Prediction of the Soil Permeability Coefficient of Reservoirs Using a Deep Neural Network Based on a Dendrite Concept
Abstract
:1. Introduction
2. Materials and Methods
2.1. Classification Method of Soil Property Data
2.2. Analysis of the Models
2.2.1. Multiple Regression
2.2.2. Adaptive Network-Based Fuzzy Inference System
2.2.3. Procedure of the Deep Neural Network
2.2.4. Deep Neural Network
2.2.5. DNN-T
2.3. DNN and DNN−T Configuration
2.4. Evaluation of Analysis Methods
3. Results and Discussions
3.1. Soil Analysis Result
3.2. MR Result
3.3. ANFIS Result
3.4. DNN Result
3.4.1. Training Result of the DNN
3.4.2. Prediction of DNN
3.5. DNN−T Result
3.5.1. Training Result of DNN−T
3.5.2. Prediction of DNN-T
3.6. Estimation and Comparison of the Models
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Venkatesh, K.; Karumanchi, S.R. Distribution of pore water pressure in an earthen dam considering unsaturated-saturated seepage analysis. In Proceedings of the E3S Web of Conferences, Kraków, Poland, 17–19 May 2016; Volume 9, p. 19004. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.K.; Wang, M.C. Artificial neural network prediction models for soil compaction and permeability. Geotech. Geol. Eng. 2008, 26, 47–64. [Google Scholar] [CrossRef]
- Yilmaz, I.; Marschalko, M.; Bednarik, M.; Kaynar, O.; Fojtova, L. Neural computing models for prediction of permeability coefficient of coarse-grained soils. Neural Comput. Appl. 2012, 21, 957–968. [Google Scholar] [CrossRef]
- Olson, R.E. Effective stress theory of soil compaction. J. Soil Mech. Found. Div. 1963, 89, 27–45. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Hooper, D.R.; Campenella, R.G. Permeability of compacted clay. J. Soil Mech. Found. Div. 1965, 91, 41–65. [Google Scholar] [CrossRef]
- Cabalar, A.; Akbulut, N. Evaluation of actual and estimated hydraulic conductivity of sands with different gradation and shape. SpringerPlus 2016, 5, 820. [Google Scholar] [CrossRef] [Green Version]
- Burland, J.B.; Burbidge, M.C.; Wilson, E.J.; Vanughan, P.R.; Clayton, C.R.I.; Rocha Filho, P.; Ward, W.H.; Richards, D.G.; Simons, N.E.; Coatsworth, S.R.; et al. Discussion. Settlement of foundations on sand and gravel. Proc. Inst. Civ. Eng. 1986, 80, 1625–1648. [Google Scholar] [CrossRef]
- Pham, B.T.; Bui, D.T.; Prakash, I.; Dholakia, M.B. Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena 2017, 149, 52–63. [Google Scholar] [CrossRef]
- Sperry, J.M.; Peirce, J.J. A model for estimating the hydraulic conductivity of granular material based on grain shape, grain size, and porosity. Ground Water 1995, 33, 892–898. [Google Scholar] [CrossRef]
- Lebron, I.; Schaap, M.G.; Suarez, D.L. Saturated hydraulic conductivity prediction from microscopic pore geometry measurements and neural network analysis. Water Resour. Res. 1999, 35, 3149–3158. [Google Scholar] [CrossRef]
- Nimmo, J.R. Porosity and Pore Size Distribution. Encycl. Soils Environ. 2004, 3, 295–303. [Google Scholar]
- Silveira, A. An analysis of the problem of washing through in protective filters. In Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, QU, Canada, 8–15 September 1965; pp. 551–555. [Google Scholar]
- Silveira, A.; de Lorena Peixoto, T.; Nogueira, J. On void size distribution of granular materials. In Proceedings of the 5th Pan-American Conference on Soil Mechanics and Foundation Engineering, Buenos Aires, Argentina, 17–22 November 1975; pp. 161–176. [Google Scholar]
- Marshall, T.J. A relation between permeability and size distribution of pores. J. Soil Sci. 1958, 9, 1–8. [Google Scholar] [CrossRef]
- Scheidegger, A.E. The Physics of Flow through Porous Media; University of Toronto Press: Toronto, ON, Canada, 1974. [Google Scholar]
- Childs, E.C.; Collis-George, N. The permeability of porous materials. Proc. R. Soc. Lond. 1950, 201, 392–405. [Google Scholar]
- Hauser, V.L. Seepage control by particle size selection. Trans. Am. Soc. Agric. Eng. 1978, 21, 691–695. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A. Equations for the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Jaafar, R.; Likos, W. Pore-scale model for estimating saturated and unsaturated hydraulic conductivity from grain size distribution. J. Geotech. Geoenviron. Eng. 2014, 140, 04013012. [Google Scholar] [CrossRef]
- Mosser, L.; Dubrule, O.; Blunt, M.J. Reconstruction of three-dimensional porous media using generative adversarial neural networks. Phys. Rev. E 2017, 96, 043309. [Google Scholar] [CrossRef] [Green Version]
- Andrew, M.A. Quantified study of segmentation techniques on synthetic geological XRM and FIB-SEM images. Comput. Geosci. 2018, 22, 1503–1512. [Google Scholar] [CrossRef] [Green Version]
- Pereira, J.L.L. Permeability Prediction from Well Log Data Using Multiple Regression Analysis. Master’s Thesis, West Virginia University, Morgantown, WV, USA, 2004. [Google Scholar]
- Aminian, K.; Thomas, B.; Ameri, S.; Bilgesu, H.I. A new approach for reservoir characterization. In Proceedings of the SPE Eastern Regional Meeting, Lexington, KY, USA, 23–26 October 2002; pp. 1–9. [Google Scholar] [CrossRef]
- Mustafa, R. Application of Statistical Methods for “Flow Unit” Identification and Characterization of a Reservoir Using Well Log and Core Data. Master’s Thesis, West Virginia University, Morgantown, WV, USA, 2003. [Google Scholar]
- Marjanović, M.; Kovačević, M.; Bajat, B.; Voženílek, V. Landslide susceptibility assessment using SVM machine learning algorithm. Eng. Geol. 2011, 123, 225–234. [Google Scholar] [CrossRef]
- Bui, D.T.; Hoang, N.D.; Nhu, V.H. A swarm intelligence-based machine learning approach for predicting soil shear strength for road construction: A case study at Trung Luong national expressway project (Vietnam). Eng. Comput. 2019, 35, 955–965. [Google Scholar]
- Park, B.H.; Kim, D.K.; Park, D.W. Predictive system for unconfined compressive strength of lightweight treated soil (LTS) using deep learning. J. Korea Inst. Struct. Maint. Insp. 2020, 24, 18–25. (In Korean) [Google Scholar] [CrossRef]
- Sezer, A.; G¨oktepe, A.B.; Altun, S. Estimation of the permeability of granular soils using neuro-fuzzy system. In Proceedings of the AIAI-2009 Workshops Proceedings, Thessaloniki, Greece, 23–25 April 2009; pp. 333–342. [Google Scholar]
- Ganjidoost, H.; Mousavi, S.J.; Soroush, A. Adaptive network-based fuzzy inference systems coupled with genetic algorithms for predicting soil permeability coefficient. Neural Process. Lett. 2016, 44, 53–79. [Google Scholar] [CrossRef]
- Kim, Y.S.; Jung, S.G.; Kim, D.M. Prediction of field permeability using by artificial neural network. J. Korean Soc. Civ. Eng. 2009, 29, 97–104. (In Korean) [Google Scholar]
- Lee, H.L.; Ryu, J.H.; Heo, J.; Shim, J.W.; Lee, D.W. Stability improvement method for embankment dam with respect to conduit cracks. Appl. Sci. 2022, 12, 567. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Zhang, K.; Chen, G.D.; Zhang, J.D.; Wang, W.D.; Wang, H.C.; Zhang, L.M.; Yan, X.; Yah, J. Evolutionary-assisted reinforcement learning for reservoir real-time production optimization under uncertainty. Pet. Sci. 2022, 1–16. [Google Scholar] [CrossRef]
- Zhao, H.; Kang, Z.; Zhang, X.; Sun, H. A physics-based data-driven numerical model for reservoir history matching and prediction with a field application. SPE J. 2016, 21, 2175–2194. [Google Scholar] [CrossRef]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement Learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef]
- Head, K.H. Manual of Soil Laboratory Testing 3 Effective Stress Tests; ELE international Limited: Leighton Buzzard, UK, 1986; Volume 3, pp. 1017–1027. [Google Scholar]
- Cho, S.H.; Nam, H.S.; Ryu, K.J.; Ryu, D.K. A comparative analysis of the forecasting performance of coal and iron ore in Gwangyang port using stepwise regression and artificial neural network model. J. Navig. Port Res. 2020, 44, 187–194. (In Korean) [Google Scholar] [CrossRef]
- Baek, J.W.; Chung, K. Context deep neural network model for predicting depression risk using multiple regression. IEEE Access 2020, 8, 18171–18181. [Google Scholar] [CrossRef]
- Bersini, H.; Bontempi, G. Now comes the time to defuzzify neuro-fuzzy models. Fuzzy Sets Syst. 1997, 90, 161–169. [Google Scholar] [CrossRef]
- Guillaume, S. Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Trans. Fuzzy Syst. 2001, 9, 426–443. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Bak, G.M.; Bae, Y.C. Groundwater level prediction using ANFIS algorithm. J. KIECS 2019, 14, 1235–1240. (In Korean) [Google Scholar] [CrossRef]
- Bendary, A.F.; Abdelaziz, A.Y.; Ismail, M.M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Proposed ANFIS based approach for fault tracking, detection, clearing and rearrangement for photovoltaic system. Sensors 2021, 21, 2269. [Google Scholar] [CrossRef]
- Elgibaly, A.A.; Elkamel, A.M. A new correlation for predicting hydrate formation conditions for various gas mixtures and inhibitors. Fluid Phase Equilibria 1998, 152, 23–42. [Google Scholar] [CrossRef]
- Groupe, D. Principle of Artificial Neural Networks, 2nd ed.; World Scientific Publishing Co.: Singapore, 2007. [Google Scholar]
- Lockery, S.R.; Wittenberg, G.; Kristan, W.B.; Cottrell, G.W. Function of identified interneurons in the leech elucidated using neural networks trained by back-propagation. Nature 1989, 340, 468–471. [Google Scholar] [CrossRef] [PubMed]
- Keijser, J.; Sprekeler, H. Optimizing interneuron circuits for compartment-specific feedback inhibition. PLoS Comput. Biol. 2022, 18, e1009933. [Google Scholar] [CrossRef]
- Hertäg, L.; Sprekeler, H. Learning prediction error neurons in a canonical interneuron circuit. Elife 2020, 9, e57541. [Google Scholar] [CrossRef]
- Talpur, N.; Abdulkadir, S.J.; Hasan, M.H. A deep learning based neuro-fuzzy approach for solving classification problems. In Proceedings of the 2020 International Conference on Computational Intelligence (ICCI), Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia, 8–9 October 2020; pp. 167–172. [Google Scholar] [CrossRef]
- Abdulkadir, S.J.; Yong, S.P.; Marimuthu, M.; Lai, F.W. Hybridization of ensemble Kalman filter and non-linear auto-regressive f for financial forecasting. Min. Intell. Knowl. Explor. 2014, 8891, 72–81. [Google Scholar] [CrossRef]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Pradeep, T.; Bardhan, A.; Burman, A.; Samui, P. Rock strain prediction using deep neural network and hybrid models of anfis and meta-heuristic optimization algorithms. Infrastructures 2021, 6, 129. [Google Scholar] [CrossRef]
- Sadrmomtazi, A.; Sobhani, J.; Mirgozar, M.A. Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS. Constr. Build. Mater. 2013, 42, 205–216. [Google Scholar] [CrossRef]
e | γt 1 (kN/m3) | Grain Size Distribution (%) | K 2 (cm/s) | |||||
---|---|---|---|---|---|---|---|---|
4.76 mm | 2.0 mm | 0.425 mm | 0.075 mm | 0.002 mm | ||||
Min | 0.36 | 12.97 | 62.4 | 46.5 | 16.0 | 1.0 | 2.0 | 1.43 × 10−8 |
Max | 1.09 | 22.32 | 100.0 | 100.0 | 99.5 | 98.9 | 40.4 | 5.02 × 10−4 |
Target Data | r | NSE | RMSE | MAPE (%) | |
---|---|---|---|---|---|
MR | All data | 0.572 | 0.298 | 0.104 | 7973.6 |
ANFIS | All data | 0.590 | 0.343 | 0.101 | 6952.4 |
DNN (6:4 ratio) | All data | 0.774 | 0.479 | 0.091 | 898.87 |
DNN (7:3 ratio) | All data | 0.745 | 0.477 | 0.090 | 162.88 |
DNN (8:2 ratio) | All data | 0.813 | 0.512 | 0.105 | 157.83 |
DNN−T (6:4 ratio) | All data | 0.703 | 0.431 | 0.095 | 391.13 |
DNN−T (7:3 ratio) | All data | 0.859 | 0.542 | 0.084 | 173.89 |
DNN−T (8:2 ratio) | All data | 0.793 | 0.562 | 0.099 | 215.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.H.; Song, C.M. Prediction of the Soil Permeability Coefficient of Reservoirs Using a Deep Neural Network Based on a Dendrite Concept. Processes 2023, 11, 661. https://doi.org/10.3390/pr11030661
Kim MH, Song CM. Prediction of the Soil Permeability Coefficient of Reservoirs Using a Deep Neural Network Based on a Dendrite Concept. Processes. 2023; 11(3):661. https://doi.org/10.3390/pr11030661
Chicago/Turabian StyleKim, Myeong Hwan, and Chul Min Song. 2023. "Prediction of the Soil Permeability Coefficient of Reservoirs Using a Deep Neural Network Based on a Dendrite Concept" Processes 11, no. 3: 661. https://doi.org/10.3390/pr11030661
APA StyleKim, M. H., & Song, C. M. (2023). Prediction of the Soil Permeability Coefficient of Reservoirs Using a Deep Neural Network Based on a Dendrite Concept. Processes, 11(3), 661. https://doi.org/10.3390/pr11030661