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Abstract: Once a chemical production accident occurs in a chemical plant, it often causes serious
economic losses, casualties, and environmental damage. Statistics show that many major accidents in
the production and storage of chemicals are mainly caused by human factors. This article considers
the influence of the human factor and proposes a quantitative analysis model of a chemical plant
based on a Bayesian network. The model takes into account the main human factors in seven aspects:
organization, information, job design, human system interface, task environment, workplace design,
and operator characteristics. The Bayesian network modeling method and simulation were used to
predict the safety quantitative value and safety level of the chemical plant. Using this model, we can
quickly calculate the safe quantitative ratio of each factor in the chemical plant. Through the safety
quantitative value, safety level, and sensitivity analysis, the safety hazards of chemical companies
can be discovered. Immediate improvements of potential safety hazards in chemical plants are very
effective in preventing major safety accidents. This model provides an effective method for chemical
park managers to monitor and manage chemical plants based on quantitative safety data.

Keywords: Bayesian network; chemical plant safety; human factor; quantitative analysis

1. Introduction

The chemical industry is an important basic industry of the national economy and
has made outstanding contributions to the economic development of various countries.
Due to the complicated processes within the chemical industry, the materials themselves
are dangerous, and there are high (low)-temperature, high-pressure, flammable, explosive,
and corrosive working environments, which make it a potentially dangerous industry. In
the event of a safety production accident, serious economic losses, casualties, and environ-
mental damage often occur. However, in the past two decades, with the development of
society and the advancement of science and technology, the number of major accidents has
gradually decreased; however, when the cause is a chemical accident, the cost is still high.
Therefore, reducing the accident rate of chemical plants has always been the direction of
the chemical industry.

At present, the production technology of the chemical industry has been updated, but
many major accidents are mainly caused by human factors. The latest statistics show that
in the process of chemical production and storage, the proportion of industrial accidents
caused by human factors is more than 60% [1–3]. With the continuous improvement
and innovation of equipment and technology, the relative number of accidents caused
by equipment and technical failures is decreasing. Much of the work on human factors
has focused on the symptoms of human error rather than the root cause, which can be
explained by the uncertainty that constitutes human error [3]. In the analysis of accident
investigations, people often attribute accidents to human error, and they think that human
error is due to the frontline operator not performing the operation correctly or ignoring the
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operation. However, most accident causes are indirectly related to other human factors,
such as organization, design, and management. After all, in most systems today, it is
impossible to confirm that an accident was caused by a single human.

The literature shows that a lot of work has been conducted on the human factor, but it
focuses on the unsafe behavior of frontline operators. The first-generation human reliability
assessment (HRA) methods are mainly performance models of people, typical for the
technique for human error-rate prediction (THERP) [4], the human error assessment and
reduction technique (HEART) [5], human cognitive reliability (HCR) [6], and so on. The
typical second-generation HRA methods are the cognitive reliability and error analysis
method (CREAM) [7], A Technique for Human Event Analysis (ATHEANA) [8], etc. The
typical third-generation methods are the Cognitive Environment Simulation (CES) [9],
the Information, Decision, and Action in Crew (IDAC) context [10], etc. In recent years,
more and more accident investigations have shown that the root cause of accidents is often
indirectly related to the organization, design, and management of human factors.

Over the past decade, with the development of safety risk assessment methods, some
methods have guided and supported industrial operators to assess and manage safety
risks. Among them, it is worth re-examining the safety risk assessment methods proposed
by the American Petroleum Institute (API) [11], the American Chemical Engineering
Research Institute [12], the Sandia National Laboratory [13], and the National Institute
of Justice [14]. These methods allow for a qualitative or semi-quantitative (e.g., in the
case of API methods) safety risk assessment; thus, only the general guidance for safety
risk mitigation and the list of possible solutions for safety countermeasures depend on
existing safety [15]. In the quantitative assessment of chemical plant safety, other studies are
also increasing. Valerie de Dianous et al. [16] studied the consequences and causes of the
various types of accidents faced by enterprises in the chemical industry, with an emphasis
on the use of bow structure diagrams. Christian Delvosalle et al. carefully analyzed the
possible accident scenarios of major hazards [17]. Bahman proposed a new method that
predicts and evaluates the possible impact of an industry’s accidents in a process unit of
other process units [18]. The Australian National Environmental Protection Committee
provided a method for assessing site pollution and proposed a combination of qualitative
and quantitative methods [19]. The EU Joint Research Centre launched the Accidental
Risk Assessment Methodology for Industries (ARAMIS) project in 2002 and provided a
comprehensive evaluation methodology as part of the project [17,20,21]. However, these
methods are mainly relatively static and are mostly used in chemical park planning; even if
there are a few studies with dynamic and quantitative aspects, the factors of consideration
are limited, and there are limited studies on personnel factors.

A Bayesian network is an important method for chemical plant safety assessment,
and it is widely used in various fields. Khakzad et al. presented an application of bow
and Bayesian network methods for a quantitative risk analysis of drilling operations [22].
Francesca Argenti et al. proposed a vulnerability assessment method for vandalism using
Bayesian network-based chemical facilities [23]. Majeed Abimbola et al. applied Bayesian
networks to manage the safety and risk analysis of pressure drilling operations [24]. Susana
Garcia-Herrero et al. used Bayesian networks to analyze the relationship between working
conditions, psychological/physical symptoms, and occupational accidents [25]. Esmaeil
Zarei et al. proposed a model for the dynamic safety assessment of natural gas stations
using Bayesian networks [26]. Faisal Aqlan et al. performed a system dynamic security
analysis by mapping the bow to a Bayesian network [27]. J.M. FMatias et al. compared
the Bayesian network method with other expert systems (classification tree, SVM support
vector machine, and ELM extreme learning machine) in terms of risk prediction, and,
through the process of building a Bayesian network model, the variables, data collection,
coding, and risk prevention mechanisms can be better defined [28]. Eunchang Lee et al.
proposed a Bayesian belief network for the risk management of large-scale engineering
projects, after identifying key risk factors, by using the Bayesian network to establish a
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process for risk assessment [29]. Although the Bayesian method is widely used for most
aspects, it is still relatively rare in the quantitative analysis of safety in chemical plants.

Given the lack of quantitative analysis research on human factors in chemical plant
safety, this paper proposes a chemical plant quantitative analysis model based on a Bayesian
network from a human factors perspective. In this model, detailed analysis was carried
out from the perspective of human reliability in seven aspects: organization, information,
job design, human system interface, task environment, workplace design, and operator
characteristics. This was accomplished by using a questionnaire and the expert judgment
method, establishing a chemical plant safety indicator system, and using Bayesian network
training samples. Finally, the Bayesian network was used for processing and modeling,
and the chemical plant safety quantitative value was calculated to determine the safety
level of the chemical plant for safety management.

The content of the paper is distributed as follows: Section 2 explains the chemical
plant factor analysis and Bayesian network structure and establishes the model; Section 3
presents specific case studies; Section 4 provides the main results and discussions of the
work; and Section 5 is a description of the conclusions.

2. Materials and Methods
2.1. Bayesian Network

A Bayesian network [30], also known as a reliability network, is an extension of
the Bayesian method and is one of the most effective theoretical models for uncertain
knowledge representation and reasoning. A Bayesian network is a directed acyclic graph
(DAG) consisting of a representative variable node and a directed edge connecting these
nodes. The nodes represent random variables, and the directed edges between the nodes
represent the mutual relationship between the nodes (pointed by the parent node to their
child nodes), and conditional probability is used to express the relationship strength,
since there is no parent node with the prior probability for information expression. Node
variables can be abstractions of any problem, such as test values, observations, opinions, etc.
Applicable to the expression and analysis of uncertain and probabilistic events and applied
to decisions that are conditionally dependent on multiple control factors, node variables
can be reasoned from incomplete, inaccurate, or uncertain knowledge or information.

2.1.1. Bayesian Rule

(1) Prior probability

Prior probability refers to the probability of occurrence of each event determined
according to historical data or subjective judgment; this type of probability has not been
confirmed by experiments and belongs to the probability before the test, so it is called the
prior probability. The prior probabilities are generally divided into two categories. One
is the objective prior probability, which is the probability calculated using historical data
from the past. The second is the subjective prior probability, which means that when there
are no historical data or the historical data are incomplete, the probability of obtaining an
event occurrence can only be judged by people’s subjective experience.

(2) Posterior probability

Posterior probability generally refers to the use of the Bayesian formula, combined
with investigation and other means, to obtain new additional information, and a more
accurate probability is obtained by correcting the prior probability. Posterior probability =
(likelihood * prior probability)/normalized constant.

(3) Joint probability

Joint probability, also called the multiplication formula, refers to the probability of the
product of two arbitrary events or the probability of an event.

(4) Full probability formula
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Let B1, B2, . . . , Bn be mutually exclusive events, and let P(Bi) > 0, i = 1, 2, . . . , n,
B1 + B2 + . . . , + Bn = Ω. Another event, A = AB1 + AB2 + . . . , + ABn, is said to sat-
isfy the abovementioned conditions; B1, B2, . . . , Bn is a complete event group, and

P(A) =
n
∑

i=1
P(Bi)P(A|Bi) . The schematic is shown in Figure 1.
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Bi is the cause, and A is the result; thus, the full probability formula can be visually
regarded as “derive the result from the cause”. The reason has a certain “effect” on the
occurrence of the result, that is, the probability of occurrence of the result is related to
the size of the “effect” of various reasons. The full probability formula expresses the
relationship between them. It is shown in Figure 2.
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2.1.2. Bayesian Formula

Bayesian deterministic theory was developed by British mathematician Thomas Bayes
(1702–1761) to describe the relationship between two conditional probabilities. Bayesian
formula, also known as Bayesian theorem and Bayesian rule, is a standard method for
correcting subjective judgment about probability distribution (i.e., prior probability) by
applying observed phenomena in probability statistics. The Bayesian formula is widely
used. Let the prior probability be P(Bi), and the new additional information obtained by the
survey is P(Aj|Bi) (I = 1, 2, . . . , n; j = 1, 2, . . . , m). Then, the posterior probability calculated

by the Bayesian formula is P(Bi
∣∣Aj) = P(Bi)P(Aj

∣∣Bi)/
m
∑

k=1
P(Bi)P(Ak|Bi) .

2.1.3. Bayesian Modeling Method

The main tasks of Bayesian network modeling include determining the topology of
the network and determining the conditional probability distribution of each node in the
network. The conditional probability distribution of all nodes in the network is collectively
referred to as the probability parameter of the network. Bayesian network modeling,
which includes a qualitative process [31] and a quantitative phase, determines the topology
and the probability parameters. There are three main ways to model Bayesian networks.
The first is that expert topology is used to manually establish the model topology and
provide the probability parameters. The second is to automatically acquire the Bayesian
network through the study of the database. The third is a two-stage modeling method that
combines the advantages of the former two; therefore, the Bayesian network is manually
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established by expert knowledge, and then the previously obtained Bayesian network
model is corrected by learning the database.

2.2. Analysis of Factors Affecting Chemical Plant Safety

Chemical plant safety must not only consider the safety of the personnel themselves
but also the impact of production, systems, equipment, and the environment on people.
With advances in automation, intelligence, and systematization, chemical plant accidents
are rarely caused by a single cause of systems, equipment, and the environment; instead,
they are basically caused by comprehensive causes. Among them, the influence of person-
nel is indispensable, and management is also performed by personnel. Therefore, this paper
established a quantitative analysis model for chemical plant safety based on personnel
factors. The main contents of the model include organization, information, work design,
human system interface, task environment, workplace design, and operator characteris-
tics [32]. Organization is the driver, information is the bridge, work design is the method,
the human system interface is the key, task environment is the support, workplace design is
the guarantee, and operator characteristics are the foundation. They are factors that affect
the safety of the chemical plant together, as shown in Figure 3.
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2.2.1. Organization

From the perspective of management, the so-called organization refers to a social entity.
It has a clear goal-oriented and well-designed structure and a consciously coordinated
system of activities, while maintaining close contact with the external environment. The
organizational factors that affect the safety of chemical plants include human factors, safety
policy, organizational culture, management of change, organizational learning (audit and
reviews), and line management and supervision.

2.2.2. Information

The main challenge is to ensure that the operator has all the information they need
to perform their tasks safely and efficiently. Operators can receive information by directly
sensing, by communicating with others, and by displaying and alerting. The operator must
also know how to act according to the state of the plant. The information factors that affect
the safety of chemical plants include training, procedures and procedure development,
communication, labels and signs, and documentation.

2.2.3. Job Design

Position design is the specification of the content, methods, and relationships of
the position to meet the technical and organizational requirements and the individual
needs of the position holder. When defining tasks, the capabilities and limitations of
workers must be taken into account in order to achieve optimal human performance. In
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order to achieve this goal, it is important to ensure that there are a sufficient number of
qualified staff to schedule planned shifts and work schedules to minimize fatigue and stress
and maximize concentration. The design of this work should also minimize the risks to
workers’ health and safety, especially for manual tasks. The job design factors that affect
the safety of chemical plants include staffing and work schedules, shifts and overtime, and
manual handling.

2.2.4. Human System Interface

This is the key to the interaction between people and the system. Through this
interface, the operator knows what is happening in the system and can give the system
some input, feedback, or control measures that will eventually change the state of the
system. The limiting factors of this interface depend on the perception, perception, and
ability of the actual operator [33]. The human system interface factors that affect the safety
of chemical plants include design of controls, displays, field control panels, tools (hand),
and equipment and valves.

2.2.5. Task Environment

Environmental conditions that affect performance include excessive vibration and
noise, extreme temperatures, and insufficient lighting. These adverse environmental
conditions put pressure on the staff, interfere with their performance, and increase their
chances of making mistakes when performing their tasks. Work environments that require
protective equipment, such as a confined space environment or the need for unusual body
postures, can also affect performance. The task environment factors that affect the safety of
chemical plants include lighting/illumination, temperatures, noise, vibration, and toxicity.

2.2.6. Workplace Design

The layout of the plant should minimize the risk during operation, inspection, testing,
maintenance, modification, repair, and replacement. According to COMAH’s assessment
of safety reports in mechanical engineering, the evidence needed to fully consider these
issues during the design is usually sufficient for the assessment. The plant design should
provide adequate safeguards to ensure safety and reliability and even prevent deviations
from exceeding design conditions. The safety report should state how the system that
requires human interaction is designed to take into account the needs of the user and
be reliable. Task and link analysis can be a great tool to improve facility layout. The
task environment factors that affect the safety of chemical plants include facility layout,
workstation configuration, control room, and accessibility.

2.2.7. Operator Characteristics

The operator’s physical and cognitive characteristics, skills, knowledge, attention,
motivation, responsibility, and ability also have an impact on human error. Skills refer to
how humans process and interpret information; they are not intrinsic personal qualities
and can be obtained through training and experience. They refer to the ability to recall
and perform every step of the task, technical reading and painting skills, physical, cog-
nitive, visual, and listening skills. Knowledge needs to describe what a person needs to
understand and understand in order to satisfactorily complete tasks such as those that
involve dangerous situations, equipment, plant processes, operating procedures, rules, and
restrictions. The operator characteristics factors that affect the safety of chemical plants
include attention/motivation, fitness for duty, skills, and knowledge.

2.3. Modeling Algorithm Application Flow

There are a number of factors to consider when applying algorithms in practice. The
actual modeling process of the Bayesian network should be viewed as a whole process.
This is because, in practice, the definition of variables, the selection and processing of data,
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the choice of algorithms, and the actual modeling all involve many potential problems. The
modeling process is shown in Figure 4.
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2.4. Determination of Bayesian Network Nodes for Chemical Plant Safety
2.4.1. Bayesian Network Node Selection

According to the previous analysis, it is not difficult to find many factors affecting the
safety of chemical plants. In combination with the characteristics of Bayesian networks,
the selection of influencing factors for modeling must follow the necessary principles.
First is the representative principle: the selected nodes can reflect the comprehensive
information embodied in the chemical plant safety management, representing the intrinsic
characteristics of each element, to avoid information leakage or redundancy. Second is the
principle of independence: the information contained in the selected nodes is not contained
and does not intersect, ensuring logical independence. Third is the principle of validity:
the selected nodes should be able to extract and refine information from a dangerous
goods accident investigation report to ensure the effective acquisition of data. Therefore,
in combination with expert knowledge and analysis of accident investigation reports,
30 nodes were finally determined through global considerations.

The target node of the Bayesian network structure is chemical plant safety, which
was defined as S, and 30 nodes were divided according to organization, information,
work design, human system interface, task environment, workplace design, and operator
characteristics, and the nodes are numbered as shown in Table 1 [34].
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Table 1. Chemical plant safety factors.

Factors Attributes

Organization

A1 Human factors and safety policy
A2 Organizational culture
A3 Management of change
A4 Organizational learning (audit and reviews)
A5 Line management and supervision

Information

B1 Training
B2 Procedures and procedure development
B3 Communication
B4 Labels and signs
B5 Documentation

Job Design
C1 Staffing, work schedules
C2 Shifts and overtime
C3 Manual handling

Human System Interface

D1 Design of controls
D2 Displays
D3 Field control panels
D4 Tools (hand)
D5 Equipment and valves

Task Environment

E1 Lighting/Illumination
E2 Temperatures
E3 Noise
E4 Vibration
E5 Toxicity

Workplace Design

F1 Facility layout
F2 Workstation configuration
F3 Control room
F4 Accessibility

Operator Characteristics
G1 Attention/motivation
G2 Fitness for duty
G3 Skills and knowledge

2.4.2. State Definition of Bayesian Network Nodes

Since the intentional characteristics of each node are different, it is necessary to explain
the state of the node. For the convenience of network implementation and operation
considerations, we consulted the expert’s opinion and defined the node state in a unified
way. There are 5 states for 30 factors, as shown in Table 2 [24].

Table 2. State evaluation of the node.

Valuation 1 2 3 4 5

Node status Very bad Poor General Better Very good

2.5. Establishment of a Bayesian Network Structure for Chemical Plant Safety
2.5.1. Bayesian Network Evaluation Criteria Definition

Based on the selected nodes, the network structure was established through expert
knowledge and machine learning [22]. The degree of impact of each node on the size of the
safety risk is different in each incident. Combined with the description of the investigation
report, each influencing factor was identified and evaluated. According to the evaluation
criteria, the relative influence degree of each factor was evaluated to determine its score.
For this purpose, the Likert scale was selected. The least important = 1 is the lowest, and
the most important = 5 is the highest. At the same time, we defined the safety level and
risk level of chemical plants. The evaluation criteria are shown in Table 3.
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Table 3. Node evaluation criteria.

Evaluation Score 1 2 3 4 5

Degree of impact on safety Very unimportant Unimportant General Important Very important
Chemical plant safety level Very unsafe Unsafe General Safe Very safe
Corresponding risk level Very high risk High risk General Low risk Very low risk

As shown in Table 3, very safe and very low risk received a 5, safe and low risk
received a 4, general received a 3, unsafe and high risk received a 2, and very unsafe and
very high risk received a 1. However, for the convenience of research, this article used the
safety level of the chemical plant for calculating, and the calculation result can directly
correspond to the risk level.

2.5.2. Bayesian Network Data Collection

(1) Investigation on the degree of influence of chemical plant safety

A questionnaire was prepared against the impact assessment criteria. According to
the importance of human error, the factors at all levels were scored. N experts were invited
to score the factors, and the list of scores is shown in Table 4.

Table 4. Factor impact degree questionnaire scoring list.

Safety Factor
Judges

Author Other Judges

Fi Ai Jij

(2) Chemical plant safety factor status valuation survey

A questionnaire was prepared against the evaluation criteria of the state estimate.
Valuation of all levels of factors is based on actual assessment of the state of the chemical
plant. N experts were invited to make a valuation, and the list of valuations is shown
in Table 5.

Table 5. List of factors state evaluation questionnaire results.

Safety Factor
Judges

Author Other Judges

Fi A’i J’ij

where F indicates the safety factor of the chemical plant, and A/J indicates the author
and expert scores for the degree of factor impact. A’/J’ means that authors and experts rate
the factor status estimates; i indicates each safety factor, i = 1, 2, 3 . . . 37; and j indicates the
Jth expert score, j = 1, 2, 3 . . . N.

2.5.3. Chemical Plant Safety Rating Factor Valuation

Data from the survey results are available for each factor’s impact on chemical plant
safety and state valuation. The safety evaluation value was obtained by the coordinates of
the questionnaire data value of the degree of influence and the state estimation, and the
safety level matrix (as shown in Figure 5) was used to normalize the data to obtain the
safety level of each factor.
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In Figure 5, the safety status is divided into five levels, S1, S2, S3, S4, and S5, which
represent very unsafe, unsafe, generally, safe, and very safe, respectively. According to
an algorithm similar to the risk estimate, 25 safe values (with a large number of duplicate
values) can be obtained from Figure 5. Standardizing the questionnaire data through the
safety level matrix can greatly reduce the workload of calculating the safety assessment
value, and all safety factors after processing can be measured by five levels (S1, S2, S3, S4,
and S5). The proportion of each safety factor can be used to provide the necessary data for
establishing a Bayesian network model. The statistical results of the safety factors involved
are shown in Table 6.

Table 6. Summary of safety level statistics.

Safety Factor
The Level Proportion

Total
S1 S2 S3 S4 S5

Fi Ai Bi Ci Di Ei N + 1

where F indicates the safety factor of the chemical plant, A, B, C, D, and E represent
the proportion of each of the five levels, respectively; A + B + C + D + E = 100%; and
i indicates each safety factor, i = 1, 2, 3 . . . 37.

2.5.4. Bayesian Network Structure Learning

(1) Background knowledge of the pre-edited Bayesian network structure

In theory, it is objective and feasible to construct a target network through sample
data learning. As long as the evaluation function of evaluating the quality of the target
network is properly defined, the network may be generated by running software. In order
to make the topology simple and clear, the calculation is fast and makes full use of expert
knowledge, report analysis, and other means, according to the reasons given before; thus,
the results determine the order of variables and establish a causal network [35]. On this
basis, the sample data were imported for learning, and the hidden relationship between
nodes was further explored. The causal relationship between the constructed Bayesian
network nodes was preliminarily judged and summarized, and the background learning
structure knowledge was pre-edited, as shown in Figure 6.
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(2) Bayesian network structure learning

Commonly used Bayesian network structure learning methods are based on statistical
test methods and search score-based methods. The representative algorithm based on
search scores is the K2 algorithm. The main idea is to first define a measure function to
evaluate the merits of the network model. Starting from an initial network, according to the
predetermined node order, the node with the largest posterior probability was selected as
the parent node of the node, all the nodes were sequentially traversed, and the best parent
node was gradually added for each variable. In order to improve the network structure,
N+1 evaluation samples were imported into the network as machine learning data.

2.5.5. Bayesian Network Structure Optimization

(1) Causal correlation analysis

In order to further analyze the causal relationship between safety factors of various
factors, this paper judged the correlation between various factors through expert knowledge
and adjusts the causal relationship between each safety factor according to the judgment
result. For the factors without causality, all are listed. Through sample data learning,
potential causal relationships between nodes were revealed. It should be noted that the
newly added wired arc was mined by sample data and expresses a certain relationship
between the data; however, it does not necessarily have a logical relationship between the
nodes in the true sense, so it is necessary to check and judge the connection relationship
between the nodes. The results of causality analysis can be used to reduce the complexity
of the network and optimize the network structure [36].

(2) Background knowledge optimization editing of Bayesian network structure
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According to the result of causal correlation analysis, we optimized the background
knowledge editing, listed the unrelated factors in advance, and then imported the data to
generate the optimized Bayesian network structure.

(3) Optimized Bayesian network structure

According to the correlation analysis between each safety factor, and by importing the
optimized background knowledge editing, the optimized Bayesian network structure was
obtained.

2.6. Bayesian Network Parameters Learning for Chemical Plant Safety Analysis

Each safety factor includes five safety states: S1, S2, S3, S4, and S5. Before parameter
learning, the probability of each network node variable needs to be initialized, that is, the
initialization value was assigned to each node variable.

At present, there are two Bayesian network parameter learning methods commonly
used: Bayesian estimation and maximum likelihood estimation. Estimation based on
Bayesian statistics regards the parameters as random variables. The prior probability
can be considered in the operation, and the maximum likelihood estimation is to treat
the parameters as unknown quantification without considering the prior probability. In
this paper, Bayesian statistics-based estimation was used for parameter learning, and the
prior probability needs to be considered. The safety evaluation value was obtained for
the coordinate value of the questionnaire data value of the influence degree and the state
estimation, and the prior probability of all the root nodes was calculated by using the
safety level matrix. After importing the sample learning database, parameter learning was
performed, and the remaining root nodes were manually input by prior probability. After
all probability parameters were input, the probability update was performed to realize the
learning update of all node network parameters.

2.7. Bayesian Network Model for Chemical Plant Safety Analysis

Parameter learning is based on the optimization of the network topology; its purpose is
to quantitatively describe the strength of the connection between existing network topology
nodes. The final learning result is actually the Bayesian network structure constructed by
the Bayesian network model of chemical plant safety analysis.

2.8. Sensitive Analysis

Sensitivity analysis is the identification of sensitive factors that have a significant
impact on chemical plant safety among a number of uncertainties. On the basis of reverse
reasoning, sensitivity analysis was used to obtain the influencing factors of chemical plant
safety accidents when they were in an unsafe state, and they were marked with dark colors.

3. Case Analyses
3.1. Impact Valuation and State Valuation Survey of Various Factors in Chemical Plant Safety

(1) Impact valuation survey

The 23 judges invited to complete the questionnaire all have a background in safety
and chemical engineering. A total of 24 judges including the authors evaluated each human
factor, and the evaluation data constituted a machine learning database. The database is
shown in Table 4. The weights of all the judges were very close, with only a few cases where
the standard deviation was greater than one [32]. The summary list of the questionnaire is
shown in Appendix A.

(2) State valuation survey

Twenty-three chemical industry experts were invited to investigate the status of
chemical plants. The list of valuation surveys is shown in Appendix B.
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3.2. Chemical Plant Safety Rating Factor Valuation

According to the safety level matrix calculation requirements, the factor estimation
calculation can obtain the statistical results shown in Appendix C.

3.3. Bayesian Network Structure Learning

The 24 evaluation samples were imported into the network as machine learning data,
and the resulting learning structure is shown in Figure 7. The network structure of machine
learning has a close relationship with the accuracy of the number of learning samples: the
more “real” data the network requires, the more sample data are needed. Since this study
only provides 24 samples, the data used for training and learning are limited, and the real
“correct” and concise network structure cannot be obtained. Therefore, further optimization
is needed. The resulting learning structure is shown in Figure 7.
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3.4. Bayesian Network Structure Optimization

(1) Causal correlation analysis

According to the causal correlation analysis, the causal relationship between the safety
factors of various factors can be obtained, as shown in Table 7.

Table 7. Results of causal analysis.

SN Starting of the Arrow End of the Arrow Causal Relationship

1 Organization Fitness for duty, Displays X: No relationship

2 Human factors and safety policy Manual handling, Organizational culture,
Design of controls X: No relationship

3 Organizational culture
Field control panels, Toxicity, Organizational

learning (audit and reviews), Skills and
knowledge, Design of controls

X: No relationship

4 Management of change
Communication, Toxicity, Design of controls,

Lighting/Illumination, Line management and
supervision

X: No relationship
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Table 7. Cont.

SN Starting of the Arrow End of the Arrow Causal Relationship

5 Organizational learning (audit
and reviews) \

6 Line management and
supervision Job Design, Displays, Organizational culture X: No relationship

7 Information Manual handling X: No relationship

8 Training Procedures and procedure development, Labels
and signs, Documentation X: No relationship

9 Procedures and procedure
development Human factors and safety policy X: No relationship

10 Communication \
11 Labels and signs \
12 Documentation Accessibility X: No relationship
13 Job Design \
14 Staffing and work schedules Accessibility, Field control panels X: No relationship
15 Shifts and overtime Design of controls X: No relationship
16 Manual handling \
17 Human System Interface Accessibility, Attention/motivation X: No relationship
18 Design of controls \
19 Displays Field control panels X: No relationship
20 Field control panels Toxicity X: No relationship
21 Tools (hand) \
22 Equipment and valves Tools(hand) X: No relationship
23 Task Environment \
24 Lighting/Illumination Toxicity X: No relationship
25 Temperatures Shifts and overtime, Lighting/Illumination X: No relationship

26 Noise Temperatures, Staffing and work schedules,
Workstation configuration, Shifts and overtime X: No relationship

27 Vibration Facility layout, Staffing and work schedules,
Noise X: No relationship

28 Toxicity \
29 Workplace Design \
30 Facility layout Control room, Design of controls X: No relationship
31 Workstation configuration \
32 Accessibility Communication X: No relationship
33 Control room Shifts and overtime X: No relationship
34 Operator Characteristics \
35 Attention/motivation Skills and knowledge X: No relationship
36 Fitness for duty Lighting/Illumination X: No relationship
37 Skills and knowledge Manual handling X: No relationship

(2) Bayesian network structure background knowledge optimization editing

According to the result of the causal correlation analysis, the optimized background
knowledge editing map can be obtained, as shown in Figure 8.
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(3) Optimized Bayesian network structure

Based on the correlation analysis and optimized background knowledge editing, the
final Bayesian network structure was optimized, as shown in Figure 9.
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3.5. Bayesian Network Parameter Learning and Final Model for Chemical Plant Safety Analysis

After importing the sample learning database, parameter learning was performed,
and the remaining root nodes were manually input with prior probability. After all the
probability parameters were input, the probability update was performed, and the learning
and updating of the network parameters of all nodes could be realized. The result of the
update is the final Bayesian network structure constructed by the chemical plant’s Bayesian
network model, as shown in Figure 10.
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3.6. Sensitivity Analysis

The data use Bayesian sensitivity analysis was used to find all the sensitivities that
affect the target node. Combined with the actual safety analysis of chemical plants, the
target node can reflect to some extent the important factors affecting the safety of chemical
plants. Based on the analysis of the sensitivity of the network on the basis of Figure 10, the
analysis results were obtained, as shown in Figure 11.

In the sensitivity analysis, the nodes with darker colors are the sensitive factors affect-
ing the safety of the chemical plant. There are 18 factors such as organization, organizational
culture, human factors and safety policy, information, communication, operator character-
istics, skills and knowledge, human–system interface, job design, manual handling, noise,
lighting/illumination, workstation configuration, control room, human–system interface,
tools (hand), design of controls, and equipment and valves.
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4. Results and Discussion

In this paper, the chemical plant safety level was divided into five levels, 1, 2, 3, 4,
and 5, which, respectively, correspond to the five conditions of the overall status of the
chemical plant: very unsafe, unsafe, general, safe, and very safe. As can be seen from
Figure 10, the chemical plant safety levels correspond to a level 1 probability of 2%, a
level 2 probability of 15%, a level 3 probability of 27%, a level 4 probability of 46%, and a
level 5 probability of 11%.

The results of the abovementioned model calculations represent the safety proba-
bilities of the various levels of the chemical plant in general. When carrying out safety
warnings for specific chemical plants, it is first necessary to collect the relevant infor-
mation of the chemical plants to understand their background. According to the facts
and characteristics of a chemical plant, the safety level of each factor could be ana-
lyzed. The analysis results were then imported into the Bayesian network structure
model, and the management risk of the chemical plant was assessed by calculating
the grade value of the chemical plant safety. The chemical plant overall safety level
expected value calculation is as follows: safety level 1 is 2%, safety level 2 is 15%, safety
level 3 is 27%, safety level is 46%, and safety level is 11%. Taking the abovementioned
model operation result as an example, the overall safety level of the chemical plant was
1 × 2% + 2 × 15% + 3 × 27% + 4 × 46% + 5 × 11% = 3.5, that is, the safety level of the
chemical plant was between 3 and 4, which is close to a relatively safe range.

The Bayesian network also has a reasoning learning function. Through the above-
mentioned chemical plant safety Bayesian network analysis model, the safety level of
the chemical plant can be inferred. When a chemical plant has a low level of safety, the
sensitive sensitivity, reverse reasoning, and maximum causal chain analysis capabilities
of the Bayesian network simulation can be used to identify the sensitive safety factors
and key safety factors in the chemical plant safety impact factors. In order to improve the
safety of chemical plants and provide a more scientific basis, we can also make targeted
recommendations on the safety of chemical plants by using reasoning learning.
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5. Conclusions

This study illustrated the application of Bayesian networks in chemical plant quan-
titative analysis and evaluation models. The application used questionnaires and expert
judgment to conduct research and analysis based on the reliability of personnel factors in
seven aspects: organization, information, job design, human system interface, task environ-
ment, workplace design, and operator characteristics. This process established a chemical
plant safety indicator system: taking a chemical plant as an example, we used a Bayesian
network for processing and modeling, predicted and estimated the safety value of the chem-
ical plant, and judged the safety level of the chemical plant to carry out the comprehensive
safety management of the chemical plant and its chemical park. By applying this model,
chemical park managers can regularly audit and score each chemical plant in the park and
use the model to calculate the safety level of each chemical plant. Then, they can focus on
the monitoring and management of any chemical plants with a safety level of one. At the
same time, through the sensitivity analysis in the model, key human factors affecting safety
are found, and chemical plants are required to make targeted improvements, improve
safety levels, and ensure that the safety equivalence of the chemical plants reaches at least
level 3. Continuous regular inspection by managers can greatly reduce the occurrence of
safety accidents in chemical plants.

For future research using this model, we mainly assume that increasing the number of
training samples would help develop the model’s research to be more mature and accurate.
Simultaneous use of the Bayesian network chemical plant safety analysis model’s reasoning
and analysis functions can identify the sensitivity and key safety factors from the chemical
plant safety’s influencing factors. By continuing to optimize the model, specific factors can
be found to improve the safety of chemical plants, which can help with the management of
chemical plants and reduce the occurrence of safety accidents.
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Appendix A

List of results of impact valuation questionnaire.

Safety Factor
Judges

Author 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Organization 5 2 4 5 5 5 2 3 5 5 5 3 4 4 5 2 5 4 4 4 4 4 4 2
Human factors and safety policy 5 1 2 4 5 4 3 4 3 4 3 1 4 1 3 5 4 4 5 4 3 4 3 5

Organizational culture 3 2 4 5 5 5 4 3 4 5 5 4 2 4 5 3 3 3 3 4 3 4 4 5
Management of change 4 2 3 3 4 3 4 2 5 5 5 4 2 3 4 3 2 4 4 4 4 4 5 5

Organizational learning (audit and reviews) 4 2 4 4 4 4 4 3 3 4 4 2 4 3 4 3 3 3 4 3 3 4 3 5
Line management and supervision 3 3 3 3 5 4 4 5 1 4 4 3 4 4 4 4 4 4 5 3 4 4 4 5

Information 3 3 4 4 4 4 2 4 4 4 4 4 2 4 4 3 4 5 3 4 3 5 4 4
Training 4 3 3 4 4 5 4 4 4 4 4 4 5 4 5 4 3 5 5 3 4 5 5 3

Procedures and procedure development 3 3 3 5 4 3 3 4 3 4 3 4 4 3 4 5 4 4 3 3 3 5 3 3
Communication 4 3 5 4 5 4 4 4 4 4 4 4 4 4 4 4 5 5 3 4 4 5 4 4
Labels and signs 2 4 1 3 4 4 3 3 2 3 3 1 2 4 2 4 4 5 3 4 4 3 3 2
Documentation 2 3 2 3 4 3 3 2 3 4 4 1 5 4 3 4 2 4 2 4 4 4 4 2

Job Design 3 4 3 4 3 3 3 4 3 4 5 3 5 4 4 4 3 4 2 4 3 5 3 4
Staffing and work schedules 2 4 3 3 3 3 4 4 2 5 3 3 4 4 5 3 2 4 3 3 4 4 3 4

Shifts and overtime 2 4 3 3 3 4 4 4 2 3 4 4 5 2 2 3 3 5 2 3 3 4 4 4
Manual handling 2 3 1 3 4 3 4 4 1 3 3 1 4 3 1 3 2 3 1 2 4 5 2 2

Human System Interface 4 4 3 3 3 4 4 4 4 4 4 3 2 4 3 5 2 5 4 3 3 4 4 4
Design of controls 4 4 2 4 3 4 4 3 2 5 2 4 4 4 3 5 2 5 3 3 3 3 3 3

Displays 4 4 2 3 3 5 3 3 5 4 2 3 5 4 4 5 3 5 4 3 3 3 4 3
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Safety Factor
Judges

Author 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Field control panels 4 4 2 3 2 3 4 3 4 3 2 3 4 4 3 5 2 5 2 3 2 3 4 3
Tools (hand) 4 3 2 3 3 4 4 4 3 4 2 1 5 4 2 4 2 4 4 3 4 4 3 3

Equipment & valves 4 4 2 3 2 3 3 2 3 4 2 3 2 4 2 4 2 4 2 3 3 4 3 3
Task Environment 3 3 3 4 2 4 3 2 1 4 4 4 2 2 2 5 2 4 2 3 4 5 2 2

Lighting/Illumination 2 2 3 4 3 4 3 3 2 3 2 2 5 2 2 4 3 4 2 4 4 5 3 4
Temperatures 2 2 3 4 2 4 4 5 1 3 2 3 4 2 2 4 3 3 2 4 4 5 2 4

Noise 2 2 4 3 2 3 4 4 4 1 2 4 4 1 2 4 4 3 2 4 4 5 4 4
Vibration 2 2 4 3 2 3 4 4 4 1 2 4 4 1 2 4 4 3 2 4 4 5 4 4
Toxicity 2 1 3 3 2 3 3 5 5 3 4 1 5 3 2 4 2 4 1 5 5 5 2 4

Workplace Design 3 5 3 4 2 4 3 5 1 4 4 3 4 4 2 5 3 3 2 3 3 5 3 2
Facility layout 3 4 3 4 2 4 3 3 3 3 4 3 4 3 1 4 3 3 2 4 3 4 3 4

Workstation configuration 3 5 2 4 2 3 3 3 2 3 4 4 5 3 2 4 2 3 3 4 3 4 3 3
Accessibility 3 4 2 4 3 4 2 4 1 3 3 2 5 3 2 4 4 4 3 4 4 4 2 3
Control room 2 5 2 4 2 5 3 3 2 3 4 4 5 3 2 4 3 5 3 4 4 4 3 4

Operator Characteristics 2 2 5 3 4 5 4 4 3 4 4 2 3 5 4 4 1 3 2 5 5 5 5 4
Attention/motivation 2 4 5 3 5 5 3 5 5 5 4 4 4 5 4 4 4 4 5 4 5 5 5 5

Fitness for duty 4 4 3 3 4 2 4 3 3 4 4 3 5 3 3 5 3 3 3 3 5 5 4 5
Skills and knowledge 3 4 5 4 4 4 5 4 5 5 5 4 5 5 4 5 3 2 4 3 5 5 5 4

Appendix B

List of results of the state valuation questionnaire.

Safety Factor
Judges

Author 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Organization 3 2 3 3 5 3 2 3 3 3 3 3 4 3 3 2 3 3 3 3 3 3 5 2
Human factors and safety policy 3 2 4 4 4 3 1 3 3 3 3 3 5 3 3 3 4 4 3 3 3 4 3 3

Organizational culture 4 2 4 3 5 3 2 3 3 3 3 3 3 4 3 3 3 3 3 4 3 3 3 3
Management of change 3 3 3 3 5 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 5 1

Organizational learning (audit and reviews) 2 2 4 3 5 3 3 3 3 2 2 2 2 2 2 3 3 3 2 3 3 2 3 3
Line management and supervision 3 2 2 3 5 3 3 3 3 3 3 3 4 3 3 1 3 3 1 3 3 3 5 2

Information 4 4 4 4 4 4 2 4 4 4 4 4 5 4 4 1 4 5 3 4 3 5 4 3
Training 4 4 4 4 4 4 3 3 4 4 4 5 4 4 4 2 4 5 4 4 4 3 4 4

Procedures and procedure development 3 3 4 4 4 3 2 4 3 4 3 4 3 3 4 2 4 4 3 3 3 5 3 3
Communication 2 3 4 4 5 3 2 3 2 2 4 2 4 1 5 4 4 4 3 3 3 3 3 3
Labels and signs 4 4 4 3 4 4 1 4 3 3 3 4 5 4 4 2 4 5 4 3 4 4 4 3
Documentation 5 4 3 5 4 4 3 5 4 4 4 4 5 3 4 2 4 4 4 4 4 3 5 4

Job Design 5 4 5 4 4 3 3 4 3 4 5 3 5 4 4 4 3 4 2 4 3 5 3 4
Staffing and work schedules 5 1 5 3 4 5 4 4 4 4 5 4 4 4 4 5 1 5 2 5 4 5 3 5

Shifts and overtime 5 4 5 4 4 4 4 4 2 3 4 4 5 2 2 3 3 5 2 3 3 4 4 4
Manual handling 4 2 2 4 4 3 4 4 2 3 3 1 5 3 1 3 2 5 3 2 4 5 2 4

Human System Interface 3 4 4 3 4 4 1 4 4 4 4 3 2 4 3 5 2 5 4 3 3 4 4 4
Design of controls 3 1 4 4 4 4 1 3 2 5 2 4 4 4 3 5 2 5 5 3 3 4 3 3

Displays 3 2 4 3 3 3 1 4 5 4 4 3 2 4 4 5 3 5 4 3 3 4 4 5
Field control panels 3 1 3 3 5 3 1 3 4 3 5 2 2 4 3 5 2 5 2 3 2 4 4 5

Tools (hand) 3 5 4 2 3 4 2 4 4 4 5 5 1 4 2 4 2 4 5 3 4 4 3 3
Equipment and valves 4 4 4 1 4 3 3 4 4 4 5 3 2 4 2 4 2 4 2 3 3 4 3 3

Task Environment 4 3 4 4 4 4 3 2 1 4 4 4 2 2 2 5 2 4 2 3 4 5 2 2
Lighting/Illumination 3 3 3 3 5 4 3 2 2 3 2 3 5 2 2 4 2 4 2 4 4 4 3 2

Temperatures 3 3 3 3 5 4 4 2 1 3 5 3 1 2 2 5 3 3 2 4 4 5 2 3
Noise 3 3 3 3 5 3 4 3 3 4 5 4 4 1 2 5 5 3 2 3 4 5 3 3

Vibration 4 3 4 5 4 3 4 4 3 4 5 4 4 1 2 5 4 3 2 4 4 5 3 4
Toxicity 5 3 5 5 3 3 3 4 2 5 4 2 1 3 2 4 2 4 1 2 4 4 2 1

Workplace Design 3 5 3 3 4 4 3 5 1 4 4 3 4 4 2 5 3 3 2 3 3 5 3 2
Facility layout 2 3 3 4 3 4 3 5 2 4 4 3 4 5 1 4 3 3 2 4 3 4 3 1

Workstation configuration 3 3 2 2 5 3 3 3 2 5 4 4 5 3 2 4 4 3 3 4 3 4 3 3
Accessibility 5 4 3 4 5 4 2 4 5 5 3 2 5 3 2 4 4 4 3 4 2 3 3 3
Control room 2 4 2 4 4 5 3 3 2 4 4 4 5 3 2 5 2 3 2 2 4 4 3 1

Operator Characteristics 3 2 3 3 4 5 4 4 3 4 4 2 3 5 4 4 1 3 2 5 5 5 5 4
Attention/motivation 4 4 5 3 5 5 3 5 5 5 4 4 4 4 5 4 4 4 5 4 4 5 5 4

Fitness for duty 3 4 3 3 4 3 4 3 3 4 4 3 3 3 3 5 2 3 3 3 5 5 4 5
Skills and knowledge 1 1 3 2 2 3 5 2 2 3 3 1 2 4 2 2 1 2 2 2 2 2 2 2

Chemical plant safety level valuation 4 3 3 4 4 4 2 4 2 4 5 3 4 4 4 3 3 4 3 4 4 5 4 3
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Appendix C

Actual safety level statistics.

Safety Factor
The Level Proportion

Total
S1 S2 S3 S4 S5

Organization 0% 17% 8% 67% 8% 24
Human factors and safety policy 4% 13% 21% 54% 8% 24

Organizational culture 0% 8% 29% 58% 4% 24
Management of change 0% 13% 29% 50% 8% 24

Organizational learning (audit and reviews) 0% 13% 63% 21% 4% 24
Line management and supervision 0% 17% 21% 54% 8% 24

Information 0% 8% 8% 75% 8% 24
Training 0% 0% 0% 75% 25% 24

Procedures and procedure development 0% 4% 46% 42% 8% 24
Communication 0% 4% 29% 46% 21% 24
Labels and signs 0% 21% 25% 50% 4% 24
Documentation 0% 8% 21% 63% 8% 24

Job Design 0% 4% 29% 54% 13% 24
Staffing and work schedules 4% 8% 13% 58% 17% 24

Shifts and overtime 0% 17% 21% 54% 8% 24
Manual handling 17% 25% 21% 29% 8% 24

Human System Interface 0% 13% 21% 58% 8% 24
Design of controls 0% 17% 33% 38% 13% 24

Displays 0% 4% 38% 46% 13% 24
Field control panels 0% 29% 29% 33% 8% 24

Tools (hand) 0% 13% 33% 50% 4% 24
Equipment and valves 0% 21% 42% 38% 0% 24

Task Environment 4% 33% 17% 38% 8% 24
Lighting/Illumination 0% 42% 21% 29% 8% 24

Temperatures 4% 29% 21% 38% 8% 24
Noise 4% 21% 13% 50% 13% 24

Vibration 4% 17% 17% 54% 8% 24
Toxicity 8% 25% 17% 46% 4% 24

Workplace Design 4% 13% 42% 25% 17% 24
Facility layout 4% 21% 29% 46% 0% 24

Workstation configuration 0% 13% 50% 33% 4% 24
Accessibility 0% 21% 25% 50% 4% 24
Control room 0% 29% 25% 33% 13% 24

Operator Characteristics 4% 17% 17% 38% 25% 24
Attention/motivation 0% 0% 13% 33% 54% 24

Fitness for duty 0% 8% 42% 29% 21% 24
Skills and knowledge 0% 25% 25% 42% 8% 24
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