised, a process
whose mathematical formula is shown in Equation (8).

X1 =
X− Xmin

Xmax − Xmin
(8)

where X is the data to be processed, Xmax is the maximum value in the data sequence, Xmin
is the minimum value in the data sequence, X1 is the normalised data. To build the GBRT
prediction model, this manuscript uses the most classical way of dividing the database,
which means 60% of the entire experimental dataset is used as the training set, 20% of the
dataset is used as the validation set, and the remaining 20% of the data is used as the test
set. Figure 12 shows in detail how the database partitioning was done and how it was used.
As the three concepts of the training set, validation set and test set are essential and easily
confused, they will be sorted out and explained in detail below [66]. Table 6 summarises
the role of these three concepts and the specific amount of data used in the text.

Processes 2023, 11, 390 19 of 28 
 

 

where 𝑋 is the data to be processed, 𝑋𝑚𝑎𝑥  is the maximum value in the data sequence, 

𝑋𝑚𝑖𝑛 is the minimum value in the data sequence, 𝑋1 is the normalised data. To build the 

GBRT prediction model, this manuscript uses the most classical way of dividing the data-

base, which means 60% of the entire experimental dataset is used as the training set, 20% 

of the dataset is used as the validation set, and the remaining 20% of the data is used as 

the test set. Figure 12 shows in detail how the database partitioning was done and how it 

was used. As the three concepts of the training set, validation set and test set are essential 

and easily confused, they will be sorted out and explained in detail below [66]. Table 6 

summarises the role of these three concepts and the specific amount of data used in the 

text.  

• Training set 

A set of examples is used to train a model, which is a collection of data samples that 

the model fits, for example, by training to fit some parameters to build a regressor. For 

this paper, the data from the training set was first used to train a weak learner, which was 

eventually integrated to produce a strong learner as the GBRT prediction model. 

• Validation set 

A separate set of data set aside during model training to determine the network struc-

ture or parameters that control the complexity of the model, the validation set provides 

an initial assessment of the model’s capabilities. During iterative model training, it is often 

used to tune the parameters of the classifier (regressor) to improve the final model’s per-

formance and prevent overfitting of the model. 

In this paper, the data from the validation set is used during model training to tune 

the hyperparameters of the GBRT prediction model while ensuring that the model is not 

over or under-fitted. The validation set further improves the model’s prediction perfor-

mance and generalisation capability.  

• Test set 

A dataset that can only be used to evaluate how good a model is, i.e., to assess how 

well the final model performs. The test set is not involved in training and is primarily used 

to test the accuracy capability of the trained model, etc., but cannot be used as a basis for 

algorithm-related choices such as tuning parameters, selecting features, etc. 

For this paper, the data from the test set was used to test the accuracy of the trained 

GBRT model in predicting the compressive strength of concrete. 

  

Figure 12. Database division. Figure 12. Database division.

Table 6. Summary of the three concepts.

Data Set Type Role Data Volume

Training set Training and generating models 618 (60%)

Validation set Adjusting hyperparameters &
preventing overfitting 206 (20%)

Test set Evaluating model performance 206 (20%)

• Training set

A set of examples is used to train a model, which is a collection of data samples that
the model fits, for example, by training to fit some parameters to build a regressor. For
this paper, the data from the training set was first used to train a weak learner, which was
eventually integrated to produce a strong learner as the GBRT prediction model.

• Validation set

A separate set of data set aside during model training to determine the network
structure or parameters that control the complexity of the model, the validation set provides
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an initial assessment of the model’s capabilities. During iterative model training, it is often
used to tune the parameters of the classifier (regressor) to improve the final model’s
performance and prevent overfitting of the model.

In this paper, the data from the validation set is used during model training to tune the
hyperparameters of the GBRT prediction model while ensuring that the model is not over
or under-fitted. The validation set further improves the model’s prediction performance
and generalisation capability.

• Test set

A dataset that can only be used to evaluate how good a model is, i.e., to assess how
well the final model performs. The test set is not involved in training and is primarily used
to test the accuracy capability of the trained model, etc., but cannot be used as a basis for
algorithm-related choices such as tuning parameters, selecting features, etc.

For this paper, the data from the test set was used to test the accuracy of the trained
GBRT model in predicting the compressive strength of concrete.

In order to accurately and objectively evaluate the performance of the GBRT model
when predicting the compressive strength of concrete, three commonly used metrics for
assessing the performance of machine-learning models were introduced: R2, MSE and
RMSE. R2 reflects the degree of linear correlation between a model’s predicted and actual
data values. Generally, a model is considered valid when its R2 value is more significant
than 0.8 and accurate. The closer the R2 value is to 1, the higher the model’s prediction
accuracy [73]. At the same time, MSE and RMSE demonstrate the deviation between the
predicted and tested values. The smaller the MSE and RMSE values, the higher the model’s
prediction accuracy. The mathematical formulae for these three evaluation metrics are
shown in Equations (9) to (11).

R2 = 1− ∑n
i=1 (Yi − Xi)

2

∑n
i=1 (Xi − X)

2 (9)

MSE =
∑n

i=1 (Yi − Xi)
2

n
(10)

RMSE =

√
∑n

i=1 (Yi − Xi)
2

n
(11)

where Yi is the predicted concrete compressive strength model value, Xi is the actual
concrete compressive strength value, X is the mean of all the true concrete compressive
strength values, and n is the total number of samples in the dataset.

3.4. Results and Analysis

Figures 13–15 show the relationship between the predicted values of concrete com-
pressive strength output by the GBRT model and the true values of concrete compressive
strength in the validation and test groups. Each of the blue dots in Figures 13 and 14
represents a coordinate where the horizontal coordinate is the true value in the validation
and test sets, and the vertical coordinate is the corresponding predicted value output by
the GBRT model. It can be noted that the predicted and true values show a highly linear
relationship. The orange dashed lines plotted through these circles are the fitted lines with
fitted equations of y = 0.943x + 2.391 (for validation set) and y = 0.934x + 2.565 (for test set)
respectively, both very close to the ideal y = x with very little dispersion. This demonstrates
that the predicted values obtained when predicting the compressive strength of concrete
using the GBRT model are very close to the true values of the compressive strength of
concrete, which is also verified in Figure 15.
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Figure 13. Relationship between tested and predicted compressive strength in the validation set.
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Figure 15. Scatter plot analysis of predicted and tested values in the test set. 
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For the testing data, the performance evaluation metrics for the GBRT model were
R2 of 0.92, MSE of 22.09 MPa and RMSE of 4.7 MPa. To more accurately and objectively
evaluate the performance of the GBRT model, it was necessary to compare the results of the
GBRT model with the same database used, which ensured that the data volume variable
would not impact the comparison results. The evaluation metrics output by the model were
compared with the evaluation metrics output by machine-learning models constructed by
previous researchers for predicting the compressive strength of concrete.

3.4.1. Comparison with Individual Machine-Learning Algorithms

To more accurately demonstrate the superiority of GBRT, an ensemble learning method,
over individual learning methods in predicting the compressive strength of concrete, the
GBRT algorithm was compared with the widely adopted, well-known individual learning
methods ANN and SVM. Many research scholars in previous studies used the ANN and
SVM algorithms to predict the compressive strength for the same 1030 sets of data as
the database in this paper. In Table 7, it is evident that the GBRT model significantly
outperforms the individual learning methods, with an increase in R2 from 0.86 to 0.92 and
a decrease in RMSE from 6.28 MPa to 4.7 MPa, a significant improvement in prediction
accuracy. The reason for this may be that the GBRT ensemble learning algorithm integrates
several weak learners generated by the individual learning algorithm, in which weak
learners that perform well will receive higher weights, and weak learners that perform
poorly will receive lower weights.

Table 7. Comparison with individual machine-learning algorithms with the same dataset.

Algorithm Data Volume
Evaluation Indicators

Refs.
R2 RMSE(MPa)

GBRT 1030 0.92 4.70 This paper
ANN 1030 0.90 5.14 [66]
ANN 1030 0.91 5.03 [74]
ANN 1030 0.91 5.57 [75]
SVM 1030 0.89 5.62 [74]
SVM 1030 0.86 6.28 [66]
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3.4.2. Comparison with Other Ensemble Machine-Learning Algorithms

In Table 8, the performance of the GBRT model is compared with the performance of
models presented in other papers using the same dataset and different ensemble machine-
learning algorithms. The GBRT model proposed in this paper outperforms the RF model
proposed by Cui et al. [64]. Compared to the AdaBoost model constructed by Feng et al. [66].
Although the AdaBoost model performs better in terms of R2 values, the GBRT model can
be found to perform better when the model performance is evaluated based on MSE and
RMSE values. This indicates that the GBRT integrated algorithm can learn well from the
data of the training set and can predict the compressive strength of concrete with higher
accuracy at the end of the training compared with other ensemble algorithms.

Table 8. Comparison with other ensemble learning algorithm models with the same dataset.

Algorithm Data Volume
Evaluation Indicators

Refs.
R2 RMSE(MPa)

GBRT 1030 0.92 4.70 This paper
RF 1030 0.90 5.34 [64]

AdaBoost 1030 0.95 4.86 [66]

3.4.3. K-Fold Cross Validation Analysis

K-fold cross-validation is often used to minimise the bias associated with a random
sampling of the training dataset [51]. This paper used a five-fold cross-validation approach
to further validate the performance and generalisation ability of the GBRT prediction
model. The experimental data samples were equally divided into five subsets, four of
which were used to construct the strong learner to form the final prediction model, and
the remaining subset was used to validate the model. Detailed statistical information on
the results obtained from these five operations is given in Table 9. The mean value of R2

is 0.906, and the mean RMSE value is 4.875 MPa which is relatively small compared to
the mean compressive strength value of 35.8 MPa. These values indicate that the GBRT
model has a small prediction error. In addition, Figure 16 shows the model performance
evaluation metrics for each fold. It can be seen that although there are some fluctuations in
the results for the five folds, they all maintain a high level of accuracy.

Table 9. Five-fold cross validation results.

Number of Folds
Evaluation Indicators

R2 RMSE(MPa)

Fold 1 0.901 4.689
Fold 2 0.891 4.933
Fold 3 0.916 4.567
Fold 4 0.930 4.484
Fold 5 0.890 5.700

Average 0.906 4.875

3.4.4. Analysis of the Importance of the Characteristics of the Input Variables

The GBRT model constructed in this paper is highly accurate in predicting the com-
pressive strength of concrete. However, it is a black box model with a complex detailed
mechanism behind it, making it difficult for us to explain the relationship between each
input variable and the dependent variable in detail [51]. Although the GBRT model is a
black box, we can use the Gini index to calculate the importance of each feature variable on
a single tree and then explore the contribution each feature variable makes on each tree, and
then take the average and normalise it to calculate the global importance of each feature
variable. In this paper, the importance factor for each input parameter was calculated
for the case where the effect of eight input variables on the final concrete compressive
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strength was considered simultaneously. The specific values are listed in Table 10. To more
demonstrate the effect of these input parameters on the compressive strength of concrete in
a more visual way, Figure 17 is plotted, from which it can be seen that the influence of age
and cement content on compressive strength is dominant, with the two together occupying
nearly 70% of importance, which is in line with engineering practice.

Processes 2023, 11, 390 23 of 28 
 

 

the data of the training set and can predict the compressive strength of concrete with 

higher accuracy at the end of the training compared with other ensemble algorithms. 

Table 8. Comparison with other ensemble learning algorithm models with the same dataset. 

Algorithm Data Volume 
Evaluation Indicators 

Refs. 
R2 RMSE(MPa) 

GBRT 1030 0.92 4.70 This paper 

RF 1030 0.90 5.34 [64] 

AdaBoost 1030 0.95 4.86 [66] 

3.4.3. K-fold Cross Validation Analysis 

K-fold cross-validation is often used to minimise the bias associated with a random 

sampling of the training dataset [51]. This paper used a five-fold cross-validation ap-

proach to further validate the performance and generalisation ability of the GBRT predic-

tion model. The experimental data samples were equally divided into five subsets, four of 

which were used to construct the strong learner to form the final prediction model, and 

the remaining subset was used to validate the model. Detailed statistical information on 

the results obtained from these five operations is given in Table 9. The mean value of R2 

is 0.906, and the mean RMSE value is 4.875 MPa which is relatively small compared to the 

mean compressive strength value of 35.8 MPa. These values indicate that the GBRT model 

has a small prediction error. In addition, Figure 16 shows the model performance evalua-

tion metrics for each fold. It can be seen that although there are some fluctuations in the 

results for the five folds, they all maintain a high level of accuracy. 

Table 9. Five-fold cross validation results. 

Number of Folds 
Evaluation Indicators 

R2 RMSE(MPa) 

Fold 1 0.901 4.689 

Fold 2 0.891 4.933 

Fold 3 0.916 4.567 

Fold 4 0.930 4.484 

Fold 5 0.890 5.700 

Average 0.906 4.875 

  

Figure 16. R2 and RMSE value of five folds. 

  

Figure 16. R2 and RMSE value of five folds.

Table 10. Importance factors for the eight input parameters.

Parameter Importance Factor

Cement (kg/m3) 0.3154
Blast Furnace Slag (kg/m3) 0.0802

Fly Ash (kg/m3) 0.0121
Water (kg/m3) 0.1218

Superplasticizer (kg/m3) 0.0622
Coarse Aggregate (kg/m3) 0.0157

Fine Aggregate (kg/m3) 0.0366
Age (days) 0.3560
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4. Conclusions

Accurate and rapid prediction of the compressive strength of concrete is of great
significance to engineering practice and has become a fashionable research area in recent
years. In order to provide a complete understanding of the current state of research in this
field, not only is the traditional literature research adopted and a review conducted at the
micro level in this paper, but a bibliometric analysis of 3135 papers published in the last
decade at the macro level is also conducted by means of CiteSpace software. The following
conclusions were obtained.

1. At the macro level. Since 2015, the field has flourished with an increasingly mature
theoretical system, driven by pioneers represented by Ali Nazari, a professor at Islamic
Azad University, and has given rise to numerous hot research directions related to
compressive strength.

2. At the microscopic level. Concrete compressive strength prediction methods are
mainly divided into traditional approaches and machine learning. Traditional meth-
ods include using the FCT prediction method, summarising empirical mathematical
formulas, and using equivalent age theory, etc. Machine-learning methods can be
divided into individual learning algorithms, such as ANN and SVM, and ensemble
learning algorithms, such as BP and RF.

3. The problems of the small amount of data and few studies of ensemble learning
algorithms exist in the current research of using machine-learning algorithms to
predict the compressive strength of concrete.

To fill the research gap, this paper uses the GBRT algorithm, an ensemble learning
method based on lifting, to predict the compressive strength of concrete materials. 1030 sets
of concrete compressive test data were collected while considering the relationship between
eight input variables (cement, blast furnace slag, fly ash, water, superplasticizer, coarse
aggregate, fine aggregate and age) and one output variable, the compressive strength of
concrete. The total dataset was divided into a training set, a validation set and a test set in
the ratio of 6:2:2. The prediction model was generated from the training set by the GBRT
algorithm and combined with the validation set to adjust the hyperparameters as well as to
avoid overfitting, and then evaluated by the testing set. Based on the results, the following
conclusions can be drawn.

1. The R2 of 0.92, MSE of 22.09 MPa and RMSE of 4.7 MPa for the GBRT model prove
that the model has high prediction accuracy in predicting the compressive strength
of concrete.

2. Using the same database, the GBRT model was compared with prediction models
constructed using classical individual learning algorithms such as ANN and SVM
from previous work species. The GBRT model performed significantly better than
these models. Moreover, the GBRT model has an advantage even when compared
with other ensemble learning algorithms such as RF and AdaBoost.

3. The R2 and RMSE values were calculated for each fold through a five-fold cross-
validation analysis, and the model performance was found to be accurate.

4. The importance coefficients of the eight input parameters were calculated by analysing
the feature importance, and the effects of age and cement on concrete strength were
found to be dominant.

The current study results in the construction of a black box, the GBRT model, where
the user does not need to know the detailed mechanism behind the operation of the model
but only needs to predict the compressive strength of concrete accurately and effectively
given the input variables, which is very simple and convenient for engineers.

As a suggestion for future research, there is a need to enrich the dataset further and
increase the amount of data, as well as to consider more factors relating to the compressive
strength of concrete to provide data support for predicting the compressive strength of
special concrete such as recycled concrete and steel-fibre concrete. In addition, although this
study considers the relationship between multiple input factors and compressive strength
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simultaneously through the GBRT model, how to extend the model to a multiple output
model, such as the simultaneous output of compressive strength and slump, needs further
study. Multiple input parameters can calculate the concrete mix ratio, so optimising the
concrete mix ratio for a given compressive strength and slump will be an essential research
direction in the future. Finally, it is worth mentioning that many previous papers [52–66]
simply divided the database into a training set and a test set without setting up a validation
set. Although the final model evaluation metrics obtained look good, this is likely to be the
result obtained after overfitting the prediction model and is inaccurate. Future research
should set a separate validation set as in this paper to further improve the generalisation
ability of the prediction model.
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