Analysis of Fluid Flow in a Radial Centrifugal Pump
Abstract
:1. Introduction
2. Materials and Methods
Numerical Model of the Flow in the Suction Pipe
3. Results and Discussion
3.1. Pressure Relations in the Pump
3.2. Velocity Profiles in the Suction Pipe of the Pump
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chandrasekaran, M.; Santhanam, V.; Venkateshwaran, N. Impeller Design and CFD Analysis of Fluid Flow in Rotodynamic Pumps. Mater. Today-Proc. 2021, 37, 2153–2157. [Google Scholar] [CrossRef]
- Gülich, J.F. Centrifugal Pumps; Springer: Berlin/Heidelberg, Germany, 2010; Volume c2010, ISBN 978-3-642-12823-3. [Google Scholar]
- Polák, M. Innovation of Pump as Turbine According to Calculation Model for Francis Turbine Design. Energies 2021, 14, 2698. [Google Scholar] [CrossRef]
- Sankar, S. Analysis of Centrifugal Pump Impeller Using ANSYS. Int. J. Innov. Res. Sci. Eng. Technol. 2018, 7, 5021–5026. [Google Scholar]
- Meng, D.; Jiang, T.; Deng, H.; Hou, G. Numerical Simulation Research on Radial Force of Centrifugal Pump with Guide Vanes. Shock. Vib. 2021, 2021, 6638123. [Google Scholar] [CrossRef]
- Chen, B.; Qian, Y. Effects of Blade Suction Side Modification on Internal Flow Characteristics and Hydraulic Performance in a PIV Experimental Centrifugal Pump. Processes 2022, 10, 2479. [Google Scholar] [CrossRef]
- Xu, Z.; Kong, F.; Zhang, H.; Zhang, K.; Wang, J.; Qiu, N. Research on Visualization of Inducer Cavitation of High-Speed Centrifugal Pump in Low Flow Conditions. J. Mar. Sci. Eng. 2021, 9, 1240. [Google Scholar] [CrossRef]
- Hou, H.; Zhang, Y.; Li, Z.; Zhang, Y. A CFD Study of IGV Vane Number on Hydraulic Characteristics and Pressure Pulsation of an Is Centrifugal Pump. J. Vibroengineering 2017, 19, 563–576. [Google Scholar] [CrossRef]
- Tan, L.; Cao, S.; Wang, Y.; Wang, B. Influence of Prewhirl Regulation by Inlet Guide Vanes on Cavitation Performance of a Centrifugal Pump. Energies 2014, 7, 1050–1065. [Google Scholar] [CrossRef]
- Hassan, A.; Abdallah, H.; Abou El-Azm Aly, A. Effect of Impeller Blade Slot on Centrifugal Pump Performance. Glob. J. Res. Eng. 2016, 16, 71–85. [Google Scholar] [CrossRef]
- Alemi, H.; Nourbakhsh, S.; Raisee Dehkordi, M.; Najafi, A. Effects of Volute Curvature on Performance of a Low Specific-Speed Centrifugal Pump at Design and Off-Design Conditions. J. Turbomach. 2015, 137, 041009. [Google Scholar] [CrossRef]
- ISO 9906:2012; Rotodynamic Pumps—Hydraulic Performance Acceptance Tests—Grades 1, 2 and 3. International Organization for Standardization: Geneva, Switzerland, 2012.
- Corpetti, T.; Heitz, D.; Arroyo, G.; Memin, E.; Santa-Cruz, A. Fluid Experimental Flow Estimation Based on an Optical-Flow Scheme. Exp. Fluids 2006, 40, 80–97. [Google Scholar] [CrossRef]
- Pedersen, N.; Larsen, P.S.; Jacobsen, C.B. Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part I: Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) Measurements. J. Fluids Eng. 2003, 125, 61–72. [Google Scholar] [CrossRef]
- Feng, J.; Benra, F.-K.; Dohmen, H.J. Unsteady Flow Visualization at Part-Load Conditions of a Radial Diffuser Pump: By PIV and CFD. J. Vis. 2009, 12, 65–72. [Google Scholar] [CrossRef]
- Westra, R.W.; Broersma, L.; van Andel, K.; Kruyt, N.P. PIV Measurements and CFD Computations of Secondary Flow in a Centrifugal Pump Impeller. J. Fluids Eng. 2010, 132, 061104. [Google Scholar] [CrossRef]
- Furst, J.; Halada, T.; Sedlar, M.; Kratky, T.; Prochazka, P.; Komarek, M. Numerical Analysis of Flow Phenomena in Discharge Object with Siphon Using Lattice Boltzmann Method and CFD. Mathematics 2021, 9, 1734. [Google Scholar] [CrossRef]
- Owida, A.; Do, H.; Yang, W.; Morsi, Y.S. Piv measurements and numerical validation of end-to-side anastomosis. J. Mech. Med. Biol. 2010, 10, 123–138. [Google Scholar] [CrossRef]
- Zhou, S.; Lin, P.; Zhang, W.; Zhu, Z. Evolution Characteristics of Separated Vortices and Near-Wall Flow in a Centrifugal Impeller in an Off-Designed Condition. Appl. Sci. 2020, 10, 8209. [Google Scholar] [CrossRef]
- Kumar, J.; Paswan, M. Parametric Analysis of Centrifugal Pump and Calculation of Slip Factor. Int. J. Sci. Res. Multidiscip. Stud. 2019, 5, 15–22. [Google Scholar]
- Ye, F.; Bianchi, G.; Rane, S.; Tassou, S.; Deng, J. Analytical Grid Generation and Numerical Assessment of Tip Leakage Flows in Sliding Vane Rotary Machines. Adv. Eng. Softw. 2021, 159, 103030. [Google Scholar] [CrossRef]
- Černý, J.; Sitte, D. Analysis of the Flow of Liquid in the Suction Pipe of the Radial Centrifugal Pump. In Proceedings of the 22nd International Conference of Young Scientists 2020, Prague, Czech Republic, 14–15 September 2020; Czech University of Life Sciences Prague: Prague, Czech Republic, 2020; Volume 22. [Google Scholar]
- Benavides-Morán, A.; Rodríguez-Jaime, L.; Laín, S. Numerical Investigation of the Performance, Hydrodynamics, and Free-Surface Effects in Unsteady Flow of a Horizontal Axis Hydrokinetic Turbine. Processes 2022, 10, 69. [Google Scholar] [CrossRef]
- Varchola, M. Hydraulický Návrh Odstredivých Čerpadiel; STU: Bratislava, Slovakia, 2016; ISBN 978-80-8106-070-0. [Google Scholar]
- Cao, Z.; Deng, J.; Zhao, L.; Lu, L. Numerical Research of Pump-as-Turbine Performance with Synergy Analysis. Processes 2021, 9, 1031. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, L.; Xue, H.; Duan, J.; Deng, F. A Numerical Analysis of the Effect of Impeller Rounding on Centrifugal Pump as Turbine. Processes 2021, 9, 1673. [Google Scholar] [CrossRef]
- ANSYS. ANSYS Meshing User’s Guide; Release 14.5 2012; ANSYS, Inc.: Canonsburg, PA, USA, 2012; pp. 124–137. [Google Scholar]
Setting No. | Input Variables for Numerical Model |
---|---|
1 | Pressure at the pump inlet, mass flowrate at the pump outlet |
2 | Mass flowrate at the pump inlet, pressure at the pump outlet |
3 | Velocity at the pump inlet from PIV, mass flowrate at the pump outlet |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Černý, J.; Polák, M. Analysis of Fluid Flow in a Radial Centrifugal Pump. Processes 2023, 11, 448. https://doi.org/10.3390/pr11020448
Černý J, Polák M. Analysis of Fluid Flow in a Radial Centrifugal Pump. Processes. 2023; 11(2):448. https://doi.org/10.3390/pr11020448
Chicago/Turabian StyleČerný, Jan, and Martin Polák. 2023. "Analysis of Fluid Flow in a Radial Centrifugal Pump" Processes 11, no. 2: 448. https://doi.org/10.3390/pr11020448
APA StyleČerný, J., & Polák, M. (2023). Analysis of Fluid Flow in a Radial Centrifugal Pump. Processes, 11(2), 448. https://doi.org/10.3390/pr11020448