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Abstract: As unexpected events such as natural disasters, the COVID-19 pandemic, and overseas
containment have caused inevitable shocks to the energy industrial chain and supply chain, the
current global energy crisis is intensifying, and different countries and regions have adopted different
strategies according to the characteristics of their own national resource endowments in order to
cope with energy security. Maintaining the security of the coal industrial chain and supply chain is a
prerequisite for energy security to be effectively ensured, considering the main position of coal in
China’s energy. Therefore, in the face of multiple uncertain risk factors under today’s momentous
changes, this paper constructs an industrial coal chain and supply chain resilience evaluation indicator
system from the perspective of resilience, based on four representational capabilities of resilience,
namely preparedness, absorptive capacity, recovery capacity, and adaptability, in order to profoundly
understand and enhance the resilience of the coal industrial chain and supply chain. An integrated
method combining Interval Type-2 Fuzzy Prospect Theory and Technique for Order Preference
by Similarity to an Ideal Solution (Interval Type-2F-PT-TOPSIS) is proposed for evaluating the
resilience level of the coal industrial chain and supply chain. In the case of Shaanxi Province in
China, it was found that the worst level of resilience of the coal industrial chain and supply chain
in Shaanxi Province was in 2018, and the best was in 2021. Finally, based on the evaluation results,
recommendations are provided to the key nodes of the industrial chain and supply chain in Shaanxi
Province with a view to improving their resilience levels to cope with uncertain risks.

Keywords: coal industrial chain and supply chain; interval type-2F fuzzy set; prospect theory;
TOPSIS; resilience evaluation

1. Introduction

The industrial chain and supply chain originates from the continuous development
and deep integration of the three chains of the value chain, supply chain, and industry
chain, which is a new industrial organization form covering the value dimension, process
dimension, and space-time dimension. The continuously optimized, and stable industrial
chain and supply chain is a perfect interpretation of their security, which is an important
support to guarantee the stability of the national infrastructure. In recent years, under the
influence of overlapping factors such as the COVID-19 pandemic, geopolitical conflicts,
and the promotion of green and low-carbon transformation, especially the Russia-Ukraine
conflict that broke out in early 2022, the global energy industrial chain and supply chain
have faced the most serious risks and challenges in nearly 50 years [1,2]. Under the
changing world energy system, various risks and changes are also posing serious threats
to the security of the energy industrial chain and supply chain, and countries are actively
initiating emergency measures to maintain energy security. For instance, in the short term,
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the EU is diversifying its energy supply while it aims to deploy large-scale renewable
energy production in the medium and long term [3].

As a major global economic power and the world’s largest consumer and net importer
of energy, China’s energy development strategy is bound to have a profound impact on
the changing global energy market situation. Due to its “coal-rich, oil-poor, gas-poor”
energy endowment, China has a high degree of external dependence on some energy
sources, such as oil. With the escalating conflict between Russia and Ukraine and the
mutual sanctions between the US and European countries and Russia, oil exports have
suffered a strong impact, while China has reached or is close to its peak in both coal and
oil, in addition to the room for growth in natural gas production. Despite the abundance of
solar and wind energy resources, due to the high technical costs of their development and
the limitations of their own endowment, coal remains their main energy resource for now
and in the medium to long term, and the high-quality development of the coal industry is
vital to maintaining China’s energy security. However, in a volatile global environment,
the increased probability of uncertain risk events such as dual-chain disruption risk, coal
import sourcing risk, and information risk has led to the increased prominence of complex
dual-chain management issues [4].

Some scholars have conducted a series of studies on risk management in the coal
industry. Rao and Xiao et al. [5] argued that the selection of suppliers is critical to risk
management when there are multiple suppliers available for procurement from the per-
spective of downstream companies in the coal supply chain. Brown and Teresa [6] found
that the diversity of mineral resources supplied can also play a role in risk prevention
and control. Meanwhile, some scholars have analyzed the risk management of a key
node. Botha et al. [7] analyzed the risks faced in the logistics chain and suggested that
stakeholders should cooperate in developing risk mitigation strategies in a holistic and
integrated manner. Li et al. [8] found that by building a risk-benefit measurement model,
this model could effectively avoid risks for all parties in the upstream and downstream com-
panies (coal suppliers and power producers). However, existing studies have attempted
to mitigate risk shocks through traditional supply chain risk management, but since the
coal industry is more sensitive to economic fluctuations than other industries due to its
special characteristics [9], the traditional risk management methods used above cannot
effectively handle risks in the current highly uncertain global environment, and only a
proactive risk management approach to deal with unforeseen risk disruptions [10] can
prevent all disruptions from occurring. Increased resilience presents a new insight into
the mitigation of uncertain risk shocks in the coal industrial chain and supply chain as a
dynamic capability of systems that not only remain operational to resist disruptions when
exposed to the effects of risk changes but also recover and learn to evolve quickly in a
proactive and flexible manner following risk shocks [11].

The concept of “resilience” was first introduced in 1973 [12] and refers to the resistance
of a system at the physical dimension to compression after an impact, i.e., engineering
resilience. Over time, resilience has been refined and developed into ecological and evo-
lutionary terms, as ecological and evolutionary resilience, which emphasize the ability
of a system to prepare before a shock disruption and to recover, adapt and learn after a
shock disruption. Ecological resilience differs from engineering resilience in that it does
not only return to the original state as a steady state but may also have multiple steady
states, returning to a state that is better or worse than the original state, while evolution-
ary resilience differs from ecological resilience in that evolutionary resilience emphasizes
dynamic steady states (the system has steady states everywhere). However, there is no
unified definition of the concept of industrial chain and supply chain resilience. This
paper integrates the characteristics of the coal industrial chain and supply chain and the
essential attributes of resilience and draws on the definition of energy system resilience
by Sharifi and other scholars in the literature [13] to define the coal industrial chain and
supply chain resilience as a series of preparation, absorption, recovery, and adaptation of
each key node of the industrial and supply chain in the face of risk disruptions to ensure
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sustainable development. Specifically, it includes the availability, accessibility, affordability,
and acceptability of coal supply, transportation, and distribution.

Evaluation of the level of resilience is the basis for its improvement. The literature on
resilience research can be divided into four main categories: regional economies [14,15], sys-
tem security [16,17], supply chains [18,19], and energy systems [20], which can be discussed
in two specific aspects. The first is the construction of an indicator system of resilience
influencing factors. Linkov et al. [21] first constructed an indicator system consisting of 16
resilience influencing factors based on the understanding of the essential characteristics of
resilience and the four representational capabilities of resilience, which was filtered and
supplemented by Roege [22] in response to characteristics of energy systems. Anyway,
over time, different fields have gradually become involved in resilience research. Han and
Pei [23], under the perspective of system security, also constructed an indicator system
based on the representational capacity of resilience as the primary indicator to assess the
resilience level of urban systems under exposure to rainfall disasters. Zhang et al. [24]
considered the unstable economic development of the Guangdong-Hong Kong-Macao
Greater Bay Area in the post-epidemic era and constructed a regional economic resilience
evaluation system based on the characteristic dimensions of resilience. However, although
a growing number of scholars have continued to enrich the indicator system for resilience
evaluation from different fields, there is no single indicator system that can be applied to
all events. In other words, the selection of a resilience evaluation indicator system needs
to consider both the characteristics of the research problem and the essential properties of
resilience theory. Second, for the selection of evaluation methods, scholars have adopted
different methods to evaluate the level of resilience, which can be roughly divided into two
categories: qualitative and quantitative and can provide a reference for this study on the
level of resilience of the coal industrial chain and supply chain. Qualitative methods such
as the analytic hierarchy process based on Grey Theory [25], the intuitive fuzzy analytic
hierarchy process based on interval numbers [26], and TOPSIS [27]. With the continu-
ous development of information technology and comprehensive evaluation theory, new
methods such as cloud models and dynamic Bayesian networks have also been applied to
resilience evaluation [23,28]. The most prominent quantitative method is the evaluation
by calculating the area with the resilience evolution curve [17,29]. Alternatively, math-
ematical models have been developed, such as those based on game theory [30], linear
programming [31], and structural equations [18]. However, there are three shortcomings
in the existing studies. First, there is no resilience indicator system established based
on the structural characteristics of the coal industrial chain and supply chain. Second,
although there are various evaluation methods, in terms of qualitative evaluation methods,
the personal preferences and decision-making tendencies of decision-makers make the
evaluation results more subjective. On the other hand, in terms of quantitative methods, it
is difficult to obtain data at all levels because of the multiple stakeholders involved in the
coal industrial chain and supply chain.

Therefore, this study intends to address research shortcoming 1, mainly drawing on
research related to energy system resilience and supply chain resilience, to construct a
resilience influencing factor indicator system for the essential characteristics and structural
features of the coal industrial chain and supply chain with the four characteristic capabilities
of resilience. In order to address research shortcoming 2, this paper considers that the coal
industrial chain and supply chain is a large and complex system composed of multiple
stakeholders, and the data related to the factors affecting its resilience level are difficult
to obtain or assess in a quantitative way, coupled with the uncertainty, ambiguity, and
hesitation of decision makers, which makes the measurement theory based on fuzzy
information the most appropriate for this study. Hence, the idea of fuzzy set theory is
utilized in the paper. In this theory, the affiliation function of a type-1 fuzzy set is a specific
real number, which provides a certain degree of the description of the uncertainty of
the problem, but for real problems with high levels of uncertainty, an affiliation of a real
number is still subject to certain limitations. As an extension of type-1 fuzzy set theory,
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type-2 fuzzy sets have their upper and lower affiliation functions as a type-1 fuzzy set,
respectively, which can better describe and solve fuzzy uncertainty decision problems.
Moreover, considering the advantages of interval type-2 fuzzy sets over other type-2 fuzzy
sets in terms of affiliation function selection and calculation, interval type-2 fuzzy sets are
thus regarded as the core idea of this study. In addition, in order to effectively evaluate
the resilience level of the coal industrial chain and supply chain, this study considers the
integrated method of interval type-2 fuzzy sets and TOPSIS. TOPSIS, as an effective multi-
indicator integrated evaluation method, is particularly suitable for evaluating the same
research object in different time dimensions or evaluating different research objects in the
same time dimension by constructing positive and negative ideal solutions to the evaluation
problem and ranking the relative merits of the existing evaluation objects according to
their relative closeness to the ideal solution. However, TOPSIS has two shortcomings:
for one, it is difficult to determine the weight of indicators; and for another, traditional
TOPSIS assumes that decision-makers are perfectly rational, but this is not achievable
in real-life situations. Therefore, in order to make the evaluation results more objective
and realistic, a number of factors are considered in this study. First, the relative entropy
method based on hamming distance is used to obtain the decision-maker weights based on
a combination of subjective and objective weights, and then the interval fuzzy Analytical
Hierarchy Process (AHP) is integrated to obtain the indicator weights. In order to combine
the evaluation model with practical cases, the model is applied to the coal supply chain in
Shaanxi Province, which is a typical coal-producing and consuming province in China and
is of great significance for resilience evaluation. Finally, the evaluation results are used to
propose actionable countermeasures to improve the level of resilience.

The rest of the paper is organized as follows: Section 2 introduces the construction
of the indicator system of factors influencing the resilience of the coal industrial chain
and supply chain; Section 3 introduces the construction of the evaluation model; Section 4
presents the evaluation results obtained by applying the established evaluation model to
the case; Section 5 presents the analysis of the results and suggestions for countermeasures;
and Section 6 presents the conclusions.

2. Construction of an Indicator System for Influencing Factors of Resilience of Coal
Industrial Chain and Supply Chains

In this paper, through reviewing the domestic and international literature on “coal
supply chain,” “coal industry,” “energy industry,” “industrial chain and supply chain”,
“supply chain resilience,” “energy security,” “coal industry chain security,” and the other
relevant literature, we integrate the structural points of the coal industrial chain and supply
chain and four characteristics of resilience (preparedness, absorptive capacity, recovery
capacity and adaptability [32]). In addition, experts in the field of the coal industry were
invited to conduct several discussions and finally determined a resilience influencing factor
indicator system constructed by four primary indicators and 13 secondary indicators. The
relationship between the resilience level of the coal industrial chain and supply chain and
the evaluation indicators and influencing factors is expressed by the following formula:
In this paper, according to the definition of the resilience of the coal industrial chain and
supply chain, four characteristic capabilities of resilience (preparedness, absorptive capac-
ity, recovery capacity, and adaptivity) are used as primary indicators, and the influencing
factors of resilience under each capability are considered as secondary indicators from the
perspective of coal industrial chain and supply chain members (government, upstream
industry, and downstream enterprises) to construct the indicator system [32]. The rela-
tionship between the resilience level of the coal industrial chain and supply chain and the
evaluation indicators and influencing factors is expressed by the following formula:

R = FR{ fAbs(x11, x12, x13, x14), fRes(x21, x22, x23, x24), fRec(x31, x32, x33, x34), fAda(x41, x42, x43, x44)}

where R denotes risk resilience of coal industrial chain and supply chain, Abs denotes
preparedness, Res denotes absorptive capacity, Rec denotes recovery capacity, Ada denotes
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adaptability, and x1, x2, x3, x4 respectively denote the factors influencing the resilience
of the coal industrial chain and supply chain under each capacity in four dimensions
upstream industry (Coal source), midstream enterprises (Coal transportation), government,
and downstream enterprises (Coal consumption). Then indicator system for evaluating the
resilience of coal industrial chain and supply chain is as shown in Table 1.

Table 1. Indicator system for evaluating the resilience of coal industrial chain and supply chain.

Primary Indicator Secondary Indicator

Preparedness A Risk management A1
Scale of emergency coal reserves A2

Absorptive capacity B
Diversity of emergency behavior B1
Efficiency of information transfer B2

Coal emergency reserve security capacity B3

Recovery capacity C

Industrial technology level C1
Service organization development level C2
Competitiveness of industrial resources C3

Redundancy of coal C4

Adaptability D

Scientific and technological innovation capacity D1
Level of product market developmentD2
Coal emergency reserve mechanism D3

Coal emergency transport layout D4

(1) Preparedness is the basis for the resilience performance level of the coal industrial
chain and supply chain, which is expressed as the risk prevention effect. In particular,
risk management refers to the ability of enterprises to warn, plan, assess, avoid, and
control risks before they come [33]; The scale of emergency coal reserves refers to the
coal spot reserves, capacity reserves, and resource reserves established in advance by
the government and enterprises to cope with possible estimation errors, omissions
and uncertainties during the operation of the industrial coal chain in order to maintain
sustainable production and operation activities. It serves the primary purpose of
responding to energy supply shortages in times of emergency and securing China’s
energy supply, thereby safeguarding the normal operation of the national economy
and defense requirements.

(2) Absorptive capacity refers to the ability of the coal industrial chain and supply chain
to absorb and withstand risk after a risk disruption occurs and to mitigate adverse
impacts. Key factors affecting the absorptive capacity of the coal industrial chain and
supply chain include the diversity of emergency behavior, the efficiency of information
transfer, and the ability to secure emergency coal reserves. When risks occur, the
diversity of emergency behavior of enterprises contributes to the rapid identification
of the main characteristics of risks and thus successfully respond to them to improve
the level of chain resilience [34,35]; the closer the relationship between firms and
social service organizations, the more timely and accurate the information received
in the event of external disruptions, and the more efficient the handling of external
disruptions [36,37], as well as the more it helps all parties to come together to respond
to risks to quickly return to normal, thereby increasing resilience; Coal emergency
reserve security is the maintenance of additional coal reserves by members of the
industrial chain and supply chain to ensure continuity of operations in the event
of a disruption, albeit at the cost of additional inventory costs, but also reduces
the potential for supply chain discontinuity. Therefore, there is a trade-off between
maintaining additional reserves and reducing the impact of disruption. The capacity
to secure emergency coal reserves is one of the key factors in the rapid recovery of the
industrial coal chain and supply chain following a risk disruption.

(3) Recovery capacity refers to the ability of the coal industrial chain and supply chain
nodes to operate in a timely manner to recover their normal operational functions
from risky disruptions. In particular, a higher level of coal industry technology allows
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the industrial chain and supply chain to recover quickly after a risk disruption [38];
an enhanced level of service organization development can help companies integrate
their resource supply networks and enhance their ability to act quickly under uncer-
tain and unexpected conditions [39,40]; excellent industrial resource competitiveness
is one of the key factors affecting the rapid recovery of imported coal sources after a
risk disruption; higher coal reserves can provide a bottom-up effect to meet critical
demand after a risky disruption in the coal industrial chain and supply chain.

(4) Adaptability refers to the ability of the coal industrial chain and supply chain to learn
from experience after risk disruptions, including the innovative capacity of the coal
industry in science and technology, the level of product market development, the
emergency coal reserve mechanism, and the emergency coal transport layout. The
scientific and technological innovation capacity of the coal industry is the core driver
of its healthy and orderly development, representing the system’s ability to adapt to
external risk disruptions. When the coal industrial chain and supply chain is exposed
to risk disruptions, the level of science and technology in each segment of the chain
largely determines the time and speed of its return to normal operation; the level of
product market development represents the development potential of the industry;
the higher the development potential, the higher its resource utilization rate [41]; after
the occurrence of risk disruptions, the discovery of the potential for improvement and
upgrading in the coal emergency reserve mechanism can provide the industry with
more effective emergency management. In terms of transportation, lessons should
be actively learned, and various modes of coal transportation, such as road, rail, and
waterway pipelines, should be scientifically laid out so as to effectively coordinate
overall operations.

3. Evaluation of Coal Industrial Chain and Supply Chain Resilience Based on Interval
Type-2 Fuzzy Numbers
3.1. Interval Type-2 Fuzzy Numbers
3.1.1. Definition

Definition 1. [42]: Type-2 fuzzy number is

Ã =
{
((x, µ), µÃ(x, µ))

∣∣∣∀µ ∈ Jx ⊆ [0, 1], 0 ≤ µÃ(x, µ) ≤ 1

where x is the type-2 affiliation function of Ã; Jx ⊆ [0, 1]. Ã can also be expressed as:

Ã =
∫

x⊆X

∫
µ⊆Jx

µÃ(x, µ)/(x, µ) (1)

where Jx ⊆ [0, 1].

Definition 2. [42]: A type-2 fuzzy set Ã is denoted as an interval type-2 fuzzy set if µÃ(x, µ) = 1
for all µÃ(x, µ). That is:

Ã =
∫

x⊆X

∫
µ⊆Jx

1/(x, µ) (2)

where Jx ⊆ [0, 1].

Definition 3. [42]: If the upper and lower bound subordinate functions of interval type-2 fuzzy
numbers are trapezoidal fuzzy numbers, they are denoted as interval trapezoidal type-2 fuzzy
numbers, and interval trapezoidal type-2 fuzzy numbers are a special case of interval type-2 fuzzy
numbers. That is:

˜̃Ai = (ÃU
i , ÃL

i ) =

[
aU

i1, aU
i2, aU

i3, aU
i4; H1(ÃU

i ), H2(Ãµ
i )

aL
i1, aL

i2, aL
i3, aL

i4; H1(ÃL
i ), H2(ÃL

i )

]
(3)
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where Ãµ
i and Ãl

i are type-1 fuzzy sets, aU
i1, aU

i2, aU
i3, aU

i4, aL
i1, aL

i2, aL
i3, aL

i4 are reference points for ˜̃Ai,
Hj(Ãµ

i ) denotes the affiliation of an element in aU
i(j+1) to the upper trapezoidal affiliation function

Ãµ
i , and Hj(ÃL

i ) denotes the affiliation of an element aU
i(j+1) to the lower trapezoidal affiliation

function ÃL
i , 1 ≤ j ≤ 2.

3.1.2. The Algorithms of Interval Type-2 Fuzzy Numbers

Let any two interval type-2 fuzzy numbers Ã1 and Ã2. The fundamental algo-
rithms [43] are as follows:

(1) Addition

˜̃A1 ⊕ ˜̃A2 = (ÃU
1 , ÃL

1 )⊕ (ÃU
2 , ÃL

2 ) =
aU

11 + aU
21, aU

12 + aU
22, aU

13 + aU
23, aU

14 + aU
24;

min(H1(ÃU
1 ), H1(ÃU

2 )), min(H2(ÃU
1 ), H2(ÃU

2 )),
aL

11 + aL
21, aL

12 + aL
22, aL

13 + aL
23, aL

14 + aL
24;

min(H1(ÃL
1 ), H1(ÃL

2 )), min(H2(ÃL
1 ), H2(ÃL

2 ))

 (4)

(2) Multiplication

˜̃A1 ⊗ ˜̃A2 = (ÃU
1 , ÃL

1 )⊗ (ÃU
2 , ÃL

2 ) =
aU

11 × aU
21, aU

12 × aU
22, aU

13 × aU
23, aU

14 × aU
24;

min(H1(ÃU
1 ), H1(ÃU

2 )), min(H2(ÃU
1 ), H2(ÃU

2 )),
aL

11 × aL
21, aL

12 × aL
22, aL

13 × aL
23, aL

14 × aL
24;

min(H1(ÃL
1 ), H1(ÃL

2 )), min(H2(ÃL
1 ), H2(ÃL

2 ))

 (5)

(3) Scalar multiplication

k⊗ ˜̃A1 =


(

kaU
11, kaU

12, kaU
13, kaU

14;
H1(ÃU

1 ), H2(ÃU
i )

)
,(

kaL
11, kaL

12, kaL
13, kaL

14;
H1(ÃL

i ), H2(ÃL
i )

)
 (6)

(4) Power operation

1/k
√˜̃A1 =


(

1/k
√

aU
11, 1/k

√
aU

12, 1/k
√

aU
13, 1/k

√
aU

14;

H1(ÃU
1 ), H2(ÃU

1 )

)
(

1/k
√

aL
11, 1/k

√
aL

12, 1/k
√

aL
13, 1/k

√
aL

14;

H1(ÃL
1 ), H2(ÃL

1 )

)
 (7)

(5) Distance between two trapezoidal interval type-2 fuzzy sets [44]:

d( ˜̃A1, ˜̃A2) =

√
1

12
(∆U + ∆L) (8)

where

∆U =
4

∑
i=1

(aU
1i − aU

2i)
2
+

2

∑
i=1

(H(ÃU
1 )− H(ÃU

2 ))
2

∆L =
4

∑
i=1

(aL
1i − aL

2i)
2
+

2

∑
i=1

(H(ÃL
1 )− H(ÃL

2 ))
2
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Hence, the distance of each indicator from the positive and negative ideal solution can
be obtained as:

D(Ai, A+) =

√√√√ n

∑
j=1

(d( ˜̃Aij,
˜̃Aj+))

2
, D(Ai, A−) =

√√√√ n

∑
j=1

(d( ˜̃Aij,
˜̃Aj−))

2
(9)

3.1.3. Interval Type-2 Fuzzy AHP Algorithm

The AHP algorithm proposed by Saaty [45] has become one of the most popular
multi-attribute decision-making methods due to its rational hierarchical structure and clear,
logical relationships. Subsequently, considering that many decision-making environments
are uncertain, Buckley et al. [46] extended the AHP algorithm to fuzzy AHP by fusing
it with fuzzy sets. In this paper, we employ the interval type-2 fuzzy AHP algorithm to
calculate the weights of indicators.

The steps of the interval type-2 fuzzy AHP algorithm are as follows (see Figure 1):
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Step 1: Construct a two-by-two comparison matrix of interval type-2 fuzzy numbers
for the indicators.

Since it is often difficult for decision-makers to provide interval type-2 fuzzy numbers
directly, a semantic form is more suitable for the way of thinking and habits of decision-
makers. The relationship between the semantic values and the interval type-2 fuzzy
numbers are shown in Table 2.
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Table 2. The relationship between the semantic values and the interval type-2 fuzzy numbers.

Semantic Value Interval Type-2 Fuzzy
Number

Reciprocal Value of Interval
Type-2 Fuzzy Number

Extremely strong
(AS)

((7, 8, 9, 9; 1, 1),
(7.2, 8.2, 8.8, 9; 0.8, 0.8))

((0.11, 0.11, 0.12, 0.14; 1, 1),
(0.11, 0.11, 0.12, 0.14; 0.8, 0.8))

Very strong
(VS)

((5, 6, 8, 9; 1, 1),
(5.2, 6.2, 7.8, 8.8; 0.8, 0.8))

((0.11, 0.12, 0.17, 0.2; 1, 1),
(0.11, 0.13, 0.16, 0.19; 0.8, 0.8))

Generally strong
(FS)

((3, 4, 6, 7; 1, 1)),
(3.2, 4.2, 5.8, 6.8; 0.8, 0.8))

((0.14, 0.17, 0.25, 0.33; 1, 1),
(0.15, 0.17, 0.24, 0.31; 0.8, 0.8))

Slightly strong
(SS)

((1, 2, 4, 5; 1, 1),
(1.2, 2.2, 3.8, 4.8; 0.8, 0.8))

((0.2, 0.25, 0.5, 1; 1, 1),
(0.21, 0.26, 0.45, 0.83; 0.8, 0.8))

Equal
(E)

((1, 1, 1, 1; 1, 1),
(1, 1, 1, 1; 1, 1))

((1, 1, 1, 1; 1, 1),
(1, 1, 1, 1; 1, 1))

Step 2: Check the consistency of the interval type-2 fuzzy number comparison matrix.
In order to identify the consistency ratio (CR) of the matrix, the general consistency

index CI is first obtained:
CI = (λmax −m)/(m− 1) (10)

where Aw = λmax, λmax is a maximum eigenvalue, w is the eigenvector corresponding to
the maximum eigenvalue. The consistency ratio (CR) of the matrix can be obtained from
the following equation:

CR = CI/RI (11)

When CR < 0.1, the comparison matrix is considered to be consistent otherwise, the
elements of the matrix need to be adjusted to achieve consistency.

Step 3: The interval type-2 fuzzy number comparison matrices made by the experts
are assembled separately using the geometric mean method:

˜̃Aij = [ ˜̃A1
⊗ · · · ⊗ ˜̃An

]
1/n

(12)

Step 4: Calculate the fuzzy weights of different experts for the same indicators:

˜̃wj = ˜̃rj ⊗ (˜̃r1 ⊕ ˜̃r2 ⊕ · · · ⊕ ˜̃rn)
−1

(13)

where A represents the fuzzy interval number corresponding to the jth indicator in the
post-assembly comparison matrix.

As in traditional AHP, the transferability and consistency of the decision maker’s
personal preferences can have a large impact on the decision outcome. In order to minimize
this effect and make the decision outcome more objective, although most studies have used
aggregation methods AIJ (aggregation of individual judgment) [47] and AIP (aggregation
of individual preferences) [48], both of these aggregation methods apply weighted arith-
metic or geometric averaging. However, studies have shown [49,50] that distance-based
aggregation techniques are significantly better than AIJ and AIP. Therefore, this paper is
inspired by the literature [50] and proposes a relative entropy method based on Hamming
distance, taking into account that the linguistic variables are represented as interval type-2
fuzzy numbers.

First, the decision maker weights are determined based on the evaluation results given
by the decision maker, and the weights of each attribute are further calculated after the
decision maker weights are derived. The specific calculation steps are as follows:

Step 5: After obtaining the fuzzy weights (interval type-2 fuzzy numbers) of different
experts for the same indicator from step 4, the comprehensive evaluation value of each ex-
pert for the same indicator is compared, and the ideal positive point G+ =

(
g+1 , g+2 , · · · , g+n

)
and ideal negative point G− =

(
g−1 , g−2 , · · · , g−n

)
based on the experts under each indicator
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are determined, where g+j = maxgkj and g−j = mingkj. gki represents the evaluation value
of the kth indicator by the jth expert.

Step 6: Calculate the Hamming distances d(wi, G+) and d(wi, G−) between the com-
prehensive evaluation values of different experts for each indicator to the positive and
negative ideal points, respectively.

d(wi, G+) = 1
8 (
∣∣∣aU

i1 − aU+

j1

∣∣∣+∣∣∣aU
i2 · H(AU

i )− aU+

j2 · H(AU+

j )
∣∣∣+∣∣∣aU

i3 · H(AU
i )− aU+

j3 · H(AU+

j )
∣∣∣+∣∣∣aU

i4 − aU+

j4

∣∣∣
+
∣∣∣aL

i1 − aL+

j1

∣∣∣+∣∣∣aL
i2 · H(AL

i )− aL+

j2 · H(AL+

j )
∣∣∣+∣∣∣aL

i3 · H(AL
i )− aL+

j3 · H(AL+

j )
∣∣∣+∣∣∣aL

i4 − aL+

j4

∣∣∣)
d(wi, G−) = 1

8 (
∣∣∣aU

i1 − aU−
j1

∣∣∣+∣∣∣aU
i2 · H(AU

i )− aU−
j2 · H(AU−

j )
∣∣∣+∣∣∣aU

i3 · H(AU
i )− aU−

j3 · H(AU−
j )

∣∣∣+∣∣∣aU
i4 − aU−

j4

∣∣∣
+
∣∣∣aL

i1 − aL−
j1

∣∣∣+∣∣∣aL
i2 · H(AL

i )− aL−
j2 · H(AL−

j )
∣∣∣+∣∣∣aL

i3 · H(AL
i )− aL−

j3 · H(AL−
j )
∣∣∣+∣∣∣aL

i4 − aL−
j4

∣∣∣) (14)

Step 7: Calculate the coefficient of closeness ci for the same indicator for different
experts separately.

ci =
d(wi, G−)

d(wi, G−) + d(wi, G+)
(15)

Step 8: Based on the calculation results of step 7, the weight of the same expert in
the comprehensive evaluation of different indicators is obtained, and finally, the weight of
decision-maker µk is obtained.

Step 9: Multiply the weights of decision makers with the weights of attributes, i.e., to
obtain the objective indicator weights given by each expert respectively, and further apply
the arithmetic average method to aggregate the indicator weights given by all experts, and
finally perform defuzzification to obtain the defuzzified weights and normal weights of
each indicator. The defuzzification formula is as follows:

De f uzzi f ied( ˜̃Ai) =
1
2

{
1/4[(aU

i4 − aU
i1) + (H1(ÃU

i )× aU
i2 − aU

i1) + (H2(ÃU
i )× aU

i3 − aU
i1)] + aU

i1
+1/4[(aL

i4 − aL
i1) + (H1(ÃL

i )× aL
i2 − aL

i1) + (H2(ÃL
i )× aL

i3 − aL
i1)

}
(16)

3.2. Type-2F-PT-TOPSIS Based Evaluation Method
3.2.1. Prospect Theory

Behavioral psychologists have found that people are not fully rational when making
decisions but are finitely rational. Based on this, in 1979, Tversky [51] proposed the
prospect theory. Prospect theory suggests that people are influenced by their own subjective
judgments when making decisions and that different people have different subjective
criteria. In other words, the prospect value of a solution is the criterion for people’s
decision-making, which better explains why people make actual decisions that deviate
from the expected utility theory, which is well accepted by academics. Prospective value is
determined through a combination of probability weighting functions and value functions:

V =
n

∑
i=1

[w(pi)v(∆xi)] (17)

where w(p) is the probability weighting function, and v(∆x) is the value function.
The specific form of the value function is as follows:

v(∆x) =

{
(∆xi)

α, ∆xi ≥ 0
−λ(−∆xi)

β, ∆xi < 0
(18)

where ∆xi indicates the difference between attribute xi and reference point x0. ∆xi > 0
indicates that the decision maker feels a ‘gain,’ while ∆xi < 0, on the other hand, indicates
that the decision-maker feels a ‘loss.’ α and β are both risk attitude coefficients and α > 0,
β ≤ 1. Larger α and β indicate that the decision expert tends to take more risks; λ is the
loss aversion coefficient, usually taken as λ > 1, indicating that the decision expert is more
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sensitive to losses. This paper draws on the literature and takes λ = 2.25, α = β = 0.88 and
does not use probability weights, where λ = 2.25, α = β = 0.88 because Tversky [51] found
that assigning parameters to this data set was more consistent with the empirical data.

3.2.2. TOPSIS Method

In 1981, the TOPSIS method was proposed by Hwang and Yoon [52], which is a
ranking method that approximates the ideal solution. The core idea of the method is
to calculate the Euclidean distance between the evaluation object and the positive and
negative ideal solutions, thus obtaining the relative degree of closeness and finally ranking
them according to that degree of closeness. The traditional TOPSIS calculation steps are as
follows:

Step 1: The initial decision matrix X is normalized to obtain a normalized decision

matrix
−
X = (rij)m×n.

rij =
xij√

∑n
i=1 x2

ij

, i = 1, 2, . . . , m, j = 1, 2, . . . , n (19)

Step 2: Construct a weighted normalized matrix Z = (zij)m×n

zij = wjrij, i = 1, 2, . . . , m, j = 1, 2, . . . , n (20)

where wj is the weight of the attribute j and ∑m
j=1 wj = 1.

Step 3: Determine the positive ideal solution A+ = (z+1 , z+2 , . . . , z+n ) and the negative
ideal solution A− = (z−1 , z−2 , . . . , z−n ).

Step 4: Calculate the distance between each decision solution Ai and the positive ideal
solution A+ and the negative ideal solution A−, respectively.

D(Ai, A−) =

√√√√ n

∑
j=1

(zij − z−j )
2, i = 1, 2, . . . , m (21)

Step 5: The closeness Ri of each solution to the most ideal solution is calculated
individually.

Ri =
D−i

D−i + D+
i

, i = 1, 2, . . . , m (22)

Obviously, when Ri = 0, Ai = A−, the optimal decision solution is a negative ideal
solution; when Ri = 1, Ai = A+, the optimal decision solution is a positive ideal solution.

Step 6: The overall ranking of the closeness of all decision options Ri. The greater Ri,
the better the corresponding decision option Ai.

3.2.3. Type-2F-PT-TOPSIS Method

The combination of prospect theory and the TOPSIS method considers the influence
of psychological factors in people’s decision-making, and it improves on the traditional
TOPSIS method, making the ranking results more objective and reasonable. In addition, due
to the increasing complexity of current multi-attribute evaluation problems, in most cases,
decision experts are unable to provide a definitive evaluation result. To better solve this
problem, in the evaluation model of this paper, type-2 fuzzy variables are also introduced
to solve the uncertainty and ambiguity of the problem. The specific calculation steps are as
follows (see Figure 2):
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Step 1: Based on Table 3, q experts are invited to evaluate the level of resilience under m
indicators, and the linguistic value evaluation matrix of the uth decision expert is obtained
and converted into an interval type-2 fuzzy number evaluation matrix Xu = (Xij)m×n.

Table 3. Relationship between rated linguistic variables and interval type-2 fuzzy numbers.

Semantic Value Interval Type-2 Fuzzy Number

Very poor (VP) ((0, 0, 0, 1; 1, 1),(0, 0, 0, 0.5; 0.9, 0.9))
Poor (VP) ((0, 1, 1, 3; 1, 1),(0.5, 1, 1, 2; 0.9, 0.9))

Less poor (MP) ((1, 3, 3, 5; 1, 1),(2, 3, 3, 4; 0.9, 0.9))
General (F) ((3, 5, 5, 7; 1, 1),(4, 5, 5, 6; 0.9, 0.9))

Moderately good (MG) ((5, 7, 7, 9; 1, 1),(6, 7, 7, 8; 0.9, 0.9))
Good (G) ((7, 9, 9, 10; 1, 1),(8, 9, 9, 9.5; 0.9, 0.9))

Very good (VG) ((9, 10, 10, 10; 1, 1),(9.5, 10, 10, 10; 0.9, 0.9))

Step 2: Set the experts’ interval type-2 fuzzy number rating matrices using geometric
averaging:

X̃ij = [ ˜̃X1
⊗ · · · ⊗ ˜̃Xn

]
1/n

(23)

Step 3: Normalize X̃ij to obtain the normalized matrix
−
X = (rij)m×n.

rij =
xij√

∑n
i=1 x2

ij

, i = 1, 2, . . . , m, j = 1, 2, . . . , n (24)

Step 4: Construct the weighted normalization matrix Z = (Zij)m×n.

Zij = wjrij (25)

where wj is the weight of indicator j.
Step 5: Determine the positive and negative ideal solutions.
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˜̃X+
= ( ˜̃X+

1 , ˜̃X+

2 , · · · , ˜̃X+

n ) = (max( ˜̃X+

11, ˜̃X+

21, · · · ˜̃X+

m1), max( ˜̃X+

12, ˜̃X+

22, · · · ˜̃X+

m2), · · ·max( ˜̃X+

1n, ˜̃X+

2n, · · · ˜̃X+

mn))

˜̃X− = ( ˜̃X−1 , ˜̃X−2 , · · · , ˜̃X−n ) = (min( ˜̃X−11, ˜̃X−21, · · · ˜̃X−m1), max( ˜̃X−12, ˜̃X−22, · · · ˜̃X−m2), · · ·max( ˜̃X−1n, ˜̃X−2n, · · · ˜̃X−mn)) (26)

Step 6: Based on the formula for the distance between trapezoidal interval type-2
fuzzy sets, integrated prospect theory, and TOPSIS calculate the distance between each
indicator and the positive and negative ideal solutions, expressed as:

When ∆xi > 0,

d( ˜̃Aij,
˜̃Aj−) =

 1
12


4
∑

b=1
(aU

ijb − aU
j−b)

2 +
2
∑

b=1
(Hb(ÃU

i )− Hb(Ã−
U
))2

+
4
∑

b=1
(aL

ijb − aL
j−b)

2 +
2
∑

b=1
(Hb(ÃL

i )− Hb(Ã−
L
))2




α/2

When ∆xi < 0,

d( ˜̃Aij,
˜̃Aj+) = λ

 1
12


4
∑

b=1
(aU

ijb − aU
j+b)

2 +
2
∑

b=1
(Hb(ÃU

i )− Hb(Ã+U
))2

+
4
∑

b=1
(aL

ijb − aL
j+b)

2 +
2
∑

b=1
(Hb(ÃL

i )− Hb(Ã+L
))2




β/2

(27)

Step 7: Calculate the degree of closeness of each indicator value to the optimal ideal
solution

Ri =
D−i

D−i + D+
i

, i = 1, 2, . . . , m (28)

It can be seen that ˜̃Aij is a negative ideal solution when Ri = 0 and ˜̃Aij is a positive
ideal solution when Ri = 1.

Step 8: All decisions are ranked in terms of their closeness Ri. A higher value means
that they are closer to a positive ideal solution, which means a higher level of resilience in
this paper.

4. Case Study

Shaanxi is a province in which coal production ranks third in China and has a wide
range of products, basically covering all end products of the coal chemical industry, in-
cluding new coal-to-oil, coal-to-methanol, and coal-to-olefin, in addition to the traditional
ammonia and coking. Coal plays a pivotal role in the province’s economic development,
making Shaanxi Province an important energy and chemical base in China. Therefore, the
model constructed in this paper is applied to the evaluation of the industrial coal chain
and supply chain resilience in Shaanxi Province from 2018 to 2021, which has important
demonstration and reference significance. The experts in Shaanxi Province were invited to
offer guidance, and evaluate the resilience level of Shaanxi Province in recent years using
Type-2F-PT-TOPSIS, analyze the shortcomings factors affecting its industrial and supply
chain resilience level, and propose corresponding countermeasures. The technical roadmap
for this study is shown in Figure 3.
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4.1. Calculation of Weights of Resilience Evaluation Indicator

Four experts in the field of the coal industry in Shaanxi Province were invited for
this study. Among them, two are professors from research institutions specializing in
safety management in the coal industry; one is a government department commissioner,
and one is a corporate director of Shaanxi Coal and Chemical Industry Group Co. The
background, ideas, methodology, indicator design, and objectives related to this study were
first explained to the experts in the early stage, and then they were asked to make a two-by-
two comparison of the importance of resilience evaluation indicators of the coal industrial
chain and supply chain relative to the target layer based on their research or experience in
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the field. The secondary indicators under absorptive capacity were used as an example. As
shown in Table 4, a consistency test was conducted based on Equations (10) and (11).

Table 4. Comparison matrix of the importance of secondary indicators under absorptive capacity.

Absorptive Capacity B1 B2 B3

B1 E, E, E, E 1/VS, 1/VS, 1/FS, E 1/FS, E, 1/FS, 1/FS
B2 VS, FS, FS, E E, E, E, E E, 1/AS, E, 1/SS
B3 FS, E, FS, FS E, AS, E, SS E, E, E, E

The consistency test of each comparison matrix by Equations (10) and (11) shows that
their CRs are all less than 0.1. Thus, each comparison matrix passes the consistency test.

As shown in Tables 5–8, the fuzzy weights of different experts for the same indicators
are calculated according to Equations (12) and (13).

Table 5. Expert 1’s fuzzy weights for the evaluation of secondary indicators under the absorptive
capacity dimension.

Expert 1

B1 ((0.0738, 0.0748, 0.0833, 0.0922; 1, 1), (0.0739, 0.0752, 0.0819, 0.0900; 0.8, 0.8))
B2 ((0.5024, 0.4938, 0.4803, 0.4729; 1, 1), (0.5005, 0.4924, 0.4817, 0.4745; 0.8, 0.8))
B3 ((0.4237, 0.4314, 0.4364, 0.4349; 1, 1), (0.4257, 0.4324, 0.4364, 0.4354; 0.8, 0.8))

Table 6. Expert 2’s fuzzy weights for the evaluation of secondary indicators under the absorptive
capacity dimension.

Expert 2

B1 ((0.1671, 0.1661, 0.1741, 0.1837; 1, 1), (0.1667, 0.1659, 0.1733, 0.1815; 0.8, 0.8))
B2 ((0.2216, 0.2303, 0.2511, 0.2650; 1, 1), (0.2237, 0.2329, 0.2492, 0.2624; 0.8, 0.8))
B3 ((0.6113, 0.6036, 0.5748, 0.5512; 1, 1), (0.6097, 0.6011, 0.5774, 0.5562; 0.8, 0.8))

Table 7. Expert 3’s fuzzy weights for the evaluation of secondary indicators under the absorptive
capacity dimension.

Expert 3

B1 ((0.0866, 0.0871, 0.0984, 0.1116; 1, 1), (0.0864, 0.0876, 0.0966, 0.1084; 0.8, 0.8))
B2 ((0.4567, 0.4565, 0.4508, 0.4442; 1, 1), (0.4568, 0.4562, 0.4517, 0.4458; 0.8, 0.8))
B3 ((0.4567, 0.4565, 0.4508, 0.4442; 1, 1), (0.4568, 0.4562, 0.4517, 0.4458; 0.8, 0.8))

Table 8. Expert 4’s fuzzy weights for the evaluation of secondary indicators under the absorptive
capacity dimension.

Expert 4

B1 ((0.2050, 0.1731, 0.1462, 0.1397; 1, 1), (0.1965, 0.1689, 0.1478, 0.1409; 0.8, 0.8))
B2 ((0.2293, 0.1981, 0.1842, 0.2014; 1, 1), (0.2206, 0.1944, 0.1834, 0.1954; 0.8, 0.8))
B3 ((0.5656, 0.6289, 0.6695, 0.6589; 1, 1), (0.5829, 0.6367, 0.6688, 0.6637; 0.8, 0.8))

Combining Tables 5–8 with Equations (14) and (15), the weights assigned to the four
experts in rating the secondary indicators under the absorptive capacity dimension are
calculated as follows:

w12 = 0.07, w22 = 0.45, w32 = 0.24, w42 = 0.24

By using the same method as above to calculate the primary indicator weights and
the remaining secondary indicator weights, the normal and defuzzified weights for each
indicator are obtained by combining step 9 and Equation (15) as shown in the Table 9.
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Table 9. Normal and defuzzified weights for the indicator system.

Indicator Defuzzified Weights Normal Weights

A 0.011 0.05
A1 0.033 0.14
A2 0.205 0.86
B 0.953 0.40

B1 0.035 0.15
B2 0.712 0.30
B3 0.132 0.55
C 0.105 0.44
C1 0.131 0.55
C2 0.026 0.11
C3 0.055 0.23
C4 0.026 0.11
D 0.026 0.11

D1 0.117 0.49
D2 0.016 0.07
D3 0.046 0.20
D4 0.058 0.25

Then the secondary indicator global weights are obtained by multiplying the primary
indicator weights and its secondary indicator weights as shown in the Table 10.

Table 10. Global weights of the indicator system.

Global Weights

A 0.05
A1 0.14 0.01
A2 0.86 0.04
B 0.40

B1 0.15 0.06
B2 0.30 0.12
B3 0.55 0.22
C 0.44
C1 0.55 0.24
C2 0.11 0.05
C3 0.23 0.10
C4 0.11 0.05
D 0.11

D1 0.49 0.05
D2 0.07 0.01
D3 0.20 0.02
D4 0.25 0.03

4.2. Calculation of Resilience Level of Coal Industrial Chain and Supply Chain in Shaanxi Province

We invited four more experienced executives and employee representatives from
enterprises at the key nodes to evaluate the resilience level of Shaanxi’s coal industrial
chain and supply chain in recent years based on their historical data and work experience
as shown in the Tables 11–14.
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Table 11. Resilience rating scale of Shaanxi Province coal industrial chain and supply chain (2018).

Expert
2018

A1 A2 B1 B2 B3 C1 C2 C3 C4 D1 D2 D3 D4

K1 F G F F MG F MG MG G F MG F F
K2 G MG MG G MG F F G G F G F F
K3 MG F MG G MG F F MG VG MP G F MP
K4 F MG F MG G MP F G MG F VG F MP

Table 12. Resilience rating scale of Shaanxi Province coal industrial chain and supply chain (2019).

Expert
2019

A1 A2 B1 B2 B3 C1 C2 C3 C4 D1 D2 D3 D4

K1 F MG MG F MG MG F G MG F G F F
K2 MG MG G G MG F F G F F G F F
K3 MG MG F G G F MG G MG MP VG F MP
K4 F F F VG VG MP F MG G F G F MP

Table 13. Resilience rating scale of Shaanxi Province coal industrial chain and supply chain (2020).

Expert
2020

A1 A2 B1 B2 B3 C1 C2 C3 C4 D1 D2 D3 D4

K1 MG MG MP MG MG F MG VG F F MG F MG
K2 MG MG MG F F MG MP G F MG F MG MG
K3 MP F MP F MG G F MG MG MG MG MG F
K4 F F F MP MG F F MG MG F F MG MG

Table 14. Resilience rating scale of Shaanxi Province coal industrial chain and supply chain (2021).

Expert
2021

A1 A2 B1 B2 B3 C1 C2 C3 C4 D1 D2 D3 D4

K1 MG G MP F MG MG MG MG F MG G G MG
K2 G MG F MG G MG MG G MP MG F MG MG
K3 F MG MG MP G G MG G F F MG MG F
K4 MG F MG F VG G F VG F MG G G MG

From Equations (23)–(25), using the geometric mean method to aggregate and stan-
dardize the expert rating scale, we can obtain results as shown in the Tables 15–18.

Table 15. Expert rating aggregation form (2018).

2018

A1 ((0.0042, 0.0063, 0.0063, 0.0081; 1, 1), (0.0053, 0.0063, 0.0063, 0.0072; 0.9, 0.9))
A2 ((0.0191, 0.0274, 0.0274, 0.0347; 1, 1), (0.0233, 0.0274, 0.0274, 0.0311; 0.9, 0.9))
B1 ((0.0232, 0.0355, 0.0355, 0.0476; 1, 1), (0.0294, 0.0355, 0.0355, 0.0416; 0.9, 0.9))
B2 ((0.0625, 0.0876, 0.0876, 0.1069; 1, 1), (0.0751, 0.0876, 0.0876, 0.0974; 0.9, 0.9))
B3 ((0.1197, 0.1640, 0.1640, 0.2033; 1, 1), (0.1418, 0.1640, 0.1640, 0.1837; 0.9, 0.9))
C1 ((0.0547, 0.1056, 0.1056, 0.1544; 1, 1), (0.0807, 0.1056, 0.1056, 0.1301; 0.9, 0.9))
C2 ((0.0170, 0.0272, 0.0272, 0.0373; 1, 1), (0.0221, 0.0272, 0.0272, 0.0322; 0.9, 0.9))
C3 ((0.0592, 0.0794, 0.0794, 0.0949; 1, 1), (0.0693, 0.0794, 0.0794, 0.0872; 0.9, 0.9))
C4 ((0.0343, 0.0434, 0.0434, 0.0487; 1, 1), (0.0389, 0.0434, 0.0434, 0.0461; 0.9, 0.9))
D1 ((0.0114, 0.0220, 0.0220, 0.0322; 1, 1), (0.0168, 0.0220, 0.0220, 0.0271; 0.9, 0.9))
D2 ((0.0069, 0.0087, 0.0087, 0.0097; 1, 1), (0.0078, 0.0087, 0.0087, 0.0092; 0.9, 0.9))
D3 ((0.0060, 0.0100, 0.0100, 0.0140; 1, 1), (0.0080, 0.0100, 0.0100, 0.0120; 0.9, 0.9))
D4 ((0.0052, 0.0116, 0.0116, 0.0177; 1, 1), (0.0085, 0.0116, 0.0116, 0.0147; 0.9, 0.9))
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Table 16. Expert rating aggregation form (2019).

2019

A1 ((0.0039, 0.0059, 0.0059, 0.0079; 1, 1), (0.0049, 0.0059, 0.0059, 0.0069; 0.9, 0.9))
A2 ((0.0176, 0.0257, 0.0257, 0.0338; 1, 1), (0.0217, 0.0257, 0.0257, 0.0298; 0.9, 0.9))
B1 ((0.0253, 0.0378, 0.0378, 0.0489; 1, 1), (0.0316, 0.0378, 0.0378, 0.0434; 0.9, 0.9))
B2 ((0.0724, 0.0957, 0.0957, 0.1098; 1, 1), (0.0843, 0.0957, 0.0957, 0.1029; 0.9, 0.9))
B3 ((0.1386, 0.1793, 0.1793, 0.2087; 1, 1), (0.1591, 0.1793, 0.1793, 0.1943; 0.9, 0.9))
C1 ((0.0622, 0.1149, 0.1149, 0.1645; 1, 1), (0.0893, 0.1149, 0.1149, 0.1398; 0.9, 0.9))
C2 ((0.0170, 0.0272, 0.0272, 0.0373; 1, 1), (0.0221, 0.0272, 0.0272, 0.0322; 0.9, 0.9))
C3 ((0.0644, 0.0845, 0.0845, 0.0974; 1, 1), (0.0744, 0.0845, 0.0845, 0.0910; 0.9, 0.9))
C4 ((0.0239, 0.0343, 0.0343, 0.0434; 1, 1), (0.0291, 0.0343, 0.0343, 0.0389; 0.9, 0.9))
D1 ((0.0114, 0.0220, 0.0220, 0.0322; 1, 1), (0.0168, 0.0220, 0.0220, 0.0271; 0.9, 0.9))
D2 ((0.0075, 0.0092, 0.0092, 0.0100; 1, 1), (0.0084, 0.0092, 0.0092, 0.0096; 0.9, 0.9))
D3 ((0.0060, 0.0100, 0.0100, 0.0140; 1, 1), (0.0080, 0.0100, 0.0100, 0.0120; 0.9, 0.9))
D4 ((0.0052, 0.0116, 0.0116, 0.0177; 1, 1), (0.0085, 0.0116, 0.0116, 0.0147; 0.9, 0.9))

Table 17. Expert rating aggregation form (2020).

2020

A1 ((0.0029, 0.0052, 0.0052, 0.0073; 1, 1), (0.0041, 0.0052, 0.0052, 0.0063; 0.9, 0.9))
A2 ((0.0155, 0.0237, 0.0237, 0.0317; 1, 1), (0.0196, 0.0237, 0.0237, 0.0277; 0.9, 0.9))
B1 ((0.0118, 0.0253, 0.0253, 0.0378; 1, 1), (0.0188, 0.0253, 0.0253, 0.0316; 0.9, 0.9))
B2 ((0.0311, 0.0574, 0.0574, 0.0822; 1, 1), (0.0447, 0.0574, 0.0574, 0.0699; 0.9, 0.9))
B3 ((0.0968, 0.1416, 0.1416, 0.1859; 1, 1), (0.1193, 0.1416, 0.1416, 0.1638; 0.9, 0.9))
C1 ((0.1011, 0.1512, 0.1512, 0.1956; 1, 1), (0.1263, 0.1512, 0.1512, 0.1736; 0.9, 0.9))
C2 ((0.0130, 0.0239, 0.0239, 0.0343; 1, 1), (0.0186, 0.0239, 0.0239, 0.0291; 0.9, 0.9))
C3 ((0.0630, 0.0815, 0.0815, 0.0949; 1, 1), (0.0723, 0.0815, 0.0815, 0.0883; 0.9, 0.9))
C4 ((0.0194, 0.0296, 0.0296, 0.0397; 1, 1), (0.0245, 0.0296, 0.0296, 0.0346; 0.9, 0.9))
D1 ((0.0194, 0.0296, 0.0296, 0.0397; 1, 1), (0.0245, 0.0296, 0.0296, 0.0346; 0.9, 0.9))
D2 ((0.0039, 0.0059, 0.0059, 0.0079; 1, 1), (0.0049, 0.0059, 0.0059, 0.0069; 0.9, 0.9))
D3 ((0.0088, 0.0129, 0.0129, 0.0169; 1, 1), (0.0108, 0.0129, 0.0129, 0.0149; 0.9, 0.9))
D4 ((0.0132, 0.0193, 0.0193, 0.0254; 1, 1), (0.0163, 0.0193, 0.0193, 0.0223; 0.9, 0.9))

Table 18. Expert rating aggregation form (2021).

2021

A1 ((0.0048, 0.0069, 0.0069, 0.0087; 1, 1), (0.0058, 0.0069, 0.0069, 0.0078; 0.9, 0.9))
A2 ((0.0191, 0.0274, 0.0274, 0.0347; 1, 1), (0.0233, 0.0274, 0.0274, 0.0311; 0.9, 0.9))
B1 ((0.0177, 0.0312, 0.0312, 0.0438; 1, 1), (0.0247, 0.0312, 0.0312, 0.0376; 0.9, 0.9))
B2 ((0.0311, 0.0574, 0.0574, 0.0822; 1, 1), (0.0447, 0.0574, 0.0574, 0.0699; 0.9, 0.9))
B3 ((0.1508, 0.1909, 0.1909, 0.2143; 1, 1), (0.1710, 0.1909, 0.1909, 0.2028; 0.9, 0.9))
C1 ((0.1420, 0.1905, 0.1905, 0.2277; 1, 1), (0.1663, 0.1905, 0.1905, 0.2092; 0.9, 0.9))
C2 ((0.0220, 0.0322, 0.0322, 0.0423; 1, 1), (0.0271, 0.0322, 0.0322, 0.0372; 0.9, 0.9))
C3 ((0.0685, 0.0868, 0.0868, 0.0974; 1, 1), (0.0777, 0.0868, 0.0868, 0.0922; 0.9, 0.9))
C4 ((0.0000, 0.0147, 0.0147, 0.0260; 1, 1), (0.0100, 0.0147, 0.0147, 0.0206; 0.9, 0.9))
D1 ((0.0220, 0.0323, 0.0322, 0.0423; 1, 1), (0.0271, 0.0322, 0.0322, 0.0372; 0.9, 0.9))
D2 ((0.0052, 0.0073, 0.0073, 0.0089; 1, 1), (0.0063, 0.0073, 0.0073, 0.0081; 0.9, 0.9))
D3 ((0.0118, 0.0159, 0.0159, 0.0190; 1, 1), (0.0139, 0.0159, 0.0159, 0.0174; 0.9, 0.9))
D4 ((0.0132, 0.0193, 0.0193, 0.0254; 1, 1), (0.0163, 0.0193, 0.0193, 0.0223; 0.9, 0.9))

The positive and negative ideal solutions corresponding to each evaluation indicator
are determined according to Equation (26), as shown in Table 19 below.
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Table 19. Positive and negative ideal solutions for each indicator.

Indicator Positive Ideal Solution Negative Ideal Solution

Ã1 Ã1,21 Ã1,20

Ã2 Ã2,21 Ã2,20

B̃1 B̃1,19 B̃1,20

B̃2 B̃2,19 B̃2,21

B̃3 B̃3,21 B̃3,20

C̃1 C̃1,21 C̃1,18

C̃2 C̃2,21 C̃2,20

C̃3 C̃3,21 C̃3,18

C̃4 C̃4,18 C̃4,21

D̃1 D̃1,21 D̃1,18

D̃2 D̃2,19 D̃2,20

D̃3 D̃3,21 D̃3,18

D̃4 D̃4,20 D̃4,18

The distance between each indicator and the positive and negative ideal solution is
calculated from Equation (27), as shown in Table 20 below.

Table 20. Distance of corresponding indicators from positive and negative ideal solutions during
2018–2021.

2018 (+; −) 2019 (+; −) 2020 (+; −) 2021 (+; −)

A1 0.0026; 0.0021 0.0039; 0.0015 0.0066; 0.0000 0.0000; 0.0030
A2 0.0000; 0.0059 0.0063; 0.0036 0.0133; 0.0000 0.0000; 0.0059
B1 0.0083; 0.0150 0.0000; 0.0176 0.0396; 0.0000 0.0224; 0.0092
B2 0.0263; 0.0375 0.0000; 0.0460 0.1036; 0.0000 0.1036; 0.0000
B3 0.0745; 0.0287 0.0350; 0.0451 0.1276; 0.0000 0.0000; 0.0567
C1 0.2111; 0.0000 0.1907; 0.1343 0.1067; 0.0545 0.0000; 0.0938
C2 0.0177; 0.0056 0.0177; 0.0056 0.0279; 0.0000 0.0000; 0.0124
C3 0.0244; 0.0000 0.0096; 0.0076 0.0175; 0.0040 0.0000; 0.0108
C4 0.0000; 0.0364 0.0291; 0.0264 0.0419; 0.0210 0.0820; 0.0000
D1 0.0334; 0.0000 0.0334; 0.0000 0.0100; 0.0114 0.0000; 0.0148
D2 0.0024; 0.0045 0.0000; 0.0053 0.0119; 0.0000 0.0075; 0.0024
D3 0.0200; 0.0000 0.0200; 0.0000 0.0108; 0.0048 0.0000; 0.0089
D4 0.0261; 0.0000 0.0261; 0.0000 0.0000; 0.0116 0.0000; 0.0116

The closeness Ri of the resilience level Ei of the industrial coal chain and supply
chain in Shaanxi Province to the positive ideal solution A+

i in 2018–2021 is calculated by
Equations (9) and (24).

R18 = 0.21, R19 = 0.27, R20 = 0.23, R21 = 0.46 (29)

In summary, in terms of the resilience level of the industrial coal chain and supply
chain in Shaanxi Province from 2018–2021, it can be seen that E21 > E19 > E20 > E18.

5. Results Analysis and Countermeasures
5.1. Results Analysis

This paper uses the relative entropy of hamming distance based on interval type-2
fuzzy set to obtain the weights of decision makers with comprehensive subjective and
objective assignments and combines Prospect Theory and TOPSIS to evaluate the resilience
level of the coal industrial chain and supply chain in Shaanxi Province. Because of the
combination of multiple theoretical calculation methods, the overall values of the resilience
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evaluation results derived from this paper are small. The results still show that the resilience
level was best in 2021 and worst in 2018. Detailed analyses are presented below.

Despite the large size of the coal industrial chain and supply chain in Shaanxi Province
and the completeness of the industrial system, it is still inevitably affected by the uncertainty
and complexity of changes from different parties. It is evident from the evaluation results
that as the level of technological development in the coal industry continues to rise, the level
of industrial technology and technological innovation used to cope with risk disruptions is
relatively low in 2018 but high in 2021. As a result of some of the ‘stranglehold’ technologies
in coal equipment manufacturing, the supply and production capacity of the upstream
industries in the supply chain is limited, resulting in the inability to function as an effective
emergency coal reserve mechanism.

In 2019, resilience maintained a relatively stable level. This is mainly because the
COVID-19 pandemic appeared at the end of the year, and the initial ripple effect was small.
As a result, the awareness of upstream and downstream companies in the industrial chain
and supply chain to take precautions was weak. For example, there was no significant
replenishment across the region after de-stocking. As the COVID-19 pandemic spread
until 2020, the COVID-19 pandemic broke out, and the coal supply in Shaanxi exceeded
demand. Faced with the sudden disruption of the epidemic, previous conventional risk
management measures were not able to respond effectively to this unexpected event. In
addition, Shaanxi Province is a major coal-producing province, but as most of the regional
coal supply is based on motor transport, the initial epidemic prevention resulted in low
availability of motor fleets. Moreover, the logistics restrictions varied across the regions,
resulting in low overall logistics efficiency, most of which were also affected by the epidemic
leading to poor transportation and thus insufficient power to guarantee the emergency
reserve capacity for the logistics dispatch of coal raw materials and products, ultimately
leading to a low level of overall resilience of the coal industrial chain and supply chain in
Shaanxi Province in 2020.

The evaluation results for 2021 show that the overall resilience level of the coal indus-
trial chain and supply chain in Shaanxi Province is good. This is mainly due to the fact that
in the post-epidemic period, various stakeholders in the industrial and supply chain have
strengthened their cooperation, built up their preparedness and recovery capabilities, and
enhanced their systemic risk management in order to reverse the chaotic situation caused
by the initial phase of the epidemic as soon as possible. A standing reserve mechanism
was also actively established in many locations to enable an effective response to sudden
supply disruptions, severe shortages, and other energy emergencies. However, even with
many aspects heading in the positive direction, there are still weaknesses that need to be
addressed. In terms of coal reserves in Shaanxi Province, there are a large number of coal
resources, but in the current market situation where coal prices are high, and demand
exceeds supply, many mines are only interested in mining from the middle in order to
“convert” coal resources into cash as soon as possible, regardless of how thick the coal seam
is, which ultimately causes some minerals to be unable to be mined back and reserves to be
greatly reduced.

5.2. Countermeasures

Based on the evaluation results of the coal industry and supply chain resilience level
in Shaanxi Province, this paper proposes strategies to improve the resilience level.

(1) In the context of the current energy security and carbon neutrality constraints, the
coal industry and supply chain should actively strengthen the establishment of a
collaborative innovation mechanism for a clean and low-carbon coal industrial and
supply chain. Key nodal enterprises should increase investment in intelligent and
green coal technology innovation, actively undertake core technology research and
development, and precisely conduct emergency regulation in order to effectively play
the role of coal as a bailout.
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(2) With the increasing number of uncertain risk factors, only by establishing a sound risk
warning mechanism for the coal industrial chain and supply chain can the entire staff
be better motivated to form a strong working force to effectively integrate the coal
supply network. This can be achieved through training to strengthen the operational
capabilities of staff, enhancing their proficiency in emergency operation facilities, and
improving the emergency responsibility system.

(3) Based on the overall operation of the coal industry, “ensure stable supplies and prices”
is an important factor influencing the level of development of the coal product market.
Therefore, it is necessary to actively organize and promote large coal enterprises
and power companies, and other coal-consuming enterprises to sign coal medium
and long collaboration contracts, strengthen the supervision of contract performance,
and strictly implement the “benchmark price + floating price” for pricing to build a
win-win market mechanism of upstream and downstream cooperation.

(4) In view of the decreasing recoverable coal reserves year by year, regional governments
should strengthen the supervision and management of coal resources production,
actively train employees of key nodal enterprises in the development of mineral
resources technology, establish targeted policies to regulate the operational behavior
of employees, and organize monitoring visits to upstream and downstream enterprises
irregularly to understand the latest developments in the industrial chain and supply
chain. Meanwhile, attention should be paid to the feasibility of emergency facilities
and emergency behavior.

6. Conclusions

In the context of the COVID-19 pandemic, geopolitical conflicts, and green low-carbon
transformation, this study effectively investigates the resilience level of the coal industrial
chain and supply chain, aiming to guide the enterprises involved in the chain to identify
the vulnerable parts of the organization in time, so that they can formulate and adjust their
strategies to enhance the resilience level of the industry. Specifically,

(1) A coal industrial chain and supply chain resilience evaluation indicator system is
constructed based on the four representations of resilience, namely preparedness,
absorptive capacity, recovery capacity, and adaptability, which includes four primary
indicators and 13 secondary indicators;

(2) Considering the complexity, ambiguity, and uncertainty of the decision-making prob-
lems as well as the different individual capabilities and behavioral preferences of
decision-makers, the relative entropy method based on hamming distance measure-
ment is first applied to obtain the weights of decision-makers with comprehensive
subjective and objective assignments, and then the interval type-2 fuzzy-prospect
theory-TOPSIS resilience evaluation model is further constructed. This comprehensive
evaluation method takes advantage of the cognitive differences of multiple subjects to
evaluate the objectives in an integrated, scientific, and effective manner;

(3) Taking the Shaanxi Province, a typical mineral-resource-endowed province in China,
as an example, the evaluation results are in line with its actual situation of it. It
also proves that the calculation method used in this paper is an effective method for
evaluating the resilience of the coal industrial chain and supply chain. In addition, the
research results of this paper can provide effective theoretical support and a decision-
making basis for the sustainable development of the industrial coal chain and supply
chain under momentous changes in today’s environment and can also provide new
ideas for the sustainable development of coal supply by the relevant enterprises in
the industrial and supply chain;

(4) This paper constructs an industrial coal chain and supply chain resilience evaluation
indicator system consisting of qualitative indicators. Although these qualitative
indicators are reasonable and necessary, and the relative entropy method based
on hamming distance and the prospect theory are introduced to obtain objective
evaluation results, it is still impossible to completely avoid the bias caused by factors
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such as experts’ perceptions and personal preferences on the final results. Therefore,
in further research, other quantitative indicators should be considered in order to
improve the resilience evaluation indicator system.
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