Mannitol-Based Media and Static pH Are Efficient Conditions for Red Pigment Production from Monascus purpureus ATCC 36928 in Submerged Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Culture Media
2.2. Erlenmeyer and Benchtop Bioreactor Cultivations
2.3. Cell Biomass and Extracellular Red Pigment Production
2.4. Calculation of the Maximum Specific Growth Rate, Coefficient of Pigment Production by Biomass, and Productivity
2.5. Statistical Analysis
3. Results
3.1. Effects of Different Carbon Sources on Cellular Biomass Production by Monascus purpureus in Shaken Flasks
3.2. Cultivation in a Bioreactor Using Mannitol as the Single Carbon Source
3.3. Calculation of the Maximum Specific Growth Rate, Coefficient of Pigment Production by Biomass, and Productivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Downham, A.; Collins, P. Colouring our foods in the last and next millennium. Int. J. Food Sci. Technol. 2000, 35, 5–22. [Google Scholar] [CrossRef]
- Watson, D. Food Chemical Safety: Volume 2: Additives; Woodhead Publishing: Sawston, UK, 2002; Volume 2. [Google Scholar]
- Burrows, J.A. Palette of our palates: A brief history of food coloring and its regulation. Compr. Rev. Food Sci. Food Saf. 2009, 8, 394–408. [Google Scholar] [CrossRef]
- Mittal, J. Permissible synthetic food dyes in India. Resonance 2020, 25, 567–577. [Google Scholar] [CrossRef]
- McCann, D.; Barrett, A.; Cooper, A.; Crumpler, D.; Dalen, L.; Grimshaw, K.; Kitchin, E.; Lok, K.; Porteous, L.; Prince, E. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: A randomised, double-blinded, placebo-controlled trial. Lancet 2007, 370, 1560–1567. [Google Scholar] [CrossRef] [PubMed]
- Potera, C. Diet and Nutrition: The Artificial Food Dye Blues; National Institute of Environmental Health Sciences: Research Triangle Park, NC, USA, 2010. [Google Scholar]
- Oplatowska-Stachowiak, M.; Elliott, C.T. Food colors: Existing and emerging food safety concerns. Crit. Rev. Food Sci. Nutr. 2017, 57, 524–548. [Google Scholar] [CrossRef] [PubMed]
- Fernández-López, J.A.; Fernández-Lledó, V.; Angosto, J.M. New insights into red plant pigments: More than just natural colorants. RSC Adv. 2020, 10, 24669–24682. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Culver, C.A. Alternatives to those artificial FD&C food colorants. Annu. Rev. Food Sci. Technol. 2012, 3, 59–77. [Google Scholar]
- Tuli, H.S.; Chaudhary, P.; Beniwal, V.; Sharma, A.K. Microbial pigments as natural color sources: Current trends and future perspectives. J. Food Sci. Technol. 2015, 52, 4669–4678. [Google Scholar] [CrossRef] [Green Version]
- Galaffu, N.; Bortlik, K.; Michel, M. An industry perspective on natural food colour stability. In Colour Additives for Foods and Beverages; Elsevier: Amsterdam, The Netherlands, 2015; pp. 91–130. [Google Scholar]
- Panesar, R.; Kaur, S.; Panesar, P.S. Production of microbial pigments utilizing agro-industrial waste: A review. Curr. Opin. Food Sci. 2015, 1, 70–76. [Google Scholar] [CrossRef]
- Chen, W.; Chen, R.; Liu, Q.; He, Y.; He, K.; Ding, X.; Kang, L.; Guo, X.; Xie, N.; Zhou, Y. Orange, red, yellow: Biosynthesis of azaphilone pigments in Monascus fungi. Chem. Sci. 2017, 8, 4917–4925. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-H.; Johns, M.R. Effect of carbon source on ethanol and pigment production by Monascus purpureus. Enzym. Microb. Technol. 1994, 16, 584–590. [Google Scholar] [CrossRef]
- Almeida, A.d.; Lima, T.d.; Santos, N.; Santana, R.; Santos, S.d.; Egea, M. An alternative for corn bran byproduct: Fermentation using Monascus purpureus. Nutr. Food Sci. 2019, 50, 515–527. [Google Scholar] [CrossRef]
- Almeida, A.d.; Santos, N.; de Lima, T.; Santana, R.; de Oliveira Filho, J.; Peres, D.; Egea, M. Pigment bioproduction by Monascus purpureus using corn bran, a byproduct of the corn industry. Biocatal. Agric. Biotechnol. 2021, 32, 101931. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Q.; Wang, W.; Hu, J.; Hu, C. Effect of oxygen supply on Monascus pigments and citrinin production in submerged fermentation. J. Biosci. Bioeng. 2015, 119, 564–569. [Google Scholar] [CrossRef]
- Keivani, H.; Jahadi, M.; Ghasemisepero, N. Optimizing submerged cultivation for the production of red pigments by Monascus purpureus on soybean meals using Response Surface Methodology. Appl. Food Biotechnol. 2020, 7, 143–152. [Google Scholar]
- Huawei, Z.; Chengtao, W.; Jie, Q.; Bingjing, Z.; Bing, Z.; Chuangyun, D. Determining a suitable carbon source for the production of intracellular pigments from Monascus purpureus HBSD 08. Pigment Resin Technol. 2019, 48, 547–554. [Google Scholar] [CrossRef]
- Orozco, S.F.B.; Kilikian, B.V. Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3802. World J. Microbiol. Biotechnol. 2008, 24, 263–268. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Dai, B.; Zhang, W.; Yuan, Y. Effect of submerged and solid-state fermentation on pigment and citrinin production by Monascus purpureus. Acta Biol. Hung. 2013, 64, 385–394. [Google Scholar] [CrossRef]
- Huang, Z.-R.; Zhou, W.-B.; Yang, X.-L.; Tong, A.-J.; Hong, J.-L.; Guo, W.-L.; Li, T.-T.; Jia, R.-B.; Pan, Y.-Y.; Lin, J. The regulation mechanisms of soluble starch and glycerol for production of azaphilone pigments in Monascus purpureus FAFU618 as revealed by comparative proteomic and transcriptional analyses. Food Res. Int. 2018, 106, 626–635. [Google Scholar] [CrossRef]
- Solomon, P.S.; Waters, O.D.; Oliver, R.P. Decoding the mannitol enigma in filamentous fungi. Trends Microbiol. 2007, 15, 257–262. [Google Scholar] [CrossRef]
- Clarke, K.G. Bioprocess Engineering: An Introductory Engineering and Life Science Approach; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Stavenga, D.; Smits, R.; Hoenders, B. Simple exponential functions describing the absorbance bands of visual pigment spectra. Vis. Res. 1993, 33, 1011–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silbir, S.; Goksungur, Y. Natural red pigment production by Monascus purpureus in submerged fermentation systems using a food industry waste: Brewer’s spent grain. Foods 2019, 8, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subhasree, R.; Babu, P.D.; Vidyalakshmi, R.; Mohan, V.C. Effect of carbon and nitrogen sources on stimulation of pigment production by Monascus purpureus on jackfruit seeds. Int. J. Microbiol. Res. (IJMR) 2011, 2, 184–187. [Google Scholar]
- Corina, D.; Munday, K. Studies on polyol function in Aspergillus clavatus: A role for mannitol and ribitol. Microbiology 1971, 69, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Hult, K.; Veide, A.; Gatenbeck, S. The distribution of the NADPH regenerating mannitol cycle among fungal species. Arch. Microbiol. 1980, 128, 253–255. [Google Scholar] [CrossRef]
- Voegele, R.T.; Hahn, M.; Lohaus, G.; Link, T.; Heiser, I.; Mendgen, K. Possible roles for mannitol and mannitol dehydrogenase in the biotrophic plant pathogen Uromyces fabae. Plant Physiol. 2005, 137, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Ruijter, G.J.; Bax, M.; Patel, H.; Flitter, S.J.; van de Vondervoort, P.J.; de Vries, R.P.; vanKuyk, P.A.; Visser, J. Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryot. Cell 2003, 2, 690–698. [Google Scholar] [CrossRef] [Green Version]
- Webster, J.; Davey, R.; Smirnoff, N.; Fricke, W.; Hinde, P.; Tomos, D.; Turner, J. Mannitol and hexoses are components of Buller’s drop. Mycol. Res. 1995, 99, 833–838. [Google Scholar] [CrossRef]
- Trail, F.; Xu, H. Purification and characterization of mannitol dehydrogenase and identification of the corresponding cDNA from the head blight fungus, Gibberella zeae (Fusarium graminearum). Phytochemistry 2002, 61, 791–796. [Google Scholar] [CrossRef]
- Schmidell, W.; de Almeida Lima, U.; Borzani, W.; Aquarone, E. Biotecnologia Industrial-Vol. 2: Engenharia Bioquímica; Editora Blucher: São Paulo, Brazil, 2001; Volume 2. [Google Scholar]
- Pinches, A.; Pallent, L.J. Rate and yield relationships in the production of xanthan gum by batch fermentations using complex and chemically defined growth media. Biotechnol. Bioeng. 1986, 28, 1484–1496. [Google Scholar] [CrossRef]
- Garcia-Ochoa, F.; Gomez, E.; Santos, V.E.; Merchuk, J.C. Oxygen uptake rate in microbial processes: An overview. Biochem. Eng. J. 2010, 49, 289–307. [Google Scholar] [CrossRef]
Carbon Source | 24 h | 48 h | Spectrum Graph |
---|---|---|---|
MAN | |||
λ496.2 (AU) | 1.27 | 7.96 ** | |
GLU | |||
λ496.2 (AU) | 0.44 | 1.03 | |
SUC | |||
λ496.2 (AU) | 0.91 | 1.20 |
Variable | Static pH (7.0) | Varied pH (5.5–8.5) |
---|---|---|
0.2306 | 0.2323 | |
0.7523 | 0.1993 | |
0.42 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, A.G.; Dantas, L.A.; Egea, M.B. Mannitol-Based Media and Static pH Are Efficient Conditions for Red Pigment Production from Monascus purpureus ATCC 36928 in Submerged Culture. Processes 2023, 11, 633. https://doi.org/10.3390/pr11020633
Lima AG, Dantas LA, Egea MB. Mannitol-Based Media and Static pH Are Efficient Conditions for Red Pigment Production from Monascus purpureus ATCC 36928 in Submerged Culture. Processes. 2023; 11(2):633. https://doi.org/10.3390/pr11020633
Chicago/Turabian StyleLima, Alan Gomes, Luciana Arantes Dantas, and Mariana Buranelo Egea. 2023. "Mannitol-Based Media and Static pH Are Efficient Conditions for Red Pigment Production from Monascus purpureus ATCC 36928 in Submerged Culture" Processes 11, no. 2: 633. https://doi.org/10.3390/pr11020633
APA StyleLima, A. G., Dantas, L. A., & Egea, M. B. (2023). Mannitol-Based Media and Static pH Are Efficient Conditions for Red Pigment Production from Monascus purpureus ATCC 36928 in Submerged Culture. Processes, 11(2), 633. https://doi.org/10.3390/pr11020633