Fenton Reaction–Unique but Still Mysterious
Abstract
:1. Introduction
2. Advantages of the Fenton Process and Its Historical Role
Why Are These Promising Methods Not Applied in Industry More Commonly?
3. Heterogenous Variant of Fenton Reaction
4. When Can the Original Homogeneous Fenton Reaction Be Used?
Simplified Theoretical Basis of the Fenton Reaction
5. Problem of the Fenton Process
5.1. COD and TOC, Important Criteria for Estimating the Inlet H2O2 Concentration and Ratio H2O2:Fe2+
5.2. Effect of Organic Substances in Effluents (EfOM-Effluent Organic Matter)
5.3. What Else Needs to Be Clarified concerning the Fenton Reaction?
6. Disadvantages of the Basic Fenton Process and Possible Solutions
7. Energy-Assisted Fenton Reactions
8. Summarization
- Photolysis of the UV/H2O2 type, possibly with the application of various catalysts.
- Photocatalysis (most likely UV/TiO2), possibly with the interaction of H2O2.
- The classic Fenton reaction (Fe0, Fe2+, Fe3+, possibly in the form of a photo-Fenton reaction under UV exposure).
- Homogeneous Fenton reaction working at neutral pH, i.e., its so-called “green” form corresponding to current environmental trends.
8.1. Future Directions
- Solar energy, including clarifying its real influence on the homogeneous and heterogeneous Fenton reaction, which could be interesting for subtropical and tropical regions, which currently usually suffer from high pollutant loads.
- A theoretical clarification of how to optimally dose the amount and ratio of catalyst (preferably Fe2+) and H2O2 for different water compositions, i.e., COD, TOC concentrations, and the composition of various micropollutants, which still, after more than hundreds of years, remains unclear, left either to a random choice or supported by randomized experiments.
- Solving the use of sludge with Fe3+ from the point of view of waste policies, especially the use of sludge Fe as a catalyst, which would positively affect the economics of the Fenton process (see Xu et al. [3]).
- Finding Fe3+ chelates, which could shift the Fenton reaction to its “green” homogeneous variant, working at a normal pH, which would, among other things, open the Fenton reaction to other possibilities for removing, for example, emerging pollutants from wastewater, when their strong acidification and subsequent neutralization is difficult and expensive, e.g., Lekikot et al. [118], while the removal of the complex from the treated water including regeneration is an indispensable step [119].
- A rational evaluation of costs to achieve the required final values of concentrations and ecotoxicity for individual variants of the Fenton reaction, including hybrid ones, which is necessary for the real use.
- A verification of the Fenton reaction, at least in a pilot setting, on traditional pollutants from selected real producers of these wastes (PAU, BTEX) and on real wastewater from various industries (on paper mill water [67,120], on leachate from landfills [121], as well as emerging pollutants, which is mostly missing). It would make it possible to express a fundamental opinion based on the conviction that, regarding the situation in the issue of wastewater decontamination, the Fenton reaction is an irreplaceable environmental tool.
8.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fenton, H.J.H.; Jones, H.O. The oxidation of organic acids in presence of ferrous iron. Part I. J. Chem. Soc. 1900, 77, 69–76. [Google Scholar] [CrossRef]
- Deng, Y.; Engelhard, D.J. Treatment of landfill leachate by Fenton process. Water Res. 2006, 40, 3683–3694. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wu, C.; Zhou, Y. Advancements in the Fenton Process for Wastewater Treatment. In Advanced Oxidation Processes—Applications, Trends, and Prospects; Bustillo-Lecompte, C., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Sindhi, Y.; Mehta, M. COD Removal of Different Industrial Wastewater by Fenton Oxidation Proces. Int. J. Eng. Sci. Res. Technol. 2014, 3, 1134–1139. [Google Scholar]
- Pawar, V.; Gawande, S. An overview of the Fenton Process for Industrial Wastewater. IOSR J. Mech. Civ. Eng. 2015, 2, 127–136. [Google Scholar]
- Rodrigues, C.S.D.; Madeira, L.M.; Boaventura, R.A.R. Decontamination of an Industrial Cotton Dyeing Wastewater by Chemical and Biological Processes. Ind. Eng. Chem. Res. 2014, 53, 2412–2421. [Google Scholar] [CrossRef]
- Cortez, S.; Teixeira, P.; Oliveira, R.; Mota, M. Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments. J. Environ. Manag. 2011, 92, 749–755. [Google Scholar] [CrossRef]
- Diya’uddeen, B.H.; Aziz, A.R.A.; Ashri, W.D.W.M. Optimized Treatment of Phenol-Containing Fire Fighting Wastewater Using Fenton Oxidation. J. Environ. Eng. 2012, 138, 761–770. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. B 2003, 98, 33–50. [Google Scholar] [CrossRef]
- Sarmento, A.P.; Borges, A.C.; Matos, A.T.d.; Romualdo, L.L. Sulfamethoxazole and Trimethoprim Degradation by Fenton and Fenton-Like Processes. Water 2020, 12, 1655. [Google Scholar] [CrossRef]
- Wang, M.; Su, X.; Yang, S.; Li, L.; Li, C.; Sun, F.; Dong, J.; Rong, Y. Bisphenol A degradation by Fenton advanced oxidation process and operation parameters optimization. E3S Web Conf. 2020, 144, 01014. [Google Scholar] [CrossRef]
- Guo, B.; Xu, T.; Zhang, L.; Li, S. A heterogeneous fenton-like system with green iron nanoparticles for the removal of bisphenol A: Performance, kinetics and transformation mechanism. J. Environ. Manag. 2020, 272, 111047. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes—A review. Chemosphere 2017, 174, 665–688. [Google Scholar] [CrossRef] [PubMed]
- Adhami, S.; Jamshidi-Zanjani, A.; Darban, A.K. Phenanthrene removal from the contaminated soil using the electrokinetic-Fenton method and persulfate as an oxidizing agent. Chemosphere 2021, 266, 128988. [Google Scholar] [CrossRef] [PubMed]
- Heydari, F.; Osfouri, S.; Abbasi, M.; Dianat, M.J.; Khodaveisi, J. Treatment of highly polluted grey waters using Fenton, UV/H2O2 and UV/TiO2 processes. Membr. Water Treat. 2021, 12, 125–132. [Google Scholar]
- Huong Le, T.X.; Drobek, M.; Bechelany, M.; Motuzas, J.; Julbe, A.; Cretin, M. Application of Fe-MFI zeolite catalyst in heterogeneous electro-Fenton process for water pollutants abatement. Microporous Mesoporous Mater. 2019, 278, 64–69. [Google Scholar] [CrossRef]
- Vega, E.; Valdés, H. New evidence of the effect of the chemical structure of activated carbon on the activity to promote radical generation in an advanced oxidation process using hydrogen peroxide. Microporous Mesoporous Mater. 2018, 259, 1–8. [Google Scholar] [CrossRef]
- Navalon, S.; Alvaro, M.; Garcia, H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl. Catal. B Environ. 2010, 99, 1–26. [Google Scholar] [CrossRef]
- Drumm, F.C.; Schumacher de Oliveira, J.; Foletto, E.L.; Dotto, G.L.; Flores, E.M.M.; Peters Enders, M.S.; Müller, E.I.; Janh, S.L. Response surface methodology approach for the optimization of tartrazine removal by heterogeneous photo-Fenton process using mesostructured Fe2O3-suppoted ZSM-5 prepared by chitin-templating. Chem. Eng. Commun. 2018, 205, 445–455. [Google Scholar] [CrossRef]
- Mohan, N.; Cindrella, L. Direct synthesis of Fe-ZSM-5 zeolite and its prospects as effic electrode material in methanol fuel cell. Mater. Sci. Semicond. Proc. 2015, 40, 361–368. [Google Scholar] [CrossRef]
- Yuan, E.; Wu, G.; Dai, W.; Guan, N.; Li, L. One-pot construction of Fe/ZSM-5 zeolites for the selective catalytic reduction of nitrogen oxides by ammonia. Catal. Sci. Technol. 2017, 7, 3036–3044. [Google Scholar] [CrossRef]
- Bian, K.; Zhang, A.; Yang, H.; Fan, B.; Xu, S.; Guo, X.; Song, C. Synthesis and Characterization of Fe-Substituted ZSM-5 Zeolite and Its Catalytic Performance for Alkylation of Benzene with Dilute Ethylene. Ind. Eng. Chem. Res. 2020, 59, 22413–22421. [Google Scholar] [CrossRef]
- Hosseinpour, M.; Akizuki, M.; Yoko, A.; Oshima, Y.; Soltani, M. Novel synthesis and characterization of Fe-ZSM-5 nanocrystals in hot compressed water for selective catalytic reduction of NO with NH3. Microporous Mesoporous Mater. 2020, 292, 109708. [Google Scholar] [CrossRef]
- Rostamizadeh, M.; Abbas, J.; Soorena, G. High efficient decolorization of Reactive Red 120 azo dye over reusable Fe-ZSM-5 nanocatalyst in electro-Fenton reaction. Sep. Purif. Technol. 2018, 192, 340–347. [Google Scholar] [CrossRef]
- Modarresi-Motlagh, S.; Bahadori, F.; Ghadiri, M.; Afghan, A. Enhancing Fenton-like oxidation of crystal violet over Fe/ZSM-5 in a plug flow reactor. Reac. Kinet. Mech. Cat. 2021, 133, 1061–1073. [Google Scholar] [CrossRef]
- Adityosulindro, S.; Julcour-Lebigue, C.; Barthe, L. Heterogeneous Fenton oxidation using Fe-ZSM5 catalyst for removal of ibuprofen in wastewater. J. Environ. Chem. Eng. 2018, 6, 5920–5928. [Google Scholar] [CrossRef]
- Su, R.; Chai, L.; Tang, C.; Li, B.; Yang, Z. Comparison of the degradation of molecular and ionic ibuprofen in a UV/H2O2 system. Water Sci. Technol. 2018, 77, 2174–2183. [Google Scholar] [CrossRef]
- Reimbaeva, S.M.; Massalimova, B.K.; Kalmakhanova, M.S. New pillared clays prepared from different deposits of Kazakhstan. Mater. Today Proc. 2020, 31, 607–610. [Google Scholar] [CrossRef]
- Baloyi, J.; Ntho, T.; Moma, J. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Adv. 2018, 8, 5197–5211. [Google Scholar] [CrossRef]
- Muñoz, H.-J.; Blanco, C.; Gil, A.; Vicente, M.-A.; Galeano, L.-A. Preparation of Al/Fe-Pillared Clays: Effect of the Starting Mineral. Materials 2017, 10, 1364. [Google Scholar] [CrossRef]
- Stöcker, M.; Seidl, W.; Seyfarth, L.; Senker, J.; Breu, J. Realisation of truly microporous pillared clays. Chem. Commun. 2018, 2008, 629–631. [Google Scholar] [CrossRef]
- Bhargava, S.K.; Tardio, J.; Prasad, J.; Föger, K.; Akolekar, D.B.; Grocott, S.C. Wet Oxidation and Catalytic Wet Oxidation. Ind. Eng. Chem. Res. 2006, 45, 1221–1258. [Google Scholar] [CrossRef]
- Fang, G.-d.; Liu, C.; Gao, J.; Zhou, D.-m. New Insights into the Mechanism of the Catalytic Decomposition of Hydrogen Peroxide by Activated Carbon: Implications for Degradation of Diethyl Phthalate. Ind. Eng. Chem. Res. 2014, 53, 19925–19933. [Google Scholar] [CrossRef]
- Sekaran, G.; Karthikeyan, S.; Boopathy, R.; Maharaja, P.; Gupta, V.K.; Anandan, C. Response surface modeling for optimization heterocatalytic Fenton oxidation of persistence organic pollution in high totaldissolved solid containing wastewater. Environ. Sci. Pollut. Res. Int. 2014, 21, 1489–1502. [Google Scholar] [CrossRef] [PubMed]
- Nidheesh, P.V. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: A review. RCS Adv. 2015, 5, 40552–40577. [Google Scholar] [CrossRef]
- Badi, M.Y.; Azari, A.; Pasalari, H.; Esrafili, A.; Farzadkia, M. Modification of activated carbon with magnetic Fe3O4 nanoparticle composite for removal of ceftriaxone from aquatic solutions. J. Mol. Liq. 2018, 261, 146–154. [Google Scholar] [CrossRef]
- Espinosa, J.C.; Navalon, S.; Primo, A.; Moral, M.; Fernándze Sanz, J.; Álvaro, M.; García, H. Graphenes as efficient metal-free Fenton catalyst. Chemistry 2015, 21, 11966–11971. [Google Scholar] [CrossRef]
- Divyapriya, G.; Nidhees, P.V. Importance of graphene in electro-Fenton process. ACS Omega 2020, 5, 4725–4732. [Google Scholar] [CrossRef]
- Li, W.; Wu, X.; Li, S.; Tang, W.; Chen, Y. Magnetic porous Fe3O4/carbon octahedra derived from iron-based metal-organic framework as heterogeneous Fenton-like catalyst. Appl. Surf. Sci. 2018, 436, 252–262. [Google Scholar] [CrossRef]
- Zubir, N.A.; Yacou, C.; Motuzas, J.; Zhang, X.; Zhao, X.S.; Diniz da Costa, J.C. The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO–Fe3O4. Chem. Commun. 2015, 51, 9291–9293. [Google Scholar] [CrossRef]
- Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Gar, H. Heterogeneous Fenton Catalysts Based on Activated Carbon and Related Materials. ChemSusChem 2011, 4, 1712–1730. [Google Scholar] [CrossRef]
- Xin, L.; Hu, J.; Xiang, Y.; Li, C.; Fu, L.; Li, Q.; Wei, X. Carbon-Based Nanocomposites as Fenton-Like Catalysts in Wastewater Treatment Applications: A Review. Materials 2021, 14, 2643. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Hu, J.; Wang, J. Removal of sulfamethazine antibiotics using Ce-Fe-graphene nanocomposite as catalyst by Fenton-like process. J. Environ. Manag. 2016, 182, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, L.; Sun, L.; Zhu, S.; Huang, Z.; Mao, Y.; Lu, W.; Chen, W. Efficient removal of dyes using heterogeneous Fenton catalysts based on activated carbon fibers with enhanced activity. Chem. Eng. Sci. 2013, 101, 424–431. [Google Scholar] [CrossRef]
- Su, C.; Cao, G.; Lou, S.; Wang, R.; Yuan, F.; Yang, L.; Wang, Q. Treatment of Cutting Fluid Waste using Activated Carbon Fiber Supported Nanometer Iron as a Heterogeneous Fenton Catalyst. Sci. Rep. 2018, 8, 10650. [Google Scholar] [CrossRef] [PubMed]
- Duarte, F.; Morais, V.; Maldonado-Hódar, F.J.; Madeira, L.M. Treatment of textile effluents by the heterogeneous Fenton process in a continuous packed-bed reactor using Fe/activated carbon as catalyst. Chem. Eng. J. 2013, 232, 34–41. [Google Scholar] [CrossRef]
- Messele, S.A.; Stüber, F.; Bengoa, C.; Fortuny, A.; Fabregat, A.; Font, J. Phenol Degradation by Heterogeneous Fenton-Like Reaction Using Fe Supported Over Activated Carbon. Procedia Eng. 2012, 42, 1373–1377. [Google Scholar] [CrossRef]
- Soares, S.G.P.; Rodrigues, C.S.D.; Madeira, L.M.; Pereira, M.F.R. Heterogeneous Fenton-Like Degradation of p-Nitrophenol over Tailored Carbon-Based Materials. Catalysts 2019, 9, 258. [Google Scholar] [CrossRef]
- Ramos, M.D.N.; Lima, J.P.P.; Aquino, S.F.; Aguiar, A. A critical analysis of the alternative treatments applied to effluents from Brazilian textile industries. J. Water Process. Eng. 2021, 43, 102273. [Google Scholar] [CrossRef]
- Vergili, I.; Gencdal, S. Applicability of combined Fenton oxidation and nanofiltration to pharmaceutical wastewater. Desalination Water Treat. 2015, 56, 3501–3509. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Umar, M.; Aziz, H.A.; Yusoff, M.S. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag. 2010, 30, 2113–2121. [Google Scholar] [CrossRef]
- Hasan, D.B.; Raman, A.A.A.; WanDaud, W.M.A. Kinetic Modeling of a Heterogeneous Fenton OxidativeTreatment of Petroleum Refining Wastewater. Sci. World J. 2014, 2014, 252491. [Google Scholar] [CrossRef] [Green Version]
- Ateş, H.; Argun, M.E. Advanced oxidation of landfill leachate: Removal of micropollutants and identification of by-products. J. Hazard. Mater. 2021, 413, 125326. [Google Scholar] [CrossRef]
- Gulkaya, İ.; Surucu, G.A.; Dilek, F.B. Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater. J. Hazard. Mater. 2006, 136, 763–769. [Google Scholar] [CrossRef]
- Abu Amr, S.S.; Abdul Azis, H. New treatment of stbilized leachate by ozone/Fenton in the advanced oxidation process. Waste Manag. 2012, 32, 1692–1698. [Google Scholar] [CrossRef]
- Li, Y.; Hsieh, W.-P.; Mahmudov, R.; Wei, X.; Huang, C.P. Combined ultrasound and Fenton (US Fenton) proces for the treatment of ammunition wastewater. J. Hazard. Mater. 2013, 244–245, 403–411. [Google Scholar] [CrossRef]
- Roudi, A.M.; Chelliapan, S.; Mohtar, W.H.M.W.; Kamyab, H. Prediction and Optimization of the Fenton Process for the Treatment of Landfill Leachate Using an Artificial Neural Network. Water 2018, 10, 595. [Google Scholar] [CrossRef]
- Cortez, S.; Teixeira, P.; Oliveira, R.; Mota, M. Fenton’s oxidation as post-treatment of a mature municipal landfill leachate. Int. J. Civ. Environ. Eng. 2010, 2, 40–43. [Google Scholar] [CrossRef]
- Benatti, C.T.; Tavares, C.R.; Guedes, T.A. Optimization of Fenton’s oxidation of chemical laboratory wastewaters using the response surface methodology. J. Environ. Manag. 2006, 80, 66–74. [Google Scholar] [CrossRef]
- Amaral-Silva, N.; Martins, R.C.; Castro-Silva, S.; Quinta-Ferreira, R.M. Fenton’s treatment as an effective treatment for elderberry effluents: Economical evaluation. Environ. Technol. 2016, 37, 1208–1219. [Google Scholar] [CrossRef]
- Turki, N.; Elghnijii, K.; Belhaj, D.; Bouzid, J. Effective degradation and detoxification of landfill leachates using a new combination process of coagulation/flocculation-Fenton and powder zeolite adsorption. Desalination Water Treat. 2015, 55, 151–162. [Google Scholar] [CrossRef]
- Singh, S.K.; Tang, W.Z. Statistical analysis of optimum Fenton oxidation conditions for landfill leachate treatment. Waste Manag. 2013, 33, 81–88. [Google Scholar] [CrossRef]
- Abou-Elela, S.I.; Ali, M.E.M.; Ibrahim, H.S. Combined treatment of retting flax wastewater using Fenton oxidation and granular activated carbon. Arab. J. Chem. 2016, 9, 511–517. [Google Scholar] [CrossRef]
- Gernjak, W.; Krutzler, T.; Glaser, A.; Malato, S.; Caceres, J.; Bauer, R.; Fernández-Alba, A.R. Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere 2003, 50, 71–78. [Google Scholar] [CrossRef]
- Badawy, M.I.; Ghaly, M.Y.; Gad-Allah, T.A. Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. Desalination 2006, 194, 166–175. [Google Scholar] [CrossRef]
- Tambosi, J.L.; Di Domenico, M.; Schirmer, W.N.; José, H.J.; de FPM Moreira, R. Treatment of paper and pulp wastewater and removal of odorous compounds by a Fenton-like proces at the pilot scale. J. Chem. Technol. Biotechnol. 2006, 81, 1426–1432. [Google Scholar] [CrossRef]
- Ghaly, M.Y.; Hawash, S.I.; Mahdy, A.N.; El Marsafy, S.M.; Ahmed, E.M. Catalytic oxidation of Triactive Blue dye (TAB) by using fentons reagent. J. Eng. Appl. Sci. 2005, 52, 1245–1264. [Google Scholar]
- Talebi, A.; Ismail, N.; Teng, T.T.; Alkarkhi, A.F.M. Optimzation of COD, apparent color, and turbidity reductions of landfill leachate by Fenton reagent. Desalination Water Treat. 2014, 52, 1524–1530. [Google Scholar] [CrossRef]
- Saber, A.; Hasheminejad, H.; Taebi, A.; Ghaffari, G. Optimization of Fenton-based treatment of petroleum refinery wastewater with scrap iron using response surface methodology. Appl. Water Sci. 2014, 4, 283–290. [Google Scholar] [CrossRef]
- Giannakis, S.; Vives, F.A.G.; Grandjean, D.; Magnet, A.; De Alencastro, L.F.; Pulgarin, C. Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods. Water Res. 2015, 84, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Biaglow, J.E.; Manevich, Y.; Uckun, F.; Held, K.D. Quantitation of hydroxyl radicals produced by radiation and copper-linked oxidation of ascorbate by 2-deoxy-D-ribose method. Free Radic. Biol. Med. 1997, 22, 1129–1138. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Z.; Yang, C. Measurement of hydroxyl radical production in ultrasonic aqueous solutions by a novel chemiluminescence method. Ultrason. Sonochem. 2008, 15, 665–672. [Google Scholar] [CrossRef]
- Trojanowicz, M.; Bobrowski, K.; Szreder, T.; Bojanowska-Czajka, A. Chapter 9—Gamma-ray, X-ray and Electron Beam Based Processes. In Advanced Oxidation Processes for Waste Water Treatment: Emerging Green Chemical Technology; Ameta, S.C., Ameta, R., Eds.; Academic Press: London, UK, 2018; pp. 257–331. [Google Scholar] [CrossRef]
- Prasad, M.N.V.; Vithanage, M.; Kapley, A. Pharmaceuticals and Personal Care Products Waste Management and Treatment Technology: Emerging Contaminants and Micro Pollutants; Elsevier Inc.: Oxford, UK, 2019. [Google Scholar]
- Romero, V.; Acevedo, S.; Marco, P.; Giménez, J.; Esplugas, S. Enhancement of Fenton and photo-Fenton processes at initial circumneutral pH for the degradation of the β-blocker metoprolol. Water Res. 2016, 88, 449–457. [Google Scholar] [CrossRef]
- Dong, W.; Jin, Y.; Zhou, K.; Sun, S.-P.; Li, Y.; Chen, X.D. Efficient degradation of pharmaceutical micropollutants in water and wastewater by FeIII-NTA-catalyzed neutral photo-Fenton process. Sci. Total Environ. 2019, 688, 513–520. [Google Scholar] [CrossRef]
- Miralles-Cuevas, S.; Oller, I.; Sanchez Perez, J.A.; Malato, S. Removal of pharmaceuticals from MWTP effluentby nanofiltration and solar photo-Fenton using twodifferent iron complexes at neutral pH. Water Res. 2014, 64, 23–32. [Google Scholar] [CrossRef]
- Kuznetsova, E.V.; Savinov, E.N.; Vostrikova, L.A.; Parmon, V.N. Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2. Appl. Catal. B Environ. 2004, 51, 165–170. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Stasinakis, A.S. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Sci. Total Environ. 2015, 524–525, 81–92. [Google Scholar] [CrossRef]
- Bao, S.; Shi, Y.; Zhang, Y.; He, L.; Yu, W.; Chen, Z.; Wu, Y.; Li, L. Study on the efficient removal of azo dyes by heterogeneous photo-Fenton process with 3D flower-like layered double hydroxide. Water Sci. Technol. 2020, 81, 2368–2380. [Google Scholar] [CrossRef]
- De la Cruz, N.; Esquius, L.; Grandjean, D.; Magnet, A.; Tungler, A.; de Alencastro, L.F.; Pulgarín, C. Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant. Water Res. 2013, 47, 5836–5845. [Google Scholar] [CrossRef]
- Behfar, R.; Davarnejad, R.; Heydari, R. Pharmaceutical Wastewater Chemical Oxygen Demand Reduction: Electro-Fenton, UV-enhanced Electro-Fenton and Activated Sludge. Int. J. Eng. 2019, 32, 1710–1715. [Google Scholar] [CrossRef]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water 2020, 12, 102. [Google Scholar] [CrossRef]
- Kar, P.; Shukla, K.; Jain, P.; Sathiyan, G.; Gupta, R.K. Semiconductor based photocatalysts for detoxification of emerging pharmaceutical pollutants from aquatic systems: A critical review. Nano Mater. Sci. 2021, 3, 25–46. [Google Scholar] [CrossRef]
- Heidari, M.R.; Varma, R.S.; Ahmadian, M.; Pourkhosravani, M.; Asadzadeh, S.N.; Karimi, P.; Khatami, M. Photo-Fenton like Catalyst System: Activated Carbon/CoFe2O4 Nanocomposite for Reactive Dye Removal from Textile Wastewater. Appl. Sci. 2019, 9, 963. [Google Scholar] [CrossRef]
- Dong, C.; Xing, M.; Zhang, J. Recent Progress of Photocatalytic Fenton-Like Process for Environmental Remediation. Front. Environ. Chem. 2020, 1, 8. [Google Scholar] [CrossRef]
- Ren, G.; Han, H.; Wang, Y.; Liu, S.; Zhao, J.; Meng, X.; Li, Z. Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomaterials 2021, 11, 1804. [Google Scholar] [CrossRef]
- Tai, C.; Peng, J.-F.; Liu, J.-F.; Jiang, G.B.; Zou, H. Determination of hydroxyl radicals in advanced oxidation processes with dimethyl sulfoxide trapping and liquid chromatography. Anal. Chim. Acta 2014, 527, 73–80. [Google Scholar] [CrossRef]
- De Morais, J.L.; Zamora, P.P. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates. J. Hazard. Mater. 2005, 123, 181–186. [Google Scholar] [CrossRef]
- Ferreira, F.; Carvalho, L.; Pereira, R.; Antunes, S.C. Biological and photo-Fenton treatment of olive oil mill wastewater. Glob. Nest J. 2008, 10, 419–425. [Google Scholar] [CrossRef]
- Çokay, E.; Eker, S. Pesticide Industry Wastewater Treatment with Photo-Fenton Process. Environ. Sci. Proc. 2022, 18, 15. [Google Scholar] [CrossRef]
- Su, R.; Dai, X.; Wang, H.; Wang, Z.; Li, Z.; Chen, Y.; Luo, Y.; Ouyang, D. Metronidazole degradation by UV and UV/H2O2 advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Int. J. Environ. Res. Public Health 2022, 19, 12354. [Google Scholar] [CrossRef]
- Arzate, S.; Campos-Mañas, M.C.; Miralles-Cuevas, S.; Agüera, A.; García Sánchez, J.L.; Sánchez Pérez, J.A. Removal of contaminants of emerging concern by continuous flow solar photo-Fenton process at neutral pH in open reactors. J. Environ. Manag. 2020, 261, 110265. [Google Scholar] [CrossRef]
- Oller, I.; Malato, S. Photo-Fenton applied to the removal of pharmaceutical and other pollutants of emerging concern. Curr. Opin. Green Sustain. Chem. 2021, 29, 100458. [Google Scholar] [CrossRef]
- Molina, C.B.; Sanz-Santos, E.; Boukhemkhem, A.; Bedia, J.; Belver, C.; Rodriguez, J.J. Removal of emerging pollutants in aqueous phase by heterogeneous Fenton and photo-Fenton with Fe2O3-TiO2-clay heterostructures. Environ. Sci. Pollut. Res. 2020, 27, 38434–38445. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, H.-L.; Cui, K.-P.; Dai, Z.-L.; Wang, B.; Chen, X. Heterogeneous Photo-Fenton Removal of Methyl Orange Using the Sludge Generated in Dyeing Wastewater as Catalysts. Water 2022, 14, 629. [Google Scholar] [CrossRef]
- Li, J.; Qin, L.; Zhao, L.; Wang, A.; Chen, Y.; Meng, L.; Zhang, Z.; Tian, X.; Zhou, Y. Removal of Refractory Organics from Biologically Treated Landfill Leachate by Microwave Discharge Electrodeless Lamp Assisted Fenton Process. Int. J. Photoenergy 2015, 2015, 643708. [Google Scholar] [CrossRef]
- Kastanek, F.; Cirkva, V.; Kmentova, H.; Kastanek, P.; Maleterova, Y.; Solcova, O. Photodebromination of Opaque Slurries Using Titania-Coated Mercury Electrodeless Discharge Lamps. J. Multidiscip. Eng. Sci. Technol. 2016, 3, 5262–5267. [Google Scholar]
- Zhang, H.; Choi, H.J.; Huang, C.-P. Optimization of Fenton process for the treatment of landfill leachate. J. Hazard. Mater. 2005, 125, 166–174. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, D.; Zhou, J. Removal of COD from landfill leachate by electro-Fenton method. J. Hazard. Mater. 2006, 135, 106–111. [Google Scholar] [CrossRef]
- Gadi, N.; Boelee, N.C.; Dewil, R. The Electro-Fenton Process for Caffeine Removal from Water and Granular Activated Carbon Regeneration. Sustainability 2022, 14, 14313. [Google Scholar] [CrossRef]
- Marlina, E. Electro-Fenton for Industrial Wastewater Treatment: A Review. E3S Web Conf. 2019, 125, 03003. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Gandhimathi, R. Trends in electro-Fenton process for water and wastewater treatment: An overview. Desalination 2012, 299, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Lia, X.; Zhen, L.; Zhang, H.; Zhang, Y.; Wang, C. Electro-Fenton treatment of concentrates generated in nanofiltration of biologically pretreated landfill leachate. J. Hazard. Mater. 2012, 229–230, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, S.; Huang, Y. Removing organic contaminants by an electro-Fenton system constructed with graphene cathode. Toxicol. Environ. Chem. 2016, 98, 530–539. [Google Scholar] [CrossRef]
- Heidari, Z.; Motevasel, M.; Jaafarzadeh, N.A. Application of Electro-Fenton (EF) Process to the Removal of Pentachlorophenol from Aqueous Solutions. Iran. J. Oil Gas Sci. Technol. 2015, 4, 76–87. [Google Scholar] [CrossRef]
- Vedrenne, M.; Vasquez-Medrano, R.; Prato-Garcia, D.; Frontana-Uribe, B.A.; Ibanez, J.G. Characterization and detoxification of a mature landfill leachate using a combined coagulation–flocculation/photo Fenton treatment. J. Hazrad. Mater. 2012, 205–206, 208–215. [Google Scholar] [CrossRef]
- El-Desoky, H.S.; Ghoneima, M.; El-Sheikhb, R.; Zidana, N.M. Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton’s reagent. J. Hazard. Mater. 2010, 175, 858–865. [Google Scholar] [CrossRef]
- Cetinkaya, S.G.; Morcali, M.H.; Akarsu, S.A.; Ziba, C.A.; Dolaz, M. Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater. Sustain. Environ. Res. 2018, 28, 165–170. [Google Scholar] [CrossRef]
- Yuan, D.; Zhou, X.; Jin, W.; Han, W.; Chi, H.; Ding, W.; Huang, Y.; He, Z.; Gao, S.; Wang, Q. Effects of the Combined Utilization of Ultrasonic/Hydrogen Peroxide on Excess Sludge Destruction. Water 2021, 13, 266. [Google Scholar] [CrossRef]
- Camargo-Perea, A.L.; Rubio-Clemente, A.; Peñuela, G.A. Use of Ultrasound as an Advanced Oxidation Process for the Degradation of Emerging Pollutants in Water. Water 2020, 12, 1068. [Google Scholar] [CrossRef]
- Dietrich, M.; Franke, M.; Stelter, M. Degradation of endocrine disruptor bisphenol A by ultrasound-assisted electrochemical oxidation in water. Ultrason. Sonochem. 2017, 39, 741–749. [Google Scholar] [CrossRef]
- Rahdar, S.; Igwegbe, C.A.; Ghasemi, M.; Ahmadi, S. Degradation of aniline by the combined process of ultrasound and hydrogen peroxide (US/H2O2). MethodsX 2019, 6, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Calderón, A.; Zúñiga-Benítez, H.; Valencia, S.H.; Rubio-Clemente, A.; Aupegui, S.; Peñuela, G.A. Use of low frequency ultrasound for water treatment: Data on azithromycin removal. Data Brief 2020, 31, 105947. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Cho, M.; Kim, J.Y.; Yoon, J. Chemistry of ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical. J. Ind. Eng. Chem. 2004, 10, 161–171. [Google Scholar]
- Karim, A.V.; Krishnan, S.; Pisharody, L.; Malhotra, M. Application of Ferrate for Advanced Water and Wastewater Treatment. In Advanced Oxidation Processes—Applications, Trends, and Prospects; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Lekikot, B.; Mammer, L.; Talbi, K.; Benssassi, M.E.; Abdessemed, A.; Sehili, T. Homogeneous modified Fenton-like oxidation using FeIII-gallic acid complex for ibuprofen degradation at neutral pH. Desalination 2021, 234, 147–157. [Google Scholar] [CrossRef]
- Zhu, Y.; Fan, W.; Zhou, T.; Li, X. Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Sci. Total Environ. 2019, 678, 253–266. [Google Scholar] [CrossRef]
- Ayoub, M. Fenton process for the treatment of wastewater effluent from the edible oil industry. Water Sci. Technol. 2022, 86, 1388–1401. [Google Scholar] [CrossRef]
- Primo, O.; Rueda, A.; Rivero, M.J.; Ortiz, I. An Integrated Process, Fenton Reaction−Ultrafiltration, for the Treatment of Landfill Leachate: Pilot Plant Operation and Analysis. Ind. Eng. Chem. Res. 2008, 47, 946–952. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kastanek, F.; Spacilova, M.; Krystynik, P.; Dlaskova, M.; Solcova, O. Fenton Reaction–Unique but Still Mysterious. Processes 2023, 11, 432. https://doi.org/10.3390/pr11020432
Kastanek F, Spacilova M, Krystynik P, Dlaskova M, Solcova O. Fenton Reaction–Unique but Still Mysterious. Processes. 2023; 11(2):432. https://doi.org/10.3390/pr11020432
Chicago/Turabian StyleKastanek, Frantisek, Marketa Spacilova, Pavel Krystynik, Martina Dlaskova, and Olga Solcova. 2023. "Fenton Reaction–Unique but Still Mysterious" Processes 11, no. 2: 432. https://doi.org/10.3390/pr11020432
APA StyleKastanek, F., Spacilova, M., Krystynik, P., Dlaskova, M., & Solcova, O. (2023). Fenton Reaction–Unique but Still Mysterious. Processes, 11(2), 432. https://doi.org/10.3390/pr11020432