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Abstract: Using the mixture of carbonized rice husk and shungite from the Kazakhstan Koksu deposit
and the experimentally determined oil sorption capacity from contaminated soil with oil originating
in the Karazhanbas oil field, a set of Artificial Neural Network (ANN) models were built for sorption
predictions. The ANN architecture design, training, validation and testing methodology were
performed, and the sorption capacity prediction was evaluated. The ANN models were successfully
trained for capturing the sorption capacity dependence on time and on a carbonized rice husk and
shungite mixture ratio for the 10% and 15% oil-contaminated soil. The best trained ANNs revealed a
very good prediction capability for the testing data subset, demonstrated by the high coefficient of the
determination values of R2 = 0.998 and R2 = 0.981 and the mean absolute percentage errors ranging
from 1.60% to 3.16%. Furthermore, the ANN sorption models proved their interpolation ability and
utility for predicting the sorption capacity for any time moments in the investigated time interval
of 60 days and for new values of the shungite and rice husk mixture ratios. The ANN developed
models open opportunities for planning new experiments, maximizing the sorption performance
and for the design of dedicated equipment.

Keywords: modeling; artificial neural networks; sorption; crude oil; shungite; rice husk; carbonization

1. Introduction

During the exploration, production and transportation of oil, environmental pollution
occurs to varying degrees. Soil pollution with oil and oil products affects not only human
health, but also the growth of vegetation and the biological environment.

Many soil remediation methods have been developed, but a fast, environmentally
friendly and economical method is required to eliminate and minimize the hazardous
effects of crude oil. One review [1] discusses various methods of soil remediation to remove
crude oil. The effectiveness of these methods depends on a number of factors, such as
the amount of oil spilled, the depth of the oil penetration into the soil, the type of oil and
contaminated soil, the age of the soil and the degree of contamination [2]. Bioremediation
technology is considered efficient, inexpensive, does not require any technical skills to
operate and, in most cases, does not have a negative impact on the ecosystem.

Despite the obvious advantage of bioremediation for oil-contaminated soils, its ap-
plication is limited due to the poor adaptation of native or inoculated microorganisms
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and plants in heavily contaminated soils. Additional acceleration of bioremediation can
be created by introducing natural adsorbents into the soil [3]. The positive effect of the
adsorbents is explained by a decrease in the soil toxicity for microorganisms and plants
due to the predominantly reversible adsorption of toxic oil components and especially their
oxidation products, a decrease in the soil hydrophobicity with a subsequent increase in
their water-holding capacity, localization of water-soluble components in the treated soil
layer and the presence of some adsorbents.

In the articles [4,5], bioremediation is considered together with the processes of ad-
sorption and photocatalysis to reduce the level of pollutants. The soils treated with sorbents
maintained a neutral pH, increased moisture and reduced soil phytotoxicity. The carbon-
based sorbent showed the maximum efficiency.

One of the main technologies with the advantages of ease of operation and relatively
low cost for the decontamination of the ecosystem is the adsorption process. Adsorption is a
surface phenomenon and is widely used in the treatment of water, soil and air emissions [6].
The main adsorbents include activated carbon, metal oxides, carbon nanotubes, zeolite,
clay, mesoporous silica, polymer resin, organometallic frameworks and some agricultural
wastes [7].

The adsorption properties of activated carbon are due to a large surface area, microp-
orous structure and a high degree of surface reactivity [8]. The mechanism of adsorption
by the activated carbon is usually due to its micropores present in carbon, or weak van der
Waals forces, which can attract impurities [9].

In the study [10], coal was proposed as an adsorbent for the removal of mineral oil
from wastewater. The mineral oil adsorption increased as the pH values deviated from
seven and equilibrium was reached after 10 h under static conditions, removing more than
99% of the mineral oil.

Article [11] considers the synthesis and adsorbing properties of natural sorbents
for oil spill response. Non-biodegradability is the main disadvantage of these materials
since landfilling is not desirable from an environmental point of view and incineration is
very expensive.

Rice husks and other biodegradable plant products are economical, technically feasible
and environmentally acceptable for use in oil spill cleanup technology. Rice husk is a by-
product of rice production and one of the main adsorbents for removing contaminants.
Agricultural wastes play a large role as an alternative material for obtaining valuable
carbon materials due to their low cost and abundance compared to conventional sources of
carbon materials.

In the article [12], the addition of the carbonized rice husk improved several soil
properties, mainly related to the pH and cation exchange capacity.

The thermal and chemical modification of rice husks [13] led to the efficiency of phenol
removal from aqueous solutions at the level of 36–64% and 28%, respectively. The thermally
treated adsorbents had a larger surface area (24–201 m2/g) than chemically treated ones
(3.2 m2/g).

In [14], the highest gasoline adsorption capacity was shown by the activated carbon
from the rice husk activated with H3PO4 at 450 ◦C for 2 h, which had a Brunauer–Emmett–
Teller (BET) surface area of 336.35 m2/g.

The rice husks were converted into carbon materials by heat treatment in the presence
of an inert gas at 500 ◦C and 800 ◦C for 2 h [15]. The materials showed a porous structure
and a significantly high content of the carbon element.

For the adsorption of toluene from water, biochar was proposed, which was obtained
by the gasification of pine wood [16]. In [17], coffee shells were chosen as a raw material
for the production of activated carbon by the chemical activation of KOH. The optimum
carbonization temperature for coffee shells is 923 K.

To obtain a microporous carbon material that effectively adsorbs iodine and organic
compounds, peat carbonization under the action of microwave radiation was used [18].
It was shown that, as a result of carbonization, the content of the charged surface areas



Processes 2023, 11, 518 3 of 15

decreased due to the destruction of the functional organic compounds, porosity appeared
and the adsorption properties of the carbon material improved.

Recently, it has also become relevant to solve the problems of environmental pollution
with the help of environmentally friendly processes based on natural mineral and biological
components. In [19], it was shown that shungite rocks are characterized by sorption activity
for cationic and anionic complexes and are differently able to sorb pollutant components,
including heavy metals, from water.

The adsorption capacity of bentonite clay and shungite of the Koksu deposit for the
purification of mine wastewater from heavy metal ions was studied [20]. It was established
that the most effective method for modifying sorbents is mechanical activation.

The use of activated shungite steam treated and modified with nanosilver provided
an increase in the efficiency of cleaning from harmful impurities [21].

A new catalytic adsorption material based on shungite was developed for the restora-
tion of soils contaminated with toxic components of rocket fuel [22]. The index of soil
detoxification at the concentration of the analyzed decomposition products from 0.1 mg/kg
to 3.21 mg/kg was from 81.1 to 98.8%.

The spectrum of the new modeling approaches, using group methods of data han-
dling [23] and building data-driven models—such as evolutionary polynomial regres-
sion, M5 model tree, gene-expression programming and multivariate adaptive regression
spline [24]—have shown good potential and they complement the mature neural networks-
based modeling methodology.

The use of Artificial Neural Networks (ANNs) to model the adsorption process has
expanded significantly over the past decades. These ANNs models are used to correlate
and predict the adsorption kinetics of a wide range of adsorbents and adsorbates. ANNs
overcome some of the shortcomings of traditional adsorption models, especially in terms
of providing better predictions under different operating conditions. Many models are
mainly applied to adsorption systems with only one contaminant, which indicates the
importance of extending their application to predict and model the adsorption systems
with multiple adsorbates.

The review [25] analyzes and describes the data of modeling the adsorption of organic
and inorganic water pollutants using ANNs. The results showed that this ANN tool has
significant potential for developing robust models of multicomponent adsorption systems that
can exhibit antagonistic, synergistic and non-interacting adsorption behaviors simultaneously.

The modeling of the multisystem dynamic adsorption of organic pollutants on acti-
vated carbon was carried out using the ANN method [26]. The results showed that the
optimized ANN was obtained with a high correlation coefficient, R = 0.997, standard error
RMSE = 0.029 and mean absolute deviation MAD (%) = 1.810 at the generalization step.

The study [27] developed multilayer ANN models to predict the total yield and surface
area of the activated carbon produced from various biomass feedstocks using pyrolysis
and steam activation. The trained ANN models showed high accuracy (R2 > 0.9) and good
agreement with the independent experimental data.

Multilayer perceptron artificial neural networks (MLP-ANN) and multiple linear
regression (MLR) models have been applied to predict the dynamic adsorption of a complex
adsorbent–adsorbate system in the solid–liquid phase [28]. The statistical results showed
a correlation coefficient of R = 0.991 with a mean square error of RMSE = 0.0521 for the
MLP-ANN model and R = 0.80 with RMSE = 0.237 for the MLR model.

Paper [29] presents a numerical study regarding mass prediction using a long short-
term memory (LSTM) algorithm with two hidden layers for three sorbents in fixed fluidized
beds. The results obtained by the developed LSTM network algorithm and experimental
tests were in good agreement with the results above R = 0.95.

An ANN and least squares support vector machine (LS-SVM) were used to model the
adsorption of methylene blue by a composite of zinc sulfide nanoparticles with activated
carbon [30]. The mean square error (RMSE) values corresponding to the methylene blue
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test set were 0.00013 and 0.00071, while the corresponding coefficient of the determination
(R2) values were 0.9996 and 0.9983 for the LS-SVM and ANN models, respectively.

The neural model has shown excellent predictive ability when modeling the data
obtained for the removal of Pb(II) and Cd(II) from the aqueous solution [31]. The modeling
of the trained ANN showed that an increase in the initial content of Pb(II) and Cd(II) ions
led to a significant increase in the adsorption capacity, and Cd(II) had a higher adsorption
due to a strong interaction with the adsorbent surface.

The prediction of the process of adsorption of alkyl polyglucoside (APG) and alkyl
ether carboxylate (AEC) was studied using a modified extended Langmuir model (MEL)
and an ANN [32]. It was shown that in a heterogeneous adsorption system with an uneven
distribution of surfactant molecules, both monolayer and multilayer adsorption takes place,
which was in good agreement with the simulation results.

The aim of the present work was to build artificial neural network models and test
their aptitude to predict the oil sorption capacity of the mixture consisting of carbonized
rice husk and shungite from the Koksu deposit of the Republic of Kazakhstan, targeting
the cleaning of oil-contaminated soils from the Karazhanbas oil field. This work is original
by proposing an efficient methodology for the ANN model design, training and evaluation
of the sorption capacity prediction performance and for building dedicated ANN models
able to describe the complex oil sorption phenomena using the carbonized rice husk and
the Koksu shungite mixture.

2. Materials and Methods

Valorizing the high potential of the mixture consisting of the carbonized rice husk
and shungite from the Kazakhstan Koksu deposit to perform the oil decontamination of
the polluted soil was the primary motivation of the present research. As a result, the first
step of the research was to prepare and characterize both the sorbent mixture and the
oil-contaminated samples, find the appropriate sorption conditions and then determine the
sorption capacity of the different sorbent mixtures of the oil-contaminated samples. As this
high sorption capability was clearly proven and the data base of experiments was created
during the first research step, the second step of the research was aimed at building ANN
based models for describing the complex sorption process.

The fundamental approach of modeling the sorption capability of this novel mixture
was to consider the most important factors that influence the sorption capacity, as they
are also revealed in the literature [33]. The ratio of shungite to the rice husk and sorption
time factors proved to be the first two ranked candidates. They were further considered in
the study.

The design and training the ANN model were conducted in successive steps, iterated
for randomly chosen ANN parameters. These parameters were the number of hidden
layers, the neurons in the hidden layers, the transfer function for the neurons in the hidden
layers and the training algorithms. The best trained ANNs were subsequently used for
testing the sorption capacity prediction.

2.1. Preparation of Oil-Contaminated Soil Samples

The objects of the study were the shungite samples from the Koksu deposit with a
dispersion of 1 mm. The samples of shungite mixed with the rice husk were subjected
to a carbonization process. The ratio of shungite (Sh) to rice husk (RH) was 1:1.7; 1:4; 6:1.
The carbonization process was carried out at a temperature of 600 ◦C in an inert argon
atmosphere for 1 h [34].

For the preparation of the samples of the oil-contaminated soils, the crude oil from the
Karazhanbas field was selected. The oil was characterized by high density (931.6 kg/m3 at
20 ◦C), viscosity (7.5 mm2/s at 50 ◦C) and coking (7.0%) properties. The high values of the
viscosity-density indicators were predetermined by the high resin content (24.5%) of the oil
and the low content of the light hydrocarbons (3.8%). A distinctive feature of the oil was a
high content of sulfur compounds (2.1%) and the content of asphaltenes was 5.7%.
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To test the developed sorbents, the samples of the oil-contaminated soils were prepared.
For the preparation of the 10% oil-contaminated soil, 5.0 g of oil was added to 50.0 g of soil.
Then, 2.0 g of the sorbent samples was introduced into the soil samples. At different time
intervals (from 5 to 60 days), the sorption capacities of the sorbents were determined. For
the preparation of the 15% oil-contaminated soil, 7.5 g of oil was added to 50.0 g of soil.
Then 5.0 g of the sorbent sample was introduced into the prepared soil samples.

The sorption capacity of the sorbents was calculated by the ratio of the mass of oil
absorbed by the sorbent to the mass of the initial sorbent, according to the Equation (1) [35]:

A =
moil

msorbent
, (1)

where A—the sorption capacity (g/g), moil—the mass of the absorbed oil by the sorbent (g)
and msorbent—the mass of the initial sorbent (g).

The masses of the samples were determined using a laboratory electronic balance
VIBRA AJH-620 CE (Shinko Denshi Co., Ltd, Tokyo, Japan). The mass of the initial sorbent
was the mass of the initial shungite, the mass of the carbonized mixture of shungite and
rice husks at various ratios and the mass of the carbonized rice husks without the addition
of shungite. The mass of these sorbents after the sorption of oil after a certain period of
time provided the mass of the sorbent with the absorbed oil.

2.2. Modeling Using Artificial Neural Networks

Implemented on computer systems, Artificial Neural Network models are built using
sets of measured data. The ANN is based on the simplified representation of the natural
neural cell and comprises an ensemble of simple computing entities, called artificial neurons.
The artificial neuron receives the input signals and processes them by computing the output
signal in a similar way its natural twin does. However, the computation is typically based
on simple algebraic mathematical relationships and functions. The weights, the bias signal
and the computing function (also called the activation or transfer function), are the main
elements of the artificial neuron that makes it versatile in reproducing any relationship
between its inputs and outputs. The simplified representation of the artificial neuron and
its computing methodology is presented in Figure 1.
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Figure 1. Typical structure of the artificial neuron.

The neurons of the ANN are organized in layers, arranged in a successive order
for processing data that starts from the input layer and ends with the output layer. The
intermediate layers are called hidden layers. The typical topology of a multilayer ANN is
presented in Figure 2.
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The process of finding the appropriate values for the weights, bias and form of the
transfer function, in order to obtain the desired output values for the given input values,
is called training. The ANN training is usually an iterative process, performed until the
ANN computed outputs for the given inputs are sufficiently close to the desired output
values. The total set of input-desired output pairs of data is commonly split in three parts.
One is used for the actual training, one for the testing and one for preventing the ANN to
become overtrained and be susceptible to losing its generalization capability. This latter
step is frequently called the validation set and is used during the training step to avoid
overtraining by stopping the training process early when overfitting appears.

The development of ANN black box models is highly appreciated in applications
where the detailed controlling rules of the involved phenomena are not known [36] and the
first principle modeling is not possible due to the inherent complexity of the system [37].
Additionally, the ANN trained models require reduced computational resources, such as
computing time and hardware capacity, making them appropriate for online optimization
and advanced model-based control [38].

2.3. Sorption Modeling with ANNs

As the sorption of oil using a carbonized mixture of shungite with rice husk as a
sorbent is a very complex process. The first principle modeling of sorption is very difficult,
but the modeling based on ANNs becomes a feasible modeling alternative.

The present study investigated this latter modeling approach and presents the method-
ology for building the ANN models and their prediction performance. The ANN models
are aimed to describe the sorption of oil from the soil using the mixture of carbonized
sorbents of shungite and rice husk. The ANN models are trained to make predictions on
the sorption of oil at different time intervals and for different values of the shungite to rice
husk ratio in the carbonized mixture.

The basic structure of the ANN models is presented in Figure 3.
Two ANN models were designed and trained to predict the sorption capacity on the

carbonized shungite and rice husk sorbent mixture with different ratios, i.e., of the 10% and
15% oil-contaminated soil.
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Each of the two designed ANNs were trained with experimental measured data con-
sisting of the values of the sorption capacity determined for 12 intervals of time (multiples
of 5 days and ranging from Day 5 to Day 60) and for five mixture values (shungite, shungite
and rice husk at ratio of 1:1.7, shungite and rice husk at ratio of 1:4, shungite and rice husk
at ratio of 6:1 and the carbonized rice husk alone).

For each ANN model, the total set of the 60 pairs of available input-desired output data
was split into the training, validation and testing data subsets, according to the proportions
of 70% (42 data pairs), 15% (nine data pairs) and 15% (nine data pairs). The validation
subset of the input-desired output data was used for preventing the ANNs to overfit, by
stopping the training performed early on the training data subset. The testing subset of the
data was used for assessing the capability of the trained ANN to make predictions for new
inputs not yet seen at the previous training and validation steps.

The data used for the training, validation and testing were first scaled into the interval
[−1; 1] to provide the necessary computation accuracy. The data constituting the training,
validation and testing data sets were randomly selected from the total data set, according
to the previously mentioned proportions.

The type of the ANN used for the modeling was the feed-forward network with
one hidden layer and backpropagation algorithm was utilized for the training. It was
designed using a minimal ANN architecture, with a reduced number of hidden layers
and complexity for the following reasons. First, the development of the reduced structure
for the ANN topology was apriori targeted, considering that keeping the ANN model as
simple as possible typically needed a simpler and more reliable training procedure. Second,
the computation resources and running time needed for both the training and prediction
steps were less demanding by the minimally structured ANN models when compared
to more complex AI models, such as the support vector regression [39], evolutionary
computing [40], machine learning [41] or neuro-fuzzy [42] approaches. Additionally, the
latter reason was directly related to the significant increase in the computation time when
the developed ANN models were to be used in the real time optimization and control tasks,
such as the specific equipment design, online operation optimization or adaptive automatic
control of the sorption process and plant. The software implementation was performed
using the Deep Learning Toolbox of Matlab. Several training algorithms, transfer functions,
number of layers and neurons in each layer were investigated for identifying the ANN
with the best results. The correlation coefficient R (the linear regression between outputs
and targets) and the weighted sum of the absolute values of the relative errors were used
for assessing the ANN modeling performance during the training step.

3. Results and Discussion
3.1. Experimental Results

Table 1 shows the results of the sorption by the sorbents of oil from the samples
of the oil-contaminated soils. The results of the oil sorption from the soils with 10% oil
contamination were revealed to be superior when compared to the sorption of oil with 15%
oil contamination. As expected, the sorbents with the maximum values of the sorption
capacity were obtained after 60 days of investigation. In the case of using the shungite
alone, the sorption capacity turned out to be low and amounted to only 0.25–0.38 g/g for
the 10% oil contamination and to 0.13–0.67 g/g for the 15% oil contamination.
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Table 1. Results of the sorption of oil from soil samples with oil contamination of 10% and 15% by
sorbents based on shungite rocks.

Time Shungite Sh:RH = 6:1 Sh:RH = 1:1.7 Sh:RH = 1:4 Rice Husk
Days 10% 15% 10% 15% 10% 15% 10% 15% 10% 15%

Sorption Capacity [g/g]

5 0.25 0.13 0.48 0.40 0.83 0.36 0.91 0.31 0.12 0.13
10 0.27 0.42 1.25 0.41 0.92 0.40 0.94 0.42 0.24 0.15
15 0.29 0.55 1.28 0.45 0.96 0.40 1.00 0.50 0.27 0.19
20 0.30 0.63 1.32 0.47 1.00 0.41 1.07 0.62 0.31 0.23
25 0.30 0.63 1.39 0.52 1.15 0.43 1.20 0.62 0.35 0.25
30 0.31 0.64 1.46 0.57 1.31 0.44 1.33 0.62 0.40 0.26
35 0.32 0.64 1.51 0.60 1.40 0.5 1.33 0.64 0.41 0.27
40 0.34 0.65 1.56 0.63 1.49 0.55 1.33 0.66 0.42 0.28
45 0.35 0.65 1.61 0.66 1.58 0.61 1.34 0.68 0.43 0.29
50 0.36 0.66 1.66 0.68 1.67 0.65 1.34 0.70 0.45 0.30
55 0.37 0.66 1.70 0.71 1.76 0.69 1.34 0.71 0.46 0.31
60 0.38 0.67 1.75 0.73 1.86 0.74 1.35 0.73 0.47 0.33

The carbonization of shungite with the rice husk led to an improvement in the sorption
capacity. The carbonization product of a mixture of shungite and rice husk in a ratio of
1:1.7 showed a maximum sorption capacity equal to 1.86 g/g for the 10% oil contamination
and after 60 days. For comparison, the product of the rice husk carbonization was also
tested but without the addition of shungite. Its sorption activity was lower than that of the
carbonization products with the addition of shungite and the maximum sorption capacity
was of 0.47 g/g after 60 days of testing with an oil contamination of 10%.

The sorption results presented in Table 1 demonstrate the superiority of the oil sorption
capacity when the mixture of the carbonization of shungite with the rice husk is used. This
improvement is observed irrespective of the 10% or 15% oil contamination, the origin of
the oil source and whether the sorption mixture results are compared to the cases when the
shungite or rice husk sorbents were used alone. It is also worthy to notice the existence of
an optimal sorption capacity in the interval of the investigated values of the carbonization
of the shungite and rice husk ratio.

3.2. ANN Training and Testing Results for Modeling Oil Sorption

The first ANN was trained to model the sorption capacity of the 10% contaminated
soil (Table 1). The results presented in Figure 4a show the regression plots for the training
data and Figure 4b shows the testing data subsets. The relative errors for the testing data
subset are presented in Figure 4c.
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The trained ANN model has a good prediction aptitude, as it shows the relative errors
less than 2.8% for the testing subset of the data and a mean absolute percentage error
of 1.60%.

The second ANN model was trained to model the sorption capacity of the 15% con-
taminated soil.

The results presented in Figure 5a reveal the regression plots for the training data and
Figure 5b shows the testing data subsets. The relative errors for the testing data subset are
presented in Figure 5c.
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The prediction results of the ANN model for the testing subset presented larger relative
errors, but their mean absolute percentage error of 3.16% could be considered as very good.

The architecture of the feed-forward backpropagation ANN trained models consisted
of a topology with one hidden layer with four neurons where either the log-sigmoid logsig
or the hyperbolic tangent sigmoid tansig transfer function was used in the hidden layer
and the purelin transfer function in the output layer. The Levenberg–Marquardt backprop-
agation training algorithm trainlm provided the best training results. The prevention of the
ANN overfitting was achieved by the stopping the methodology that used a maximum
number of six validation checks early before the training was stopped.

As the results show in Figures 4 and 5, the training of the ANN models was successful,
and the simulation results of the trained ANN were also good when the trained ANN was
used for predicting the sorption capacity with the new and previously unknown inputs
of the testing data subset. The ANN good prediction performance was sustained by the
high values of the correlation coefficient R and the reduced mean absolute percentage
error. The latter ANN performance index quantifies, for the testing data subset, the relative
errors between the ANN predicted values of the sorption capacity and the experimental
measured ones. These very favorable values of the assessment indices for the ANN
performance obtained during the testing were shown for a minimal ANN topology and for
the appropriate selection of both the neural layers transfer functions and training algorithm.
They were found as result of the systematic search intended to discover the ANN with the
most promising prediction aptitude.

According to the best knowledge of the authors, there are no results reported in
literature for the ANN modeling of the oil sorption capacity on the carbonized rice husk and
shungite mixture. However, the performance of the two trained ANN models, evaluated
by the coefficients of determination of R2 = 0.998 and R2 = 0.981, was compared to the
ANN sorption modeling results recently reported in literature. The performance of ANN
adsorption models was stated by the coefficients of determination of R2 = 0.8 and R2

= 0.944, for the oil on amphiphilic MoS2/cellulose acetate sponge [43] and for benzene
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on soils [44]. Another rich set of results on ANN-based modeling adsorption from the
aqueous phase of dyes, metals, organic compounds, nutrients, pharmaceuticals, drugs,
pesticides or personal care products on different adsorbents—such as activated carbon,
metal oxides, biomaterials, natural or synthetized materials and zeolites—were reported
and they showed coefficients of determination that range from R2 = 0.902 to R2 = 0.999 [33].
These results demonstrate that the ANNs designed, trained and tested for modeling the oil
sorption using the carbonized mixture of shungite have very good performance, as they
are situated closely the upper limit of the literature reported assessments.

3.3. Results of ANN Sorption Prediction for Oil-Contaminated Soil

The good quality results obtained by the trained and tested ANNs for the sorption
capacity computation proposed the ANN model for making new predictions. The potential
of the trained ANNs to act as universal function approximators was valorized by using
the network models to provide new information on the oil sorption mixture capacity at
different time intervals and for different shungite and rice husk mixture ratios. Other ANN
model predictions were made for new inputs that were not available from the experimental
results. A set of these new sorption prediction results are presented in the following.

As first illustration of the prediction capability, the first designed and trained ANN
was used to predict the sorption capacity at new time intervals for the 10% oil-contaminated
soil and for a mixture of shungite and rice husk at a ratio of 1:1.7. The new time intervals
were chosen at: 7.5 d, 12.5 d, 17.5 d, 22.5 d, 27.5 d, 32.5 d, 37.5 d, 42.5 d, 47.5 d, 52.5 d and
57.5 d, starting from the initiation of the sorption process. The results of the predictions are
presented in Figure 6 where the experimentally measured values are shown with blue dots
and the ANN predicted values with line-connected red dots.
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Figure 6. ANN predictions of the sorption capacity at different time intervals for shungite and rice
husk at a ratio 1:1.7 and for the 10% oil-contaminated soil.

The predicted values demonstrate the interpolation power of the ANN trained model
and its utility for computing the sorption capacity for any time intervals between 0 d and
60 d.

The same ANN was used to predict the sorption capacity of the 10% oil-contaminated
soil, but for the mixture of shungite and rice husk new ratio value of 1:3. This shungite and
rice husk ratio of 1:3 was situated between the 1:1.7 and 1:4 experimental ratios. For the
latter values of the ratios, the sorption capacity was experimentally determined. The results
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of the predictions are presented in Figure 7 where the measured values are shown with
blue dots for the ratio 1:1.7, with green dots for the ratio 1:4 and for the ANN predicted
values with line-connected red dots.

Processes 2023, 11, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 6. ANN predictions of the sorption capacity at different time intervals for shungite and rice 
husk at a ratio 1:1.7 and for the 10% oil-contaminated soil. 

The predicted values demonstrate the interpolation power of the ANN trained model 
and its utility for computing the sorption capacity for any time intervals between 0 d and 
60 d. 

The same ANN was used to predict the sorption capacity of the 10% oil-contaminated 
soil, but for the mixture of shungite and rice husk new ratio value of 1:3. This shungite 
and rice husk ratio of 1:3 was situated between the 1:1.7 and 1:4 experimental ratios. For 
the latter values of the ratios, the sorption capacity was experimentally determined. The 
results of the predictions are presented in Figure 7 where the measured values are shown 
with blue dots for the ratio 1:1.7, with green dots for the ratio 1:4 and for the ANN 
predicted values with line-connected red dots. 

 
Figure 7. ANN predictions of the sorption capacity for the shungite and rice husk new ratio of 1:3, 
case of the 10% oil-contaminated soil. 

Again, the ANN predicted values revealed realistic and valuable sorption capacity 
estimates that appropriately complied with the experimental measurements. 

As a second evidence of the prediction capability, the secondly designed and trained 
ANN was used to predict the sorption capacity of the 15% oil-contaminated soil for a 

Figure 7. ANN predictions of the sorption capacity for the shungite and rice husk new ratio of 1:3,
case of the 10% oil-contaminated soil.

Again, the ANN predicted values revealed realistic and valuable sorption capacity
estimates that appropriately complied with the experimental measurements.

As a second evidence of the prediction capability, the secondly designed and trained
ANN was used to predict the sorption capacity of the 15% oil-contaminated soil for a
mixture of shungite and rice husk at a ratio of 6:1, but at different time instances. The new
considered time intervals were: 7.5 d, 12.5 d, 17.5 d, 22.5 d, 27.5 d, 32.5 d, 37.5 d, 42.5 d,
47.5 d, 52.5 d and 57.5 d. The results of the predictions are presented in Figure 8 where the
measured values are shown with blue dots and ANN predicted values with line-connected
red dots.
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It may be considered that the sorption predictions of the ANN generalize the measured
values for performing reliable sorption evaluations. The differences from the first time
period between the predictions and the experimental data of the 15% oil-contaminated soil
are attributed to the more complex phenomenological oil adsorption mechanisms at a high
oil content and the induced ANN training.

This second trained ANN was also used to predict the sorption capacity of the 15%
oil-contaminated soil for the mixture of shungite and rice husk at a new ratio of 1:1. The
shungite and rice husk new ratio of 1:1 was situated between the 6:1 and 1:1.7 ratios. For
the latter values of the ratios, the sorption capacity was determined by the experiments.
The results of the predictions are presented in Figure 9 where the measured values are
shown with blue dots for the ratio 6:1, with green dots for the ratio 1:1.7 and for the ANN
predicted values with line-connected red dots.
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The prediction results again confirmed the aptitude of the trained ANN to make an
appropriate interpolation between the measured values of the sorption capacity and to
appropriately perform a filtering of the measurements due their intrinsic generalization
power and valorize these abilities when the predicted values are computed.

4. Conclusions

Based on a set of experimentally determined data, aimed to investigate the oil sorption
capacity of the contaminated soil by the mixture consisting of the carbonized rice husk
and shungite from the Koksu deposit, the paper proposed, developed and assessed the
performance of an ANN set of sorption models. Their goal was to describe the complex
dependence of the sorption capacity on time and on a carbonized rice husk to shungite
ratio, for the 10% and 15% oil-contaminated soil from the Karazhanbas source.

Subsequent to the data preprocessing procedure, the ANN architecture design, train-
ing, validation and testing methodology, followed by the prediction performance assess-
ment, were carried out and the results of the best trained ANN models were revealed. The
best trained model had a feed-forward backpropagation structure with a topology with
one hidden layer. The log-sigmoid or the hyperbolic tangent sigmoid transfer function was
used in the hidden layer and the linear transfer function in the output layer. The Levenberg–
Marquardt backpropagation training algorithm provided the best training results. ANN
overfitting was achieved by the early stopping methodology.
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The prediction capability of the developed ANN models was very good, and it was
evaluated in two steps. The first step assessed the sorption capacity for the testing set of
data not previously seen during the training and validation steps. The prediction results
demonstrated high correlation coefficient values and the mean absolute percentage error
ranging from 1.60% to 3.16% when the predictions were compared to the experimentally
determined values.

In the second evaluation step, the sorption capacity prediction potential of the ANN
models was proven by making predictions on the sorption capacity at different time
intervals and for different shungite and rice husk ratio values. They were compared
with the neighboring values of the experimentally determined sorption capacities. The
results of this second testing procedure demonstrated the interpolation power of the ANN
trained models and their utility for computing the sorption capacity at any time during the
investigated time interval and for new values of the shungite and rice husk mixture ratios.

The ANN developed model may be further used for planning new experiments,
finding the most favorable conditions for obtaining the desired or maximized sorption
capacity and for the design of dedicated laboratory, pilot or scale-up specific equipment.

Author Contributions: Conceptualization, V.-M.C. and Y.O.; methodology, V.-M.C. and M.B.; vali-
dation, V.-M.C. and N.S.; investigation, Y.O. and Y.A.; writing—original draft preparation, V.-M.C.
and Y.O.; writing—review and editing, V.-M.C. and Y.O.; visualization, N.S. and Y.A.; supervision,
Y.O.; project administration, Y.O.; funding acquisition, N.U. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data that support the findings of this study are included within
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xuezhi, D.; Ahmad, A.A.; Muhammad, I.; Shah, T.; Kalwar, Q. Remediation Methods of Crude Oil Contaminated Soil. World J.

Agric. Soil Sci. 2020, 4, 000595. [CrossRef]
2. Amro, M.M. Treatment Techniques of Oil-Contaminated Soil and Water Aquifers. In Proceedings of the International Conference

on Water Resources & Arid Environments, Riyadh, Saudi Arabia, 5–8 December 2004.
3. Vasilyeva, G.K.; Zinnatshina, L.V.; Kondrashina, V.S.; Strijakova, E.R.; Filonov, A.E.; Sushkova, S.N. Use of adsorbents for

accelerated bioremediation of petroleum-contaminated soils. Int. J. Appl. Sci. Res. Rev. 2018, 5, 29–37.
4. Okoh, E.; Yelebe, Z.R.; Oruabena, B.; Nelson, E.S.; Indiamaowei, O.P. Clean-up of crude oil-contaminated soils: Bioremediation

option. Int. J. Environ. Sci. Technol. 2019, 17, 1185–1198. [CrossRef]
5. Elizaveta, M.; Maria, U. Ecological aspects of sorbents use to improve the efficiency of bioremediation on oil-contaminated lands.

Rev. Fuentes Revent. Energ. 2021, 19, 65–73.
6. Wang, Y.; Pan, C.; Chu, W.; Vipin, A.K.; Sun, L. Environmental remediation applications of carbon nanotubes and graphene oxide:

Adsorption and catalysis. Nanomaterials 2019, 9, 439. [CrossRef]
7. Sahu, J.N.; Karri, R.R.; Zabed, H.M.; Shams, S.; Qi, X. Current Perspectives and Future Prospects of Nano-Biotechnology in

Wastewater Treatment. Sep. Purif. Rev. 2021, 50, 139–158. [CrossRef]
8. Bansal, R.C.; Meenakshi, G. Activated Carbon Adsorption; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon,

UK, 2005.
9. Muzarpar, M.S.; Leman, A.M.; Rahman, K.A.; Maghpor, N.; Hassan, N.N.M.; Misdan, N. The Adsorption Mechanism of Activated

Carbon and Its Application—A Review. Inst. Res. Innov. Ind. Syst. 2020, 1, 118–124. [CrossRef]
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