Volcanic Ash from the Island of La Palma, Spain: An Experimental Study to Establish Their Properties as Pozzolans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparation
2.2.2. Fineness by Blaine Method
2.2.3. Real Density by Air Pycnometer (Alternative Method)
- m is the mass of dry material (g)
- V is the volume difference (cm3).
2.2.4. Chemical Composition by X-ray Fluorescence (XRF)
2.2.5. Chemical Analysis to Determine the Volcanic Ash Quality (QCA)
2.2.6. Chemical Pozzolanicity Test (CPT)
- V3 is the volume of the 0.1 mol/L HCl solution used in the titration
- f2 is the HCl dissolution factor 0.1 mol/L.
2.2.7. Mechanical Strength Tests at 7, 28, and 90 Days
2.2.8. Resistance Activity Index
3. Results
3.1. Fineness and Density
3.2. Chemical Composition Results by X-ray Fluorescence (XRF)
3.3. Results of the Chemical Analysis to Determine the Quality of Volcanic Ash (QCA)
3.4. Results of the Chemical Pozzolanicity Test (CPT)
3.5. Mechanical Strength Tests at 7, 28 and 90 Days
3.6. Resistance Activity Index
4. Discussion
5. Conclusions
- In the chemical composition by XRF and the quality chemical composition of the studied volcanic ash, a significant presence of SiO2 y Al2O3 was detected, as well as alkaline compounds and alkaline earth, which permits it to be included in the group of natural pozzolan.
- The results of pozzolanicity analysis justify the consideration of volcanic ash as a natural pozzolan. The high reactivity demonstrated by the volcanic ash with ordinary Portland cement in the solution explains the high values of mechanical strength obtained at 7, 28, and 90 days of curing.
- The increases in mechanical compressive strengths are evidenced by an increase in the Resistance Activity Index of the M-1, M-2, and M-3 specimens above 90% in relation to the mechanical strength of the reference specimen (REF). It demonstrates that high substitutions (>25%) of volcanic ashes by cement are suitable for cements.
- The value of the Resistance Activity Index in the M-3 at 90 days of curing is notably higher than that obtained at 7 days. It demonstrates the long-term pozzolanic activity of the ashes in terms of mechanical strength.
- According to the mechanical behavior of the specimens studied, the formulations of OPC/VA mixtures at 10, 25, and 40% are equally effective for the production processes of pozzolanic cements, mortars, and concrete, positively affecting energy savings and reducing the emission of greenhouse gases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González, P.J.; Tiampo, K.F.; Camacho, A.G.; Fernández, J. Shallow flank deformation at Cumbre Vieja volcano (Canary Islands): Implications on the stability of steep-sided volcano flanks at oceanic islands. Earth Planet. Sci. Lett. 2010, 297, 545–557. [Google Scholar] [CrossRef]
- Copernicus Emergency Management Service. [EMSR546] La Palma: Grading Product, Monitoring 22; European Commision: Brussels, Belgium, 2021. [Google Scholar]
- Vouffo, M.; Tiomo, I.F.; Fanmi, H.K.; Djoumen, T.K.; Ngapgue, F. Physical and mechanical characterization of pyroclastic materials in Baleng area (Bafoussam, West-Cameroon): Implication for use in civil engineering. Case Stud. Constr. Mater. 2022, 16, e00916. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Wang, K.-T.; Tang, Q.; Nzeukou, A.; Billong, N.; Melo, U.C.; Cui, X.-M. Review on the use of volcanic ashes for engineering applications. Resour. Conserv. Recycl. 2018, 137, 177–190. [Google Scholar] [CrossRef]
- Okogbue, C.O.; Aghamelu, O.P. Performance of pyroclastic rocks from Abakaliki Metropolis (southeastern Nigeria) in road construction projects. Bull. Eng. Geol. Environ. 2013, 72, 433–446. [Google Scholar] [CrossRef]
- Dóniz-Páez, J.; Beltrán-Yanes, E.; Becerra-Ramírez, R.; Pérez, N.; Hernández, P.; Hernández, W. Diversity of Volcanic Geoheritage in the Canary Islands, Spain. Geosciences 2020, 10, 390. [Google Scholar] [CrossRef]
- Medina, N.F.; Barluenga, G.; Hernández-Olivares, F. Enhancement of durability of concrete composites containing natural pozzolans blended cement through the use of Polypropylene fibers. Compos. Part B Eng. 2014, 61, 214–221. [Google Scholar] [CrossRef]
- Gomez-Arriaran, I.; Roels, S.; Abascal, I.F.; Odriozola-Maritorena, M.; Martín, K. Pore characterization of heterogeneous building materials: Pyroclastic arid–based concrete. J. Build. Phys. 2017, 41, 25–40. [Google Scholar] [CrossRef]
- Rodríguez, E.; García, A. Lightweight Aggregate and Lightweight Concrete and its Application in the Improvement of the Thermal Properties of Volcanic Lightweight Aggregate Concrete Blocks from Canary Islands. In Proceedings of the ISRM International Workshop on Rock Mechanics and Geoengineering in Volcanic Environments, Puerto de la Cruz, Spain, 31 May–3 June 2010. [Google Scholar]
- Lomoschitz, A.; Jiménez, J.R.; Yepes, J.; Pérez-Luzardo, J.M.; Macías-Machín, A.; Socorro, M.; Hernández, L.E.; Rodríguez, J.A.; Olalla, C. Basaltic Lapilli Used for Construction Purposes in the Canary Islands, Spain. Environ. Eng. Geosci. 2006, 12, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Fajardo, V.; Torres, M.; Moreno, A. Study of the pore structure of the lightweight concrete block with lapilli as an aggregate to predict the liquid permeability by dielectric spectroscopy. Constr. Build. Mater. 2014, 53, 225–234. [Google Scholar] [CrossRef]
- Fajardo, V.S.; Torres, M.; Moreno, A. Hydraulic and hygrothermal properties of lightweight concrete blocks with basaltic lapilli as aggregate. Constr. Build. Mater. 2015, 94, 398–407. [Google Scholar] [CrossRef]
- García-González, C.; Yepes, J.; Franesqui, M.A. Geomechanical characterization of volcanic aggregates for paving construction applications and correlation with the rock properties. Transp. Geotech. 2020, 24, 100383. [Google Scholar] [CrossRef]
- Franesqui, M.A.; Yepes, J.; García-González, C.; Gallego, J. Sustainable low-temperature asphalt mixtures with marginal porous volcanic aggregates and crumb rubber modified bitumen. J. Clean. Prod. 2019, 207, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Franesqui, M.A.; Castelo, F.; Azevedo, M.C.; Moita, P. Construction Experiences with Volcanic Unbound Aggregates in Road Pavements. In Proceedings of the ISRM International Workshop on Rock Mechanics and Geoengineering in Volcanic Environments, Puerto de la Cruz, Spain, 31 May–1 June 2010. [Google Scholar]
- González, P.Y.; Merino, M.D.R. Mechanical Performance of Traditional Lightweight Concretes from the Canary Islands. In Construction and Building Research; Springer: Berlin/Heidelberg, Germany, 2014; pp. 547–553. [Google Scholar] [CrossRef]
- Djeunou, E.D.N.; Tsobnang, P.K.; Nkouathio, D.G.; Mohamed, R.; Giscard, D. Pozzolanic activities of some pyroclastic materials of Tombel Graben (Cameroon Volcanic Line) and potentiality for their use in construction industry. Arab. J. Geosci. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Binici, H.; Kapur, S.; Arocena, J.; Kaplan, H. The sulphate resistance of cements containing red brick dust and ground basaltic pumice with sub-microscopic evidence of intra-pore gypsum and ettringite as strengtheners. Cem. Concr. Compos. 2012, 34, 279–287. [Google Scholar] [CrossRef]
- Rosales, J.; Rosales, M.; Díaz-López, J.L.; Agrela, F.; Cabrera, M. Effect of Processed Volcanic Ash as Active Mineral Addition for Cement Manufacture. Materials 2022, 15, 6305. [Google Scholar] [CrossRef]
- Fořt, J.; Černý, R. Transition to circular economy in the construction industry: Environmental aspects of waste brick recycling scenarios. Waste Manag. 2020, 118, 510–520. [Google Scholar] [CrossRef]
- Benhelal, E.; Shamsaei, E.; Rashid, M.I. Challenges against CO2 abatement strategies in cement industry: A review. J. Environ. Sci. 2021, 104, 84–101. [Google Scholar] [CrossRef]
- Nie, S.; Zhou, J.; Yang, F.; Lan, M.; Li, J.; Zhang, Z.; Chen, Z.; Xu, M.; Li, H.; Sanjayan, J.G. Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application. J. Clean. Prod. 2022, 334, 130270. [Google Scholar] [CrossRef]
- Data SIO, NOAA, U.S. Navy, NGA, GEBCO. Maxar Tecnologies. Google Earth. Available online: https://earth.google.com/web/@28.6439076,17.83062641,1099.82232928a,81264.90281641d,35.00003704y,-0.13362694h,0.06903636t,359.99999996r (accessed on 25 December 2022).
- UNE-EN-196-6:2019; Métodos de Ensayo de Cementos. Parte 6: Determinación de la Finura. AENOR: Madrid, Spain, 2019.
- UNE-EN-196-7:2008; Métodos de Ensayo de Cementos. Parte 7: Métodos de Toma y Preparación de Muestras de Cemento. AENOR: Madrid, Spain, 2008.
- UNE 80103:2014; Métodos de Ensayo de Cementos. Ensayos Físicos. Determinación de la Densidad Real. AENOR: Madrid, Spain, 2013.
- UNE-EN 196-2:2014; Métodos de Ensayo de Cementos. Parte 2: Análisis Químico de Cementos. AENOR: Madrid, Spain, 2014.
- UNE-EN 196-5:2011; Métodos de Ensayo de Cementos. Parte 5: Ensayo de Puzolanicidad Para los Cementos Puzolánicos. AENOR: Madrid, Spain, 2011.
- Costafreda, J.L.; Martín, D.A.; Presa, L.; Parra, J.L. Altered Volcanic Tuffs from Los Frailes Caldera. A Study of Their Pozzolanic Properties. Molecules 2021, 26, 5348. [Google Scholar] [CrossRef]
- UNE-EN-196-1:2018; Métodos de Ensayo de Cementos. Parte 1: Determinación de Resistencias. AENOR: Madrid, Spain, 2018.
- Al-Fadala, S.; Chakkamalayath, J.; Al-Bahar, S.; Al-Aibani, A.; Ahmed, S. Significance of performance based specifications in the qualification and characterization of blended cement using volcanic ash. Constr. Build. Mater. 2017, 144, 532–540. [Google Scholar] [CrossRef]
- Hossain, K.M. Blended cement using volcanic ash and pumice. Cem. Concr. Res. 2003, 33, 1601–1605. [Google Scholar] [CrossRef]
- Olawuyi, B.J.; Olusola, K.O. Compressive Strength of Volcanic Ash/Ordinary Portland Cement Laterized Concrete. Civ. Eng. Dimens. 2013, 12, 23–28. [Google Scholar]
- Ndjock, B.D.L.; Elimbi, A.; Cyr, M. Rational utilization of volcanic ashes based on factors affecting their alkaline activation. J. Non-Cryst. Solids 2017, 463, 31–39. [Google Scholar] [CrossRef]
- Tchakoute, H.; Elimbi, A.; Yanne, E.; Djangang, C. Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature. Cem. Concr. Compos. 2013, 38, 75–81. [Google Scholar] [CrossRef]
- Bondar, D.; Lynsdale, C.; Milestone, N.; Hassani, N.; Ramezanianpour, A. Effect of heat treatment on reactivity-strength of alkali-activated natural pozzolans. Constr. Build. Mater. 2011, 25, 4065–4071. [Google Scholar] [CrossRef]
- Ghafoori, N.; Najimi, M.; Radke, B. Natural Pozzolan-based geopolymers for sustainable construction. Environ. Earth Sci. 2016, 75, 1110. [Google Scholar] [CrossRef]
- Siddique, R. Properties of concrete made with volcanic ash. Resour. Conserv. Recycl. 2012, 66, 40–44. [Google Scholar] [CrossRef]
- Siddique, R. Effect of volcanic ash on the properties of cement paste and mortar. Resour. Conserv. Recycl. 2011, 56, 66–70. [Google Scholar] [CrossRef]
- Alraddadi, S.; Assaedi, H. Characterization and potential applications of different powder volcanic ash. J. King Saud Univ.-Sci. 2020, 32, 2969–2975. [Google Scholar] [CrossRef]
- Játiva, A.; Ruales, E.; Etxeberria, M. Volcanic Ash as a Sustainable Binder Material: An Extensive Review. Materials 2021, 14, 1302. [Google Scholar] [CrossRef]
- Presa, L.; Costafreda, J.L.; Martín, D.A.; Díaz, I. Natural Mordenite from Spain as Pozzolana. Molecules 2020, 25, 1220. [Google Scholar] [CrossRef] [Green Version]
- Costafreda, J.; Martín, D. Bentonites in Southern Spain. Characterization and Applications. Crystals 2021, 11, 706. [Google Scholar] [CrossRef]
- Costafreda, J.L. Geología, Caracterización y Aplicaciones de las Rocas Zeolitizadas del Complejo Volcánico de Cabo de Gata, Almería. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2008; 515p. [Google Scholar]
- UNE-EN 197-1:2011; Cemento. Parte 1: Composición, Especificaciones y Criterios de Conformidad de los Cementos Comunes. AENOR: Madrid, Spain, 2011.
- Santana, J.J.; Rodríguez-Brito, N.; Blanco-Peñalver, C.; Mena, V.F.; Souto, R.M. Durability of Reinforced Concrete with Additions of Natural Pozzolans of Volcanic Origin. Materials 2022, 15, 8352. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Chen, Q.; Lawi, A.; Chen, J. Effect of partial substitution of cement with Dolomite powder on Glass-Fiber-Reinforced mortar. Constr. Build. Mater. 2022, 344, 128201. [Google Scholar] [CrossRef]
- Li, Q.; Qiao, H.; Li, A.; Li, G. Performance of waste glass powder as a pozzolanic material in blended cement mortar. Constr. Build. Mater. 2022, 324, 126531. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, F.; Liu, R.; Zhang, R.; Liu, Z.; Liu, H. Effects of pozzolanic and non-pozzolanic nanomaterials on cement-based materials. Constr. Build. Mater. 2019, 213, 1–9. [Google Scholar] [CrossRef]
Materials | Designation of Mortar Specimens | |||
---|---|---|---|---|
REF 1 | M-1 | M-2 | M-3 | |
Substitution Rate (%) | 0% | 10% | 25% | 40% |
OPC 2 (g) | 450 | 405 | 337.50 | 270 |
VA 3 (g) | 0.00 | 45 | 112.50 | 180 |
Sand (g) | 1350 | 1350 | 1350 | 1350 |
DW 4 (%) | 12.5 | 12.5 | 12.5 | 12.5 |
DW (g) | 225 | 225 | 225 | 225 |
Total (g) | 2025 | 2025 | 2025 | 2025 |
Fineness (cm2/g) | Density (g/cm3) | |
---|---|---|
Cement | 3962 | 3.14 |
Volcanic Ash (VA) | 6000 | 2.86 |
Compounds in % Weight | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO | Al2O3 | Fe2O3 | CaO | TiO2 | MnO | K2O | MgO | P2O5 | Na2O | LOI * |
43.4 | 13.4 | 13.5 | 10.9 | 3.60 | 0.205 | 1.47 | 8.10 | 0.756 | 3.77 | −0.53 |
Compounds | Results (%) |
---|---|
Total SiO2 | 44.22 |
Reactive SiO2 | 39.71 |
Total CaO | 11.08 |
CaO free | 0.0 |
Reactive CaO | 10.31 |
Al2O3 | 13.85 |
MgO | 7.3 |
Fe2O3 | 14.34 |
Sulphates | 0.0549 |
Chlorides | 0.062 |
1 IR | 10.29 |
2 LOI | 0.02 |
SiO2/(CaO+MgO) | 2.5 |
Designation of Mortar Specimens | Resistant Activity Index (%) | Resistant Increase (%) | |||
---|---|---|---|---|---|
7 Days | 28 Days | 90 Days | 7–28 Days | 28–90 Days | |
REF | - | - | - | 26.77 | 20.24 |
M1 | 102.49 | 103.23 | 97.70 | 27.68 | 13.80 |
M2 | 91.33 | 94.00 | 97.78 | 30.48 | 25.08 |
M3 | 68.76 | 83.45 | 91.03 | 53.85 | 31.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Presa, L.; Rosado, S.; Peña, C.; Martín, D.A.; Costafreda, J.L.; Astudillo, B.; Parra, J.L. Volcanic Ash from the Island of La Palma, Spain: An Experimental Study to Establish Their Properties as Pozzolans. Processes 2023, 11, 657. https://doi.org/10.3390/pr11030657
Presa L, Rosado S, Peña C, Martín DA, Costafreda JL, Astudillo B, Parra JL. Volcanic Ash from the Island of La Palma, Spain: An Experimental Study to Establish Their Properties as Pozzolans. Processes. 2023; 11(3):657. https://doi.org/10.3390/pr11030657
Chicago/Turabian StylePresa, Leticia, Santiago Rosado, Christian Peña, Domingo Alfonso Martín, Jorge Luis Costafreda, Beatriz Astudillo, and José Luis Parra. 2023. "Volcanic Ash from the Island of La Palma, Spain: An Experimental Study to Establish Their Properties as Pozzolans" Processes 11, no. 3: 657. https://doi.org/10.3390/pr11030657
APA StylePresa, L., Rosado, S., Peña, C., Martín, D. A., Costafreda, J. L., Astudillo, B., & Parra, J. L. (2023). Volcanic Ash from the Island of La Palma, Spain: An Experimental Study to Establish Their Properties as Pozzolans. Processes, 11(3), 657. https://doi.org/10.3390/pr11030657