Sapo-34 Obtained from Amazonian Flint Kaolin: Influence of Impurities of “Oxidized Fe/Ti” in Synthesis and Its Application in the Removal of Cationic Dye from Water
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Hydrothermal Synthesis
2.3. Effect of Impurities on the Formation of SAPO-34
2.4. Characterization of Materials
2.5. Performance Cationic Dye Adsorption (C16H18N3S+)
3. Results and Discussion
3.1. Characterization of the Flint Kaolin
3.2. Effect of SDA and Time on Crystallinity
- i
- The Si-O and Al-O of the F-metakaolinite are hydrolyzed and transferred by diffusion from the solid to the medium at different rates. The aluminum ions have a tendency to form secondary building units (SBUs) of 6-membered rings with phosphorus and hydroxyl ions, indicating that Al-O is transferred faster than Si-O, which affects the preliminary formation (t = 5 h) of the ALPO phase in the entire XRD pattern [14,33].
- ii
- Under hydrothermal conditions for x = 0.5, 1, and 2, primary building units (PBUs) are formed with subsequent formation of secondary building units (SBUs). As time progresses, the amount of PBUs decreases, the amount of SBUs increases, and a saturation stage is achieved where nucleation begins [33]. An increase in the amount of SDA may affect the mechanism of formation of these building units, since for x = 2 and a time of 5 h, a small peak in d101 (Figure 5) for SAPO-34 is observed. This indicates that the SDA may affect the incorporation of silicon ions already in the building units, which affects the formation of nuclei and the growth of SAPO-34 crystals in a shorter time. The XRD pattern for the sample, x = 0.5, for example, indicates that the nuclei begin to grow without silicon ions in the structure, and as time progresses, the increase in the Si-O concentration in the medium causes the Si ions to begin to be incorporated into the structure of the crystals formed by ALPO.
3.3. Effects of Oxidized Fe and Ti on the Formation of SAPO-34
3.4. Study of Cationic Dye Adsorption (C16H18N3S+)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag. 2016, 182, 351–366. [Google Scholar] [CrossRef]
- Mittal, H.; Babu, R.; Dabbawala, A.A.; Stephen, S.; Alhassan, S.M. Zeolite-Y incorporated karaya gum hydrogel composites for highly effective removal of cationic dyes. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124161. [Google Scholar] [CrossRef]
- Wu, J.-S.; Liu, C.-H.; Chu, K.H.; Suen, S.-Y. Removal of cationic dye methyl violet 2B from water by cation exchange membranes. J. Membr. Sci. 2008, 309, 239–245. [Google Scholar] [CrossRef]
- Joseph, J.; Radhakrishnan, R.C.; Johnson, J.K.; Joy, S.P.; Thomas, J. Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Mater. Chem. Phys. 2020, 242, 122488. [Google Scholar] [CrossRef]
- Karcher, S.; Kornmuller, A.; Jekel, M. Anion exchange resins for removal of reactive dyes from textile wastewaters. Water Res. 2002, 36, 4717–4724. [Google Scholar] [CrossRef]
- Aljerf, L. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: Kinetics and equilibrium study. J. Environ. Manag. 2018, 225, 120–132. [Google Scholar] [CrossRef]
- Sun, Q.; Xie, Z.; Yu, J. The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. Natl. Sci. Rev. 2018, 5, 542–558. [Google Scholar] [CrossRef] [Green Version]
- Jhung, S.H.; Chang, J.-S.; Hwang, J.S.; Park, S.-E. Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Microporous Mesoporous Mater. 2003, 64, 33–39. [Google Scholar] [CrossRef]
- Askari, S.; Sedighi, Z.; Halladj, R. Rapid synthesis of SAPO-34 nanocatalyst by dry gel conversion method templated with morphline: Investigating the effects of experimental parameters. Microporous Mesoporous Mater. 2014, 197, 229–236. [Google Scholar] [CrossRef]
- Askari, S.; Bashardoust Siahmard, A.; Halladj, R.; Miar Alipour, S. Different techniques and their effective parameters in nano SAPO-34 synthesis: A review. Powder Technol. 2016, 301, 268–287. [Google Scholar] [CrossRef]
- Wang, T.; Lu, X.; Yan, Y. Synthesis, characterization and crystallization mechanism of SAPOs from natural kaolin. Microporous Mesoporous Mater. 2010, 136, 138–147. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Wang, H.; Li, Z.; Wu, H.; Zhang, X.; Zhang, S. Synthesis, characterization and catalytic performance of SAPO-34 molecular sieves for methanol-to-olefin (MTO) reaction. Asia-Pac. J. Chem. Eng. 2011, 6, 596–605. [Google Scholar] [CrossRef]
- Xing, A.; Yuan, D.; Tian, D.; Sun, Q. Controlling acidity and external surface morphology of SAPO-34 and its improved performance for methanol to olefins reaction. Microporous Mesoporous Mater. 2019, 288, 109562. [Google Scholar] [CrossRef]
- Wang, T.; Lu, X.; Yan, Y. Synthesis of SAPO-34 from metakaolin: Crystallization mechanism of SAPO-34 and transformation process of metakaolin. Microporous Mesoporous Mater. 2013, 168, 155–163. [Google Scholar] [CrossRef]
- Pinheiro, D.R.; Gonçalves, L.R.; Sena, R.L.P.; Martelli, M.C.; Neves, R.F.; Ribeiro, N.F.P. Industrial Kaolin Waste as Raw Material in the Synthesis of the SAPO-34 Molecular Sieve. Mater. Res. 2020, 23, e20200043. [Google Scholar] [CrossRef]
- Carneiro, B.S.; Angélica, R.S.; Sheller, T.; Castro, E.A.S.; Neves, R.F. Caracterização de fase do caulim duro da região do Rio Capim, Pará. Cerâmica 2003, 49, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Rocha Junior, C.A.F.; Angélica, R.S.; Neves, R.F. Síntese de zeólita do tipo faujasita: Comparação entre caulim beneficiado e caulim flint. Rev. Cerâmica 2015, 61, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Menezes, R.A.; Paz, S.P.A.; Angélica, R.S.; Neves, R.F.; Neumann, R.; Faulstich, F.R.L.; Pergher, S.B.C. Synthesis of ultramarine pigments from Na-A zeolite derived from kaolin waste from the Amazon. Clay Miner. 2017, 52, 83–95. [Google Scholar] [CrossRef]
- Castro, P.R.S.; Maia, A.A.B.; Angélica, R.S. Study of the Thermal Stability of Faujasite Zeolite Synthesized from Kaolin Waste from the Amazon. Mater. Res. 2019, 22, e20190321. [Google Scholar] [CrossRef]
- De Nazaré de Oliveira, A.; Tallyta Leite Lima, E.; de Aguiar Andrade, E.H.; Zamian, J.R.; Filho da Rocha, G.N.; da Costa Ferreira, C.E.; de Oliveira Pires, L.H.; Luque, R.; Santos dos Nascimento, L.A. Acetylation of Eugenol on Functionalized Mesoporous Aluminosilicates Synthesized from Amazonian Flint Kaolin. Catalysts 2020, 10, 478. [Google Scholar] [CrossRef]
- De Nazaré de Oliveira, A.; de Oliveira, D.T.; Angélica, R.S.; Andrade de Aguiar, E.H.; do Rosario da Silva, J.K.; da Rocha Filho, G.N.; Coral, N.; de Oliveira Pires, L.H.; Santos dos Nascimento, L.A. Efficient esterification of eugenol using a microwave-activated waste kaolin. React. Kinet. Mech. Catal. 2020, 130, 633–653. [Google Scholar] [CrossRef]
- Menezes, R.A.; Aranha da Paz, S.P.; Angélica, R.S.; Neves, R.F.; Castella Pergher, S.B. Color and shade parameters of ultramarine zeolitic pigments synthetozed from kaolin waste. Mater. Res. 2014, 17 (Suppl. S1), 23–27. [Google Scholar] [CrossRef] [Green Version]
- Aranha da Paz, S.P.; Angélica, R.S.; Kahn, H. Optimization of the reactive silica quantification method applied to Paragominas-type gibbsitic bauxite. Int. J. Miner. Process. 2017, 162, 48–57. [Google Scholar] [CrossRef]
- Akhgar, S.; Towfighi, J.; Hamidzadeh, M. Investigation of synthesis time and type of seed along with reduction of template consumption in the preparation of SAPO-34 catalyst and its performance in the MTO reaction. RSC Adv. 2020, 10, 34474–34485. [Google Scholar] [CrossRef]
- Prakash, A.M.; Unnikrirhnan, S. Synthesis of SAPO-34: High Silicon lncorporation in the Presence of Morpholine as Template. J. Chem. Soc. Faraday Trans. 1994, 90, 2291–2296. [Google Scholar] [CrossRef]
- Vomscheid, R.; Briend, M.; Peltre, M.J.; Man, P.P.; Barthomeuf, D. The Role of the Template in Directing the Si Distribution in SAPO Zeolites. J. Phys. Chem. 1994, 98, 9614–9618. [Google Scholar] [CrossRef]
- Tan, J.; Liu, Z.; Bao, X.; Liu, X.; Han, X.; He, C.; Zhai, R. Crystallization and Si incorporation mechanisms of SAPO-34. Microporous Mesoporous Mater. 2002, 53, 97–108. [Google Scholar] [CrossRef]
- Doan, T.; Nguyen, K.; Dam, P.; Vuong, T.H.; Le, M.T.; Thanh, H.P. Synthesis of SAPO-34 Using Different Combinations of Organic Structure-Directing Agents. J. Chem. 2019, 2019, 6197527. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, T.A.; Márquez, C.; Sastre, E. Use of different templates on SAPO-34 synthesis: Effect on the acidity and catalytic activity in the MTO reaction. Catal. Today 2012, 179, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Wang, B.; Sun, Q.; Xu, W.Q.; Ma, Z.; Wang, H.; Zhang, D.; Zhou, J. Novel synthesis of fly-ash-derived Cu-loaded SAPO-34 catalysts and their use in selective catalytic reduction of NO with NH3. Green Energy Environ. 2019, 4, 470–482. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Bai, L.; Chang, N.; Nan, G.; Hu, D.; Zhang, Y.; Wei, W. Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process. Appl. Catal. A Gen. 2017, 531, 203–211. [Google Scholar] [CrossRef]
- Liu, H.; Kianfar, E. Investigation the Synthesis of Nano-SAPO-34 Catalyst Prepared by Different Templates for MTO Process. Catal. Lett. 2020, 151, 787–802. [Google Scholar] [CrossRef]
- Luo, M.; Liu, M.; Fu, Y.; Chen, W.; Wang, B.; Mao, G. TEAOH-Templated SAPO-34 Zeolite with Different Crystallization Processes and Silicon Sources: Crystallization Mechanism and MTO Performance. Eur. J. Inorg. Chem. 2020, 2020, 318–326. [Google Scholar] [CrossRef]
- Herrero, I.P.; Álvarez, C.M.; Sastre, E. Complex relationship between SAPO framework topology, content and distribution of Si and catalytic behaviour in the MTO reaction. Catal. Sci. Technol. 2017, 7, 3892–3901. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wei, Y.; Xu, L.; Chang, F.; Liu, Z.; Meng, S.; Su, B.L.; Liu, Z. MgAPSO-34 molecular sieves with various Mg stoichiometries: Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins. Microporous Mesoporous Mater. 2008, 116, 684–692. [Google Scholar] [CrossRef]
- Andonova, S.; Tamm, S.; Montreuil, C.; Lambert, C.; Olsson, L. The effect of iron loading and hydrothermal aging on one-pot synthesized Fe/SAPO-34 for ammonia SCR. Appl. Catal. B Environ. 2016, 180, 775–787. [Google Scholar] [CrossRef]
- Mazur, M.; Kasneryk, V.; Přech, J.; Brivio, F.; Hernández, C.O.; Mayoral, A.; Kubů, M.; Čejka, J. Zeolite framework functionalisation by tuneable incorporation of various metals into the IPC-2 zeolite. Inorg. Chem. Front. 2018, 5, 2746–2755. [Google Scholar] [CrossRef]
- Ghahremani, R.; Baheri, B.; Peydayesh, M.; Asarehpour, S.; Mohammadi, T. Novel crosslinked and zeolite-filled polyvinyl alcohol membrane adsorbents for dye removal. Res. Chem. Intermed. 2015, 41, 9845–9862. [Google Scholar] [CrossRef]
- Biriaei, R.; Halladj, R.; Askari, S. Heavy Metal Ions Uptake by AlPO-5 and SAPO-5 Nanoparticles: An Experimental and Modeling Study. Water Environ. Res. 2017, 89, 337–347. [Google Scholar] [CrossRef]
- Jaseela, P.K.; Garvasis, J.; Joseph, A. Selective adsorption of methylene blue (MB) dye from aqueous mixture of MB and methyl orange (MO) using mesoporous titania (TiO2)—Poly vinyl alcohol (PVA) nanocomposite. J. Mol. Liq. 2019, 286, 110908. [Google Scholar] [CrossRef]
- Huang, T.; Yan, M.; He, K.; Huang, Z.; Zeng, G.; Chen, A.; Peng, M.; Li, H.; Yuan, L.; Chen, G. Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite. J. Colloid Interface Sci. 2019, 543, 43–51. [Google Scholar] [CrossRef]
- Sarah, M.A.; Mohd, R.T.; Omer, M.E.T. Kinetics and isotherms of dichlorodiphenyltrichloroethane (DDT) adsorption using soil–zeolite mixture. Nanotechnol. Environ. Eng. 2018, 3, 4. [Google Scholar]
Components (%) | Flint Kaolin |
---|---|
SiO2 | 42.85 |
Al2O3 | 36.78 |
Fe2O3 | 2.75 |
TiO2 | 3.05 |
LOI (loss on ignition) | 14.15 |
Pseudo-First-Order | Pseudo-Second-Order | ||||||
---|---|---|---|---|---|---|---|
k1 (min−1) | qe (mg·g−1) | R2 | RMSE | k2 (g·mg−1·min−1) | qe (mg·g−1) | R2 | RMSE |
4.32 | 9.03 | 0.97 | 0.46 | 1.48 | 9.15 | 0.99 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinheiro, D.R.; Pinheiro, A.P.; Pontes, F.A.; Soares, J.V.K.; Neves, R.F.; Paz, S.P.A. Sapo-34 Obtained from Amazonian Flint Kaolin: Influence of Impurities of “Oxidized Fe/Ti” in Synthesis and Its Application in the Removal of Cationic Dye from Water. Processes 2023, 11, 662. https://doi.org/10.3390/pr11030662
Pinheiro DR, Pinheiro AP, Pontes FA, Soares JVK, Neves RF, Paz SPA. Sapo-34 Obtained from Amazonian Flint Kaolin: Influence of Impurities of “Oxidized Fe/Ti” in Synthesis and Its Application in the Removal of Cationic Dye from Water. Processes. 2023; 11(3):662. https://doi.org/10.3390/pr11030662
Chicago/Turabian StylePinheiro, Darllan R., Alice P. Pinheiro, Fabio A. Pontes, João Vitor K. Soares, Roberto F. Neves, and Simone P. A. Paz. 2023. "Sapo-34 Obtained from Amazonian Flint Kaolin: Influence of Impurities of “Oxidized Fe/Ti” in Synthesis and Its Application in the Removal of Cationic Dye from Water" Processes 11, no. 3: 662. https://doi.org/10.3390/pr11030662
APA StylePinheiro, D. R., Pinheiro, A. P., Pontes, F. A., Soares, J. V. K., Neves, R. F., & Paz, S. P. A. (2023). Sapo-34 Obtained from Amazonian Flint Kaolin: Influence of Impurities of “Oxidized Fe/Ti” in Synthesis and Its Application in the Removal of Cationic Dye from Water. Processes, 11(3), 662. https://doi.org/10.3390/pr11030662