Design, Development, and Performance Evaluation of a New Photovoltaic-Thermal (PVT) Air Collector: From Lab Testing to Field Measurements
Abstract
:1. Introduction
2. Material & Methods
2.1. Prototype Description
2.2. Lab Testing
2.3. Pilot Plant Description
2.4. Measure of Uncertainty
2.5. Mathematical Considerations
3. Results & Discussion
3.1. Determination of Relevant Operational Parameters
3.2. Lab Testing
3.3. Field Measurement
3.3.1. General Performance on Annual Basis
3.3.2. Analysis of Specific Days
4. Conclusions & Future Lines
- The analysis of the operation in controlled conditions showed an almost constant electrical performance, ranged between 15–19%, and a thermal performance that changes a lot, ranged between 15–52% for the individual panel and 11–35% for the 2.5-panel system.
- The thermal side proved to be highly dependent on the operational parameters of the installation, mainly on the internal flow rate and the temperature gap between the inlet and the back PV laminate, and to a lesser extent on the external wind speed. A minimum difference of 25 °C between the air inlet and PV temperature seems to be determinant for an acceptable thermal performance.
- For the individual panel, the thermal/electrical performance ratio of 1:1 is obtained at 50 m3/h and 2:1 at 100 m3/h. For the configuration of 2.5 panels, the thermal/electrical performance ratio of 1:1 is obtained at 80 m3/h and 1.5:1 at 125 m3/h.
- Regarding the pilot plant and considering the one-year operation, thermal and electrical efficiencies ranged between 16–20% (fluid flow around 92.5 m3/h) with no significant differences between the seasons. The energy production was higher during the summer months due to the increase in the solar resource, with a more pronounced difference in the thermal rather than electrical side.
- The current configuration of 2.5 panels penalizes the thermal efficiency with regard to the individual panel, but increases the output temperature of the installation, a key factor for maximizing the energy use. Thus, the selection of several panels in series should be further analyzed according to the particular application.
5. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
AC | Alternating current |
Adj. R2 | Adjusted R square |
APV | Aperture area [m2] |
BIPVT | Building-integrated photovoltaic-thermal |
cf | Specific heat of air [J/Kg K] |
DC | Direct current |
EEcc | Electrical energy in DC [kWh] |
ETth | Thermal energy [kWh] |
G | Solar irradiance on PVT plane [W/m2] |
H | Solar radiation on PVT plane |
I | Current [A] |
Imppt | Current circulating through the panel at maximum production stage [A] |
Mass flow rate [Kg/s] | |
Volumetric flow rate [m3/s] | |
, Qdot | Thermal power [W] |
PV | Photovoltaic |
PVT | Photovoltaic-Thermal |
SE | Standard error of regression |
STC | Standard Test Conditions |
Ta | Environmental temperature [°C] |
TIN | Inlet air temperature in a panel [°C] |
Tm | Average fluid temperature inside the panel [°C] |
TPV | PV laminate temperature [°C] |
TOUT | Outlet air temperature in a panel [°C] |
V | Voltage [V] |
Vmppt | Voltage circulating through the panel at maximum production stage [V] |
Wp | Electrical power [W] |
WSP | Average wind speed [m/s] |
ηth | Thermal efficiency [ - ] |
ηPV | Electrical efficiency [ - ] |
αPV | Voltage temperature coefficient [%/°C] |
ρair | Air density [kg/m3] |
ΔT | Temperature gap between inlet and outlet of the panel [K] |
References
- IEA-SHC. Task 35—PV/Thermal Solar Systems. Available online: https://task35.iea-shc.org/ (accessed on 14 February 2022).
- IEA-SHC. Task 60—PVT Systems: Application of PVT Collectors. Available online: https://task60.iea-shc.org/ (accessed on 14 February 2022).
- Herez, A.; El Hage, H.; Lemenand, T.; Ramadan, M.; Khaled, M. Review on Photovoltaic/Thermal Hybrid Solar Collectors: Classifications, Applications and New Systems. Sol. Energy 2020, 207, 1321–1347. [Google Scholar] [CrossRef]
- Besheer, A.H.; Smyth, M.; Zacharopoulos, A.; Mondol, J.; Pugsley, A. Review on Recent Approaches for Hybrid PV/T Solar Technology. Int. J. Energy Res. 2016, 40, 2038–2053. [Google Scholar] [CrossRef]
- Shahsavar, A.; Ameri, M. Experimental Investigation and Modeling of a Direct-Coupled PV/T Air Collector. Sol. Energy 2010, 84, 1938–1958. [Google Scholar] [CrossRef]
- Prakash, O.; Kumar, A. Solar Greenhouse Drying: A Review. Renew. Sustain. Energy Rev. 2014, 29, 905–910. [Google Scholar] [CrossRef]
- Assoa, Y.B.; Sauzedde, F.; Boillot, B.; Boddaert, S. Development of a Building Integrated Solar Photovoltaic/Thermal Hybrid Drying System. Energy 2017, 128, 755–767. [Google Scholar] [CrossRef]
- Hegazy, A.A. Comparative Study of the Performances of Four Photovoltaic/Thermal Solar Air Collectors. Energy Convers. Manag. 2000, 41, 861–881. [Google Scholar] [CrossRef]
- Nadda, R.; Kumar, A.; Maithani, R. Efficiency Improvement of Solar Photovoltaic/Solar Air Collectors by Using Impingement Jets: A Review. Renew. Sustain. Energy Rev. 2018, 93, 331–353. [Google Scholar] [CrossRef]
- Jha, A.; Tripathy, P.P. Optimization of Process Parameters and Numerical Modeling of Heat and Mass Transfer during Simulated Solar Drying of Paddy. Comput. Electron. Agric. 2021, 187, 106215. [Google Scholar] [CrossRef]
- Fan, W.; Kokogiannakis, G.; Ma, Z. A Multi-Objective Design Optimisation Strategy for Hybrid Photovoltaic Thermal Collector (PVT)-Solar Air Heater (SAH) Systems with Fins. Sol. Energy 2018, 163, 315–328. [Google Scholar] [CrossRef]
- Abene, A.; Dubois, V.; Le Ray, M.; Ouagued, A. Study of a Solar Air Flat Plate Collector: Use of Obstacles and Application for the Drying of Grape. J. Food Eng. 2004, 65, 15–22. [Google Scholar] [CrossRef]
- Fan, W.; Kokogiannakis, G.; Ma, Z.; Cooper, P. Development of a Dynamic Model for a Hybrid Photovoltaic Thermal Collector—Solar Air Heater with Fins. Renew. Energy 2017, 101, 816–834. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zhang, G. Performance Improvement of Solar Air Collector Based on Airflow Reorganization: A Review. Appl. Therm. Eng. 2019, 155, 592–611. [Google Scholar] [CrossRef]
- Chaibi, Y.; El Rhafiki, T.; Simón-Allué, R.; Guedea, I.; Luaces, S.C.; Gajate, O.C.; Kousksou, T.; Zeraouli, Y. Air-Based Hybrid Photovoltaic/Thermal Systems: A Review. J. Clean. Prod. 2021, 295, 126211. [Google Scholar] [CrossRef]
- Amori, K.E.; Abd-AlRaheem, M.A. Field Study of Various Air Based Photovoltaic/Thermal Hybrid Solar Collectors. Renew. Energy 2014, 63, 402–414. [Google Scholar] [CrossRef]
- Özakın, A.N.; Kaya, F. Experimental Thermodynamic Analysis of Air-Based PVT System Using Fins in Different Materials: Optimization of Control Parameters by Taguchi Method and ANOVA. Sol. Energy 2020, 197, 199–211. [Google Scholar] [CrossRef]
- Kong, D.; Wang, Y.; Li, M.; Keovisar, V.; Huang, M.; Yu, Q. Experimental Study of Solar Photovoltaic/Thermal (PV/T) Air Collector Drying Performance. Sol. Energy 2020, 208, 978–989. [Google Scholar] [CrossRef]
- Saygin, H.; Nowzari, R.; Mirzaei, N.; Aldabbagh, L.B.Y. Performance Evaluation of a Modified PV/T Solar Collector: A Case Study in Design and Analysis of Experiment. Sol. Energy 2017, 141, 210–221. [Google Scholar] [CrossRef]
- Lamrani, B.; Draoui, A.; Kuznik, F. Thermal Performance and Environmental Assessment of a Hybrid Solar-Electrical Wood Dryer Integrated with Photovoltaic/Thermal Air Collector and Heat Recovery System. Sol. Energy 2021, 221, 60–74. [Google Scholar] [CrossRef]
- Aste, N.; Chiesa, G.; Verri, F. Design, Development and Performance Monitoring of a Photovoltaic-Thermal (PVT) Air Collector. Renew. Energy 2008, 33, 914–927. [Google Scholar] [CrossRef]
- Maghrabie, H.M.; Elsaid, K.; Sayed, E.T.; Abdelkareem, M.A.; Wilberforce, T.; Olabi, A.G. Building-Integrated Photovoltaic/Thermal (BIPVT) Systems: Applications and Challenges. Sustain. Energy Technol. Assess. 2021, 45, 101151. [Google Scholar] [CrossRef]
- Abdelrazik, A.S.; Shboul, B.; Elwardany, M.; Zohny, R.N.; Osama, A. The Recent Advancements in the Building Integrated Photovoltaic/Thermal (BIPV/T) Systems: An Updated Review. Renew. Sustain. Energy Rev. 2022, 170, 112988. [Google Scholar] [CrossRef]
- Rajoria, C.S.; Kumar, R.; Sharma, A.; Singh, D.; Suhag, S. Development of Flat-Plate Building Integrated Photovoltaic/Thermal (BIPV/T) System: A Review. Mater. Today Proc. 2020, 46, 5342–5352. [Google Scholar] [CrossRef]
- Fudholi, A.; Sopian, K. A Review of Solar Air Flat Plate Collector for Drying Application. Renew. Sustain. Energy Rev. 2019, 102, 333–345. [Google Scholar] [CrossRef]
- Pirasteh, G.; Saidur, R.; Rahman, S.M.A.; Rahim, N.A. A Review on Development of Solar Drying Applications. Renew. Sustain. Energy Rev. 2014, 31, 133–148. [Google Scholar] [CrossRef]
- Singh, P.; Shrivastava, V.; Kumar, A. Recent Developments in Greenhouse Solar Drying: A Review. Renew. Sustain. Energy Rev. 2018, 82, 3250–3262. [Google Scholar] [CrossRef]
- Srinivasan, G.; Rabha, D.K.; Muthukumar, P. A Review on Solar Dryers Integrated with Thermal Energy Storage Units for Drying Agricultural and Food Products. Sol. Energy 2021, 229, 22–38. [Google Scholar] [CrossRef]
- Mhd Safri, N.A.; Zainuddin, Z.; Mohd Azmi, M.S.; Zulkifle, I.; Fudholi, A.; Ruslan, M.H.; Sopian, K. Current Status of Solar-Assisted Greenhouse Drying Systems for Drying Industry (Food Materials and Agricultural Crops). Trends Food Sci. Technol. 2021, 114, 633–657. [Google Scholar] [CrossRef]
- Mohana, Y.; Mohanapriya, R.; Anukiruthika, T.; Yoha, K.S.; Moses, J.A.; Anandharamakrishnan, C. Solar Dryers for Food Applications: Concepts, Designs, and Recent Advances. Sol. Energy 2020, 208, 321–344. [Google Scholar] [CrossRef]
- Sivaram, P.M.; Mande, A.B.; Premalatha, M.; Arunagiri, A. Investigation on a Building-Integrated Passive Solar Energy Technology for Air Ventilation, Clean Water and Power. Energy Convers. Manag. 2020, 211, 112739. [Google Scholar] [CrossRef]
- Kumar Verma, S.; Kumar, R.; Barthwal, M.; Rakshit, D. A Review on Futuristic Aspects of Hybrid Photo-Voltaic Thermal Systems (PV/T) in Solar Energy Utilization: Engineering and Technological Approaches. Sustain. Energy Technol. Assess. 2022, 53, 102463. [Google Scholar] [CrossRef]
- Brahim, T.; Jemni, A. Economical Assessment and Applications of Photovoltaic/Thermal Hybrid Solar Technology: A Review. Sol. Energy 2017, 153, 540–561. [Google Scholar] [CrossRef]
- Kulkarni, K.; Afzal, A.; Kim, K.Y. Multi-Objective Optimization of Solar Air Heater with Obstacles on Absorber Plate. Sol. Energy 2015, 114, 364–377. [Google Scholar] [CrossRef]
- Handoyo, E.A.; Ichsani, D.; Prabowo; Sutardi. Numerical Studies on the Effect of Delta-Shaped Obstacles’ Spacing on the Heat Transfer and Pressure Drop in v-Corrugated Channel of Solar Air Heater. Sol. Energy 2016, 131, 47–60. [Google Scholar] [CrossRef] [Green Version]
- ISO 9806; Solar Energy—Solar Thermal Collectors—Test Methods. ISO: Geneva, Switzerland, 2017; p. 130.
- Pang, W.; Duck, B.C.; Fell, C.J.; Wilson, G.J.; Zhao, W.; Yan, H. Influence of Multiple Factors on Performance of Photovoltaic-Thermal Modules. Sol. Energy 2021, 214, 642–654. [Google Scholar] [CrossRef]
- Sellami, R.; Amirat, M.; Mahrane, A.; Slimani, M.E.A.; Arbane, A.; Chekrouni, R. Experimental and Numerical Study of a PV/Thermal Collector Equipped with a PV-Assisted Air Circulation System: Configuration Suitable for Building Integration. Energy Build. 2019, 190, 216–234. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Y.; Li, M.; Keovisar, V.; Li, X.; Kong, D.; Yu, Q. Comparative Study on Energy and Exergy Properties of Solar Photovoltaic/Thermal Air Collector Based on Amorphous Silicon Cells. Appl. Therm. Eng. 2021, 185, 116376. [Google Scholar] [CrossRef]
- Rounis, E.D.; Athienitis, A.K.; Stathopoulos, T. BIPV/T Curtain Wall Systems: Design, Development and Testing. J. Build. Eng. 2021, 42, 103019. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.; Kim, J. Experimental Performance of a Photovoltaic-Thermal Air Collector. Energy Procedia 2014, 48, 888–894. [Google Scholar] [CrossRef] [Green Version]
- Guarracino, I.; Freeman, J.; Ramos, A.; Kalogirou, S.A.; Ekins-Daukes, N.J.; Markides, C.N. Systematic Testing of Hybrid PV-Thermal (PVT) Solar Collectors in Steady-State and Dynamic Outdoor Conditions. Appl. Energy 2019, 240, 1014–1030. [Google Scholar] [CrossRef]
- Simón-Allué, R.; Guedea, I.; Coca-Ortegón, A.; Villén, R.; Brun, G. Performance Evaluation of PVT Panel with Phase Change Material: Experimental Study in Lab Testing and Field Measurement. Sol. Energy 2022, 241, 738–751. [Google Scholar] [CrossRef]
- Bambrook, S.M.; Sproul, A.B. Maximising the Energy Output of a PVT Air System. Sol. Energy 2012, 86, 1857–1871. [Google Scholar] [CrossRef]
- Pang, W.; Cui, Y.; Zhang, Q.; Wilson, G.J.; Yan, H. A Comparative Analysis on Performances of Flat Plate Photovoltaic/Thermal Collectors in View of Operating Media, Structural Designs, and Climate Conditions. Renew. Sustain. Energy Rev. 2020, 119, 109599. [Google Scholar] [CrossRef]
- Yu, G.; Yang, H.; Yan, Z.; Kyeredey Ansah, M. A Review of Designs and Performance of Façade-Based Building Integrated Photovoltaic-Thermal (BIPVT) Systems. Appl. Therm. Eng. 2020, 182, 116081. [Google Scholar] [CrossRef]
- Chandrasekar, M.; Senthilkumar, T. Five Decades of Evolution of Solar Photovoltaic Thermal (PVT) Technology—A Critical Insight on Review Articles. J. Clean. Prod. 2021, 322, 128997. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.A.; Sopian, K. Comparison and Evaluation of Solar Photovoltaic Thermal System with Hybrid Collector: An Experimental Study. Therm. Sci. Eng. Prog. 2021, 22, 100845. [Google Scholar] [CrossRef]
- Hussain, F.; Othman, M.Y.H.; Sopian, K.; Yatim, B.; Ruslan, H.; Othman, H. Design Development and Performance Evaluation of Photovoltaic/Thermal (PV/T) Air Base Solar Collector. Renew. Sustain. Energy Rev. 2013, 25, 431–441. [Google Scholar] [CrossRef]
PVT Module Characteristics | Value | Units |
---|---|---|
PVT type | unglazed | - |
Dimensions | 1.984 × 999 | mm × mm |
Gross area, | 1.98 | m2 |
Nº cells/PV cell type | 72/mono-Si | - |
Nominal power (STC) | 380 | W |
Nominal efficiency (STC) | 19.0 | % |
Voltage at MPP, | 40.26 | V |
Current at MPP, | 9.44 | A |
Temperature coefficient of power | −0.39 | %/°C |
Magnitude | Sensor Model | Amount | Range | Accuracy |
---|---|---|---|---|
Temperature | Pt100, several brands | 10 | −50–400 °C | ±0.05 °C |
Pressure | Gems, 526610CLBACT1C-RS | 1 | ±1000 Pa | ±1% |
Volumetric flow | Testo 405i | 1 | 0–30 m/s | 0.3 m/s ± 5 vm% |
Wind speed | Darrera, SKU: 3R FWS | 1 | 0.5–50 m/s | ±0.1 m/s |
Rel. Humidity | SEM160i RH | 1 | 0 to 100%RH | ±3% |
Irradiance | Pyranometer, LP PYRA 03 AC | 1 | 0–2000 W/m2 | 0.025 W/m2 |
Current | HT-RS-0, Herten SL | 2 | 0–10 V | ±0.5% |
Voltage | In-home sensor | 1 | - | - |
Magnitude | Unit | Absolute Error | xi | Relative Error |
---|---|---|---|---|
Temperature gap | °C | 0.100 | 30 | 0.33% |
Volumetric flow | m3/h | 13.52 | 150 | 9.01% |
Solar Irradiance | W/m2 | 1.000 | 800 | 0.13% |
Thermal power | W | 28 | 300 | 9.35% |
Thermal efficiency | % | 0.024 | 0.25 | 9.47% |
Electrical power | W | 2 | 280 | 0.66% |
Electrical efficiency | % | 0.001 | 0.177 | 0.79% |
Sign. F | Adj. R2 | SE | I0 | Ta | WSP | Tm | ||
---|---|---|---|---|---|---|---|---|
0.9387 | 0.9385 | 0.0174 | −0.36468 | −0.04705 | −0.00157 | 0.00304 | 0.04658 | |
0.9615 | 0.9615 | 0.0101 | −0.15990 | −0.01697 | −0.00321 | 0.00179 | 0.01605 | |
0.5320 | 0.5309 | 0.0042 | 0.21489 | −0.00028 | −0.00056 | 0.00000 | −0.00083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simón-Allué, R.; Villén, R.; Brun, G.; Lara, Y.; Guedea, I. Design, Development, and Performance Evaluation of a New Photovoltaic-Thermal (PVT) Air Collector: From Lab Testing to Field Measurements. Processes 2023, 11, 588. https://doi.org/10.3390/pr11020588
Simón-Allué R, Villén R, Brun G, Lara Y, Guedea I. Design, Development, and Performance Evaluation of a New Photovoltaic-Thermal (PVT) Air Collector: From Lab Testing to Field Measurements. Processes. 2023; 11(2):588. https://doi.org/10.3390/pr11020588
Chicago/Turabian StyleSimón-Allué, Raquel, Raúl Villén, Gonzalo Brun, Yolanda Lara, and Isabel Guedea. 2023. "Design, Development, and Performance Evaluation of a New Photovoltaic-Thermal (PVT) Air Collector: From Lab Testing to Field Measurements" Processes 11, no. 2: 588. https://doi.org/10.3390/pr11020588
APA StyleSimón-Allué, R., Villén, R., Brun, G., Lara, Y., & Guedea, I. (2023). Design, Development, and Performance Evaluation of a New Photovoltaic-Thermal (PVT) Air Collector: From Lab Testing to Field Measurements. Processes, 11(2), 588. https://doi.org/10.3390/pr11020588