Intensification of endo-1,4-Xylanase Extraction by Coupling Microextractors and Aqueous Two-Phase System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemicals
2.1.2. Raw Enzyme
2.2. Methods
2.2.1. Analytical Methods
2.2.2. Batch Extraction of Xylanase
Optimization of Extraction
2.2.3. Continuous Extraction in a Microextractor
2.2.4. Mathematical Modelling of the Xylanase Extraction in a Microextractor
- Xylanase concentration in raffinate phase (R):
- Xylanase concentration in extract phase (E):
3. Results and Discussion
3.1. Selection of the ATPS for Xylanase Extraction
3.2. Extraction Optimization
3.3. Extraction Intensification in a Microextractor
3.4. Extraction of Raw Xylanases Produced by Solid-State Fermentation of Thermomyces Lanuginosus
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres-Acosta, M.A.; Mayolo-Deloisa, K.; González-Valdez, J.; Rito-Palomares, M. Aqueous two-phase systems at large scale: Challenges and opportunities. Biotechnol. J. 2019, 14, 1800117. [Google Scholar] [CrossRef] [PubMed]
- Shahi, N.; Hasan, A.; Akhtar, S.; Siddiqui, M.H.; Sayeed, U. Xylanase: A promising enzyme. J. Chem. Pharm. Res. 2016, 8, 334–339. [Google Scholar]
- Gangwar, A.K.; Prakash, N.T.; Prakash, R. Applicability of microbial xylanases in paper pulp bleaching: A review. BioResources 2014, 9, 3733–3754. [Google Scholar] [CrossRef]
- Harris, A.D.; Ramalingam, C. Xylanases and its Application in Food Industry: A Review. J. Exp. Sci. 2010, 7, 1–11. [Google Scholar]
- Rahimpour, F.; Hatti-Kaul, R.; Mamo, G. Response surface methodology and artificial neural network modelling of an aqueous two-phase system for purification of a recombinant alkaline active xylanase. Process Biochem. 2016, 51, 452–462. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kumar, B.; Verma, P. A detailed overview of xylanases: An emerging biomolecule for current and future prospective. Bioresour. Bioprocess. 2019, 6, 40. [Google Scholar] [CrossRef]
- Tonova, K.; Lazarova, Z. Reversed micelle solvents as tools of enzyme purification and enzyme-catalyzed conversion. Biotechnol. Adv. 2008, 26, 516–532. [Google Scholar] [CrossRef] [PubMed]
- Hatti-Kaul, R. Aqueous two-phase systems: A general overview. Mol. Biotechnol. 2002, 19, 269–278. [Google Scholar] [CrossRef]
- Yavari, M.; Pazuki, G.R.; Vossoughi, M.; Mirkhani, S.A.; Seifkordi, A.A. Partitioning of alkaline protease from Bacillus licheniformis (ATCC 21424) using PEG–K2HPO4 aqueous two-phase system. Fluid Phase Equilibria 2013, 337, 1–5. [Google Scholar] [CrossRef]
- Barbosa, J.M.P.; Souza, R.L.; Fricks, A.T.; Zanin, G.M.; Soares, C.M.F.; Lima, A.S. Purification of lipase produced by a new source of Bacillus in submerged fermentation using an aqueous two-phase system. J. Chromatogr. B 2011, 879, 3853–3858. [Google Scholar] [CrossRef]
- Sánchez-Trasviña, C.; Enriquez-Ochoa, D.; Arellano-Gurrola, C.; Tinoco-Valencia, R.; Rito-Palomares, M.; Serrano-Carreón, L.; Mayolo-Deloisa, K. Strategies based on aqueous two-phase systems for the separation of laccase from protease produced by Pleurotus ostreatus. Fluid Phase Equilibria 2019, 502, 112281. [Google Scholar] [CrossRef]
- Clavijo, V.; Torres-Acosta, M.A.; Vives-Flórez, M.J.; Rito-Palomares, M. Aqueous twophase systems for the recovery and purification of phage therapy products: Recovery of salmonella bacteriophage ϕSan23 as a case study. Sep. Purif. Technol. 2019, 211, 322–329. [Google Scholar] [CrossRef]
- González-Valdez, J.; Mayolo-Deloisa, K.; Rito-Palomares, M. Novel aspects and future trends in the use of aqueous two-phase systems as a bioengineering tool. J. Chem. Technol. Biotechnol. 2018, 93, 1836–1844. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, L.; Wang, M.; Wu, S.; Wang, X.; Li, D.; Liu, C.; Feng, Z.; Chi, Y. Direct separation and purification of alphalactalbumin from cow milk whey by aqueous two-phase flotation of thermo-sensitive polymer/phosphate. J. Sci. Food Agric. 2021, 101, 4173–4182. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, M.; Wang, X.; Wu, S.; Li, D.; Liu, C.; Feng, Z.; Li, J. Effective separation of prolyl endopeptidase from Aspergillus Niger by aqueous two phase system and its characterization and application. Int. J. Biol. Macromol. 2021, 169, 384–395. [Google Scholar] [CrossRef]
- Leong, H.Y.; Fu, X.Q.; Show, P.L.; Yao, S.J.; Lin, D.Q. Downstream processing of virus-like particles with aqueous two-phase systems: Applications and challenges. J. Sep. Sci. 2022, 45, 2064–2076. [Google Scholar] [CrossRef]
- Kruse, T.; Kampmann, M.; Rüddel, I.; Greller, G. An alternative downstream process based on aqueous two-phase extraction for the purification of monoclonal antibodies. Biochem. Eng. J. 2020, 161, 107703. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, L.; Zhu, M.; Wu, S.; Wang, X.; Li, D.; Liu, C.; Feng, Z.; Tian, B. Separation, structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by aqueous two-phase system. LWT 2021, 147, 111617. [Google Scholar] [CrossRef]
- Mokshina, N.Y.; Shkinev, V.M.; Shatalov, G.V.; Pakhomova, O.A.; Spivakov, B.Y. Extraction systems based on N-vinylformamide for the extraction and separation of cyclic amino acids. Dokl. Chem. 2020, 493, 113–116. [Google Scholar] [CrossRef]
- Grilo, A.L.; Aires-Barros, M.R.; Azevedo, A.M. Partitioning in aqueous two-phase systems: Fundamentals, applications and trends. Sep. Purif. Rev. 2016, 45, 68–80. [Google Scholar] [CrossRef]
- Pereira, F.B.; Freire, M.G.; Coutinho, J.A.P. Aqueous two-phase systems: Towards novel and more disruptive applications. Fluid Phase Equilibria 2020, 505, 112341. [Google Scholar] [CrossRef]
- Iqbal, M.; Tao, Y.; Xie, S.; Zhu, Y.; Chen, D.; Wang, X.; Huang, L.; Peng, D.; Sattar, A.; Shabbir, M.A.B.; et al. Aqueous two-phase system (ATPS): An overview and advances in its applications. Biol. Proced. Online 2016, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, F.F.; Tavares, A.P.M.; Freire, M.G. Advances in aqueous biphasic systems for biotechnology applications. Curr. Opin. Green Sustain. Chem. 2021, 27, 100417. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Wang, Q.; Wang, J.; Shang, L. Aqueous two-phase emulsions toward biologically relevant applications. Trends Chem. 2023, 5, 61–75. [Google Scholar] [CrossRef]
- Xu, Y.; He, G.; Li, J.-J. Effective extraction of elastase from Bacillus sp. fermentation broth using aqueous two-phase system. J. Zhejiang. Univ. Sci. B 2005, 6, 1087. [Google Scholar] [CrossRef]
- Mamo, G.; Hatti-Kaul, R.; Mattiasson, B. A thermostable alkaline active endo-β-1-4-xylanase from Bacillus halodurans S7: Purification and characterization. Enzyme Microb. Technol. 2006, 39, 1492–1498. [Google Scholar] [CrossRef]
- Taddia, A.; Rito-Palomares, M.; Mayolo-Deloisa, K.; Tubio, G. Purification of xylanase from Aspergillus niger NRRL3 extract by an integrated strategy based on aqueous two-phase systems followed by ion exchange chromatography. Sep. Purif. Technol. 2021, 255, 117699. [Google Scholar] [CrossRef]
- Moteshafi, H.; Jabbari, L.; Hashemi, M. Performance of Bacillus subtilis D3d xylanase separated through optimized aqueous two-phase system in bio-bleaching of sugar beet pulp. Process. Saf. Environ. Prot. 2022, 159, 749–756. [Google Scholar] [CrossRef]
- Kuan, D.H.; Wu, C.C.; Su, W.Y.; Huang, N.T. A microfluidic device for simultaneous extraction of plasma, red blood cells, and on-chip white blood cell trapping. Sci. Rep. 2018, 8, 15345. [Google Scholar] [CrossRef]
- Abdulbari, H.A.; Basheer, E.A.M. Microfluidics chip for directional solvent extraction desalination of seawater. Sci. Rep. 2019, 9, 12576. [Google Scholar] [CrossRef]
- Goja, A.M.; Yang, H.; Cui, M.; Li, C. Aqueous two-phase extraction advances for bioseparation. J. Bioprocess. Biotech. 2013, 4, 1000140. [Google Scholar] [CrossRef]
- Novak, U.; Pohar, A.; Plazl, I.; Žnidaršič-Plazl, P. Ionic liquid-based aqueous two-phase extraction within a microchannel system. Sep. Purif. Technol. 2012, 97, 172–178. [Google Scholar] [CrossRef]
- Šalić, A.; Tušek, A.; Fabek, D.; Rukavina, I.; Zelić, B. Aqueous two-phase extraction of polyphenols using a microchannel system—Process optimization and intensification. Food Technol. Biotechnol. 2011, 49, 495–501. [Google Scholar]
- Jurinjak Tušek, A.; Šalić, A.; Zelić, B. Mathematical modelling of polyphenol extraction by aqueous two-phase system in continuously operated macro- and micro-extractors. Sep. Sci. Technol. 2017, 52, 864–875. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosenbrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Alvarenga, B.G.; Virtuoso, L.S.; Lemes, N.H.T.; da Silva, L.A.; Mesquita, A.F.; Nascimento, K.S.; Hespanhol Da Silva, M.C.; Mendes Da Silva, L.H. Measurement and correlation of the phase equilibrium of aqueous two-phase systems composed of polyethylene(glycol) 1500 or 4000 + sodium sulfite + water at different temperatures. J. Chem. Eng. Data 2014, 59, 382–390. [Google Scholar] [CrossRef]
- Silvério, S.C.; Wegrzyn, A.; Lladosa, E.; Rodríguez, O.; MacEdo, E.A. Effect of aqueous two-phase system constituents in different poly(ethylene glycol)–Salt phase diagrams. J. Chem. Eng. Data 2012, 57, 1203–1208. [Google Scholar] [CrossRef]
- González-Amado, M.; Rodil, E.; Arce, A.; Soto, A.; Rodríguez, O. Polyethylene glycol (1500 or 600)—Potassium tartrate aqueous two-phase systems. Fluid Phase Equilibria 2018, 470, 120–125. [Google Scholar] [CrossRef]
- Garai, D.; Kumar, V. Aqueous two phase extraction of alkaline fungal xylanase in PEG/phosphate system: Optimization by Box–Behnken design approach. Biocatal. Agric. Biotechnol. 2013, 2, 125–131. [Google Scholar] [CrossRef]
- Young, M.E.; Carroad, P.A.; Bell, R.L. Estimation of diffusion coefficients of proteins. Biotechnol. Bioeng. 1980, 22, 947–955. [Google Scholar] [CrossRef]
- Abreu, D.C.; Figueiredo, K.C.D.S. Bromelain separation and purification process from pineapple extract. Braz. J. Chem. Eng. 2019, 36, 1029–1039. [Google Scholar] [CrossRef]
- Chaiwut, P.; Rawdkuen, S.; Benjakul, S. Extraction of protease from Calotropis procera latex by polyethylene glycol-salts biphasic system. Process Biochem. 2010, 45, 1148–1155. [Google Scholar] [CrossRef]
- Yuzugullu, Y.; Duman, Y.A. Aqueous two-phase (PEG4000/Na2SO4) extraction and characterization of an acid invertase from potato tuber (Solanum tuberosum). Prep. Biochem. Biotechnol. 2015, 45, 696–711. [Google Scholar] [CrossRef]
- Da Silva, O.S.; Gomes, M.H.G.; de Oliveira, R.L.; Porto, A.L.F.; Converti, A.; Porto, T.S. Partitioning and extraction protease from Aspergillus tamarii URM4634 using PEG-citrate aqueous two-phase systems. Biocatal. Agric. Biotechnol. 2017, 9, 168–173. [Google Scholar] [CrossRef]
- Glyk, A.; Scheper, T.; Beutel, S. Influence of different phase-forming parameters on the phase diagram of several PEG–salt aqueous two-phase systems. J. Chem. Eng. Data 2014, 59, 850–859. [Google Scholar] [CrossRef]
- Antov, M.G.; Pericin, D.M.; Dasic, M.G. Aqueous two-phase partitioning of xylanase produced by solid-state cultivation of Polyporus squamosus. Process Biochem. 2006, 41, 232–235. [Google Scholar] [CrossRef]
- Yang, S.; Huang, Z.; Jiang, Z.; Li, L. Partition and purification of a thermostable xylanase produced by Paecilomyces thermophila in solid state fermentation using aqueous two—Phase systems. Process Biochem. 2008, 43, 56–61. [Google Scholar] [CrossRef]
- Poornima, S.; Divya, P.; Karmegam, N.; Karthik, V.; Subbaiya, R. Aqueous two-phase partitioning and characterization of xylanase produced by Streptomyces geysiriensis from low cost lignocellulosic substrates. J. Biosci. Bioeng. 2020, 130, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Concato, J.; Hartigan, J.A. P values: From suggestion to superstition. J. Investig. Med. 2016, 64, 1166–1171. [Google Scholar] [CrossRef]
- Vincente, F.A.; Plazl, I.; Ventura, S.P.M.; Žnidaršič-Plazl, P. Separation and purification of biomacromolecules based on microfluidics. Green Chem. 2020, 22, 4391–4410. [Google Scholar] [CrossRef]
Salt-H2O-PEG1540 | VPEG solution, mL | pHPEG solution, - | Vsalt solution, mL | pHsalt solution, - | Vbuffer, mL | Vxylanase solution, mL |
---|---|---|---|---|---|---|
Salt | ||||||
sodium sulphate | 1.965 | 7.36 | 1.598 | 6.56 | 0.938 | 0.500 |
sodium citrate dihydrate | 2.080 | 7.36 | 2.079 | 8.99 | 0.341 | 0.500 |
sodium formate | 2.730 | 7.36 | 3.053 | 8.84 | 0 | 0.500 |
potassium sodium tartrate tetrahydrate | 2.319 | 7.36 | 2.350 | 8.33 | 0 | 0.500 |
ammonium sulphate | 2.040 | 7.36 | 1.694 | 5.01 | 0.766 | 0.500 |
Salt-H2O-PEG1540 | E, % | K, - | PF, - |
---|---|---|---|
Salt | |||
ammonium sulphate | 43.72 ± 10.23 | 0.78 ± 0.29 | 1.31 ± 0.19 |
sodium sulphate | No phase formation | ||
potassium sodium tartrate tetrahydrate | 60.12 ± 8.71 | 1.01 ± 0.36 | 1.36 ± 0.09 |
sodium citrate dihydrate | 79.63 ± 5.21 | 3.91 ± 0.26 | 1.26 ± 0.25 |
sodium formate | No phase formation |
Exp. | t, min | γxylanase, mg/mL | wPEG, w/w | Eobserved, % | Epredicted, % |
---|---|---|---|---|---|
1 | 5 | 0.10 | 0.21 | 95.318 ± 0.848 | 96.461 |
2 | 15 | 0.10 | 0.21 | 91.227 ± 0.811 | 78.988 |
3 | 5 | 0.30 | 0.21 | 106.515 ± 8.088 | 101.102 |
4 | 15 | 0.30 | 0.21 | 103.364 ± 7.874 | 96.461 |
5 | 5 | 0.20 | 0.20 | 85.500 ± 6.447 | 82.128 |
6 | 15 | 0.20 | 0.20 | 88.568 ± 6.678 | 94.737 |
7 | 5 | 0.20 | 0.22 | 86.523 ± 6.524 | 94.573 |
8 | 15 | 0.20 | 0.22 | 102.886 ± 7.758 | 103.839 |
9 | 10 | 0.10 | 0.20 | 72.906 ± 8.145 | 80.429 |
10 | 10 | 0.30 | 0.20 | 97.724 ± 3.214 | 91.029 |
11 | 10 | 0.10 | 0.22 | 96.517 ± 4.541 | 103.268 |
12 | 10 | 0.30 | 0.22 | 104.509 ± 7.065 | 103.786 |
13 | 10 | 0.20 | 0.21 | 89.318 ± 6.735 | 86.513 |
14 | 10 | 0.20 | 0.21 | 88.568 ± 6.679 | 85.373 |
15 | 10 | 0.20 | 0.21 | 88.600 ± 6.681 | 86.870 |
16 | 10 | 0.20 | 0.21 | 87.046 ± 6.563 | 86.119 |
17 | 10 | 0.20 | 0.21 | 82.432 ± 6.216 | 88.069 |
Parameter | Influence | p-Value |
---|---|---|
β0 | 94.69 | 0.000000 |
β1 (t) | 3.44 | 0.388259 |
β2 (t2) | −9.49 | 0.007820 |
β3 (γxylanase) | 15.21 | 0.048380 |
β4 (γxylanase2) | 1.45 | 0.787007 |
β5 (wPEG) | −1.44 | 0.827753 |
β6 (wPEG2) | 10.78 | 0.074961 |
β7 (t · γxylanase) | 0.27 | 0.960227 |
β8 (t · wPEG) | 7.33 | 0.208460 |
β9 (γxylanase · wPEG) | −13.49 | 0.038038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Božinović, M.; Vičević, R.; Zekić, N.; Šalić, A.; Jurinjak Tušek, A.; Zelić, B. Intensification of endo-1,4-Xylanase Extraction by Coupling Microextractors and Aqueous Two-Phase System. Processes 2023, 11, 447. https://doi.org/10.3390/pr11020447
Božinović M, Vičević R, Zekić N, Šalić A, Jurinjak Tušek A, Zelić B. Intensification of endo-1,4-Xylanase Extraction by Coupling Microextractors and Aqueous Two-Phase System. Processes. 2023; 11(2):447. https://doi.org/10.3390/pr11020447
Chicago/Turabian StyleBožinović, Marko, Renata Vičević, Nikolina Zekić, Anita Šalić, Ana Jurinjak Tušek, and Bruno Zelić. 2023. "Intensification of endo-1,4-Xylanase Extraction by Coupling Microextractors and Aqueous Two-Phase System" Processes 11, no. 2: 447. https://doi.org/10.3390/pr11020447
APA StyleBožinović, M., Vičević, R., Zekić, N., Šalić, A., Jurinjak Tušek, A., & Zelić, B. (2023). Intensification of endo-1,4-Xylanase Extraction by Coupling Microextractors and Aqueous Two-Phase System. Processes, 11(2), 447. https://doi.org/10.3390/pr11020447