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Abstract: With the application and popularization of the Internet of Things (IoT), while the IoT
devices bring us intelligence and convenience, the privacy protection issue has gradually attracted
people’s attention. Access control technology is one of the important methods to protect privacy.
However, the existing IoT access control technologies have extensive problems such as coarse-
grainedness, weak auditability, lack of access process control, and excessive privileges, which make
the security and privacy of our IoT devices face great threats. Based on this, a blockchain-based and
encrypted currency-based access control model CcBAC supported by Trusted Execution Environment
(TEE) technology is proposed, which can provide fine-graininess, strong auditability, and access
procedure control for the Internet of Things. In this study, the technical principle, characteristics,
and research status of the control model are introduced, and the framework of the CcBAC model is
expounded in detail and formally defined. Moreover, the functions in the model are described in
detail, and a specific access control process in general scenarios is presented for the model. Finally,
the practicability of this model is verified through theoretical analysis and experimental evaluation,
which proves that this model not only enables resource owners to fully control the access to their
resources, but also takes into account the fine-graininess and auditable access control.

Keywords: access control; Internet of Things; blockchain; trusted execution environment; cryptocurrencies

1. Introduction

With the rapid development of the Internet of Things (IoT), IoT devices are becoming
smarter and stronger, providing great convenience to people [1]. The popularity of new
Internet of Things technology will be the Internet of Things. The application has expanded
to a wider range of areas, such as smart homes, industrial Internet of Things, smart medical
care, smart cities, smart grids, etc., [2]. However, with the rapid advancement of this
process, some potential IoT security issues have gradually appeared [3]. The Internet
of Things equipment is not only facing security issues such as software and hardware
security and blurring in network protection border, but also new security risks [4] such as
springboard invasion, unauthorized access, eavesdropping, data loss, etc. It constitutes a
serious threat to users’ security and privacy.

Access control is a technology that manages the identity verification and authorization
of access, retrieval, and operation of resources, so that resources can be used within a
legal range or be restricted in use. It is an important measure for maintaining network
security and data security [5]. Traditional access control models are based on centralized
authorization decision entities, which make access control decisions based on access control
policies and other attribute information. With the deepening of the Internet of Things in
the life field, higher requirements have been put forward for the protection of data privacy
and personal privacy information [6]. However, each access request points to the same
central trusted entity, which stores all information and makes all decisions based on the
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stored information. This is technically insecure and requires security guarantees from
legal aspects outside of technology. In recent years, frequent privacy leaks, such as the
information leaks of South Korea’s three major credit card companies and the iCloud cloud
system vulnerability storm, have raised questions about the credibility of central trusted
entities [7]. Therefore, it is necessary to design a reliable and flexible distributed access
control scheme for the Internet of Things.

Blockchain, as a decentralized and distributed technology, offers potential solutions.
With blockchain’s capability to provide decentralized trustworthy storage [8], the access
control policies and records in a distributed system can be securely stored on the blockchain
without tampering, and the system is also equipped with strong auditability [9]. Fur-
thermore, the emergence of smart contracts expands the ability of blockchain for various
decentralized applications [10,11]. Thus, blockchain can act as a secure and trustworthy
decentralized platform, providing strong traceability and verifiability for IoT access control.

In recent years, more and more work has been focused on integrating blockchain
technology with access control to improve the security of the Internet of Things. Rifi
et al. [12] proposed a smart home scenario where the capabilities of ordinary sensors in
a smart building are limited and cannot be directly connected to the blockchain, thus a
powerful home gateway is installed with a blockchain client to connect to the blockchain,
managing all IoT devices in the smart building. Jemel et al. [13] used blockchain for user
legitimacy checks in access control. Ying et al. [14] proposed a blockchain-based access
control architecture that stores access control policies on the blockchain and manages them
through blockchain transactions. Xu et al. [15] proposed an identity-based robust token
management policy that utilizes blockchain to construct a decentralized access control
policy, with a granularity equivalent to that of Linux. However, existing works are mostly
simple combinations of blockchain and traditional access control, and cannot provide finer-
grained access control for the IoT. In addition, blockchain’s trusted computing capability is
also worth applying besides its trusted storage.

To address the challenges of distributed and heterogeneous nature of the Internet
of Things (IoT), this paper presents a fine-grained access control mechanism, combining
blockchain and TEE technology, to overcome the commonly existing coarse-grained access
policies, weak auditability, and lack of access process control in the IoT environment, ensur-
ing secure access authorization of IoT resources. Our main contributions are summarized
as follows:

(1) We propose a Cryptocurrency-Based Access Control (CcBAC) model based on
the cryptocurrency Ccoin. Specifically, we improve the traditional Policy-Based Access
Control (PBAC) to combine with blockchain to accommodate the distributed services of
the Internet of Things, thereby preventing the witch attack. The access policy is carried
by the blockchain and executed through smart contracts, realizing the automation of
policy judgment. The Tendermint-BFT consensus mechanism is adopted to suit the limited
Internet of Things devices, thus improving efficiency.

(2) Considering that the blockchain’s transaction data structure can only handle fixed
transaction data, making it inconvenient to store fine-grained access control policies, we
have developed the UnRedeemed Policy Output (URPO) model. It expands the transaction
structure to include keys and fields, enabling secure storage of flexible access policies
at different granularity levels, achieving the goal of fine-grained, dynamically managed
policies, convenient system management, and user-friendly access.

(3) In order to ensure secure execution of off-chain access policies, we have imple-
mented a Reliable Access Control Object (RACO) using a Trusted Execution Environment
(TEE). By utilizing the tamper-proof processing environment of TEE to host RACO and
other security software, trust is extended from the chain to off-chain, effectively controlling
the access process and preventing excessive privileges.

The remaining structure of this paper is as follows: in Section 2, we introduce the
related works. In Section 3, we introduce an IoT access control model using blockchain
and TEE. In Section 4, we show the implementation and working process of the model.
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Finally, in Section 5, we conduct the experimental evaluation and comparative analysis. In
Section 6, we present the conclusions and our future work.

2. Related Work
2.1. Internet of Things and Access Control

As the development of Internet of Things (IoT) technology and applications contin-
ues, the evolution of IoT from an early logistics network utilizing RFID technology to
a connected smart earth has also brought advancements in access control in IoT envi-
ronments. The traditional access control methods used in IoT include role-based access
control (RBAC), attribute-based access control (ABAC), and capability-based access control
(CapBAC). RBAC was proposed before the emergence of IoT and was originally aimed
at solving the access control problems of large enterprise-level systems. RBAC associates
roles with a set of permissions and users obtain corresponding permissions based on the
roles assigned by the system. With the development of IoT, scholars have applied RBAC to
IoT access control, which can support the scalability [16], cross-domain access control [17],
and device heterogeneity [18,19] of IoT environments. However, as a static access control
method, RBAC cannot pre-set the (user, role) and (role, permission) relationships, and
cannot solve the problem of dynamic node access in IoT.

Unlike RBAC, which requires pre-setting of correspondences such as (role, permission)
by administrators, ABAC is a model supporting dynamic access policies, which defines
access policies based on attributes [20]. Because attributes are inherent characteristics of
participants, this model can easily generate attribute sets without manual input, and quickly
determine the relationship between attributes and permissions. ABAC was introduced
in the Internet of Things, reducing the number of rules that could cause role explosion
and solving the problem of RBAC model in highly decentralized IoT environments [21].
Reference [22] developed an attribute-based access control (ABAC) model on the AWS IoT
platform, integrating its existing capabilities and introducing new attributes and attribute-
based policies for IoT entities to enable expressive access control in AWS IoT. However, as
the number of devices increases, the effort to develop a unified access control policy for
different domains will significantly increase the workload of policy management, making
attribute-based ABAC models unsuitable for large-scale, distributed IoT.

CapAC is an implementation of the access control matrix (ACM) model, where each
subject is associated with a capability list that records the access permissions of the subject
towards other objects. Sheng et al. [23] built a capability-based Internet of Things (IoT)
access control architecture based on capabilities, context, and elliptic cryptography. Shigenari
et al. [24] adopted the CapBAC (capability-based access control) model to secure IoT by
studying the illegal information flow relationships on objects and devices of three types:
sensors, actuators, and mixed devices, and designed an information flow control method
based on these relationships. To avoid the single point of failure problem caused by using
centralized servers, Dina et al. [25] proposed a distributed capability-based access control
(DCapBAC) for IoT environments, using a community-based structure to define access rights
in distributed IoT environments. This allows intelligent objects with sufficient resources in a
community of intelligent objects sharing a common task to evaluate access permissions based
on community rules on behalf of intelligent objects with resource constraints. However, IoT
devices are vulnerable to attacks by malicious users due to their weak computing and storage
capabilities, and cannot serve as a secure decision-making entity.

Besides the above three commonly used access control models, PBAC (policy-based
access control) model is a new type of access control model [26], which combines the
attributes of resources, external environment, and requesters, and the specific situational
status of the access request with a set of rules to determine whether the organizational
policy allows authorization to access based on these situational and attribute conditions.
The National Institute of Standards and Technology (NIST) in the report “A SURVEY OF
ACCESS CONTROL MODELS” pointed out that PBAC is an emerging model that satisfies
abstract policy and concrete access control requirements. PBAC model includes using
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attributes and roles to determine access privileges. PBAC even goes beyond Attribute-Based
Access Control (ABAC) to meet the fast and ever-changing access demands [27]. In addition
to defining the attributes and roles of the accessor, PBAC can also refine the granularity of
access policies to specific resources, access time, and location, etc., which is not available in
other access control policies. This paper utilizes the fine-grained characteristics of PBAC
model, incorporating blockchain technology and trusted execution environment, to solve
the problem of easily attacked IoT devices at the access control level.

2.2. Blockchain-Based Internet of Things Access Control

Blockchain is a decentralized, distributed technology based on cryptography algo-
rithms, and it is a peer-to-peer distributed ledger technology, a shared database technology
on the Internet. Technologically, blockchain solves the security problems brought by central-
ized models based on trust, it guarantees the safe transfer of value based on cryptography
algorithms, it ensures the traceability and non-tampering of data based on hash chains
and timestamp mechanisms, it guarantees the consistency of block data between nodes
based on consensus algorithms, and it ensures the programmable intelligence contract
based on automated script codes and Turing-complete virtual machines. In recent years,
blockchain technology has expanded from the financial sector to the Internet of Things
(IoT) sector. One of the main applications is to use it for IoT access control, replacing the
central trustworthy entity of IoT access control.

When blockchain technology is combined with the Internet of Things (IoT), access
control, as one of the key technologies for IoT data protection, becomes the main combined
area. Currently, there are two ways to combine the two: one is to combine blockchain
technology with existing IoT access control models, where blockchain acts as a trusted
entity for the existing access control model, and the other is to propose an IoT access control
model relying solely on blockchain technology. Blockchain serves as a trusted entity while
designing access control methods based on transactions or smart contracts, leveraging
the features of blockchain. Cruz, Paul et al. [28] use blockchain to solve the problem of
verifying the authenticity of user roles in cross-organizational RBAC by using blockchain
as a trusted platform and creating and modifying users and their attributes through smart
contracts. Maesa et al. [29] used blockchain technology to extend the ABAC, but only
used blockchain to store access policies. Rouhani et al. [30] used blockchain technology to
implement an attribute-based access control system, where blockchain mainly provides
auditability, ensuring transparency between the requestor and the resource owner. Alansari
et al. [31] used blockchain to store access control policies and user attributes while the
computationally intensive part was executed in secure hardware Intel SGX outside the
chain, and blockchain only acted as a trusted platform to prevent data tampering. However,
the limitations of these methods lie in the limited expression capabilities of the access
control policies and the inability to effectively address the issue of coarse-grained access
control policies, resulting in difficulty to deal with the phenomenon of excessive privileges.

2.3. Trusted Execution Environment and Blockchain

In blockchain applications, methods to enhance privacy protection performance while
maintaining data availability mainly fall into two categories. One is to use cryptographic
techniques to apply encrypted data, such as homomorphic encryption technology, which
can complete data usage without accessing the plaintext information of the data. The
second solution is to transfer some computational requirements to a secure environment
outside the chain, where the typical representation is a trusted execution environment.
Unlike pure cryptographic methods, the solution of executing computations outside the
chain can alleviate the performance problem of insufficient calculation efficiency on the
chain. However, it is currently difficult to load all the modules of the blockchain into a
trusted execution environment [32]. Therefore, transferring part of the calculation steps
off-chain, as proposed in this paper, to a trusted execution environment is a more reasonable
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choice under the current level of technology maturity, thereby extending trust from the
chain to the off-chain.

Enkhtaivan et al. [33] proposed a bidding scheme that utilizes trustworthy hardware
and blockchain to enhance bidder privacy and auction accuracy, incorporating group signa-
ture algorithms in the blockchain to provide anonymity, and utilizing remote authentication
based on hardware-trusted computing environment to ensure the correct identification of
the winning bidder. Ayoade et al. [34] designed a distributed data management system for
IoT devices based on blockchain technology, storing hashed data hashes in the blockchain
and using TEE only to store raw data. Liang et al. [35] integrated TEE with blockchain tech-
nology to implement a reward mechanism for data providers in Crowdsensing applications
and solve the problem of anonymity for malicious requestors. Cheng et al. [36] proposed
storing critical data of lightweight mobile clients in the Intel SGX environment to enhance
client data security and privacy. Enkhtaivan et al. [37] proposed using TEE technology to
coordinate data between IoT systems and blockchain systems, ensuring the completeness
and confidentiality of IoT device-generated data before it is uploaded to the blockchain. In
these schemes, TEE is more often used as a trustworthy storage solution off-chain, ignoring
its secure computing capabilities.

3. CcBAC Access Control Model

The main design idea of the model proposed in this paper is to combine the trusted
execution environment with blockchain technology and implement permission determina-
tion, transfer, and execution through the deployment of smart contracts. Access permission
is initially defined by the resource owner through a transaction, and all transactions of
the operating permission policy are published on the blockchain. In the framework, the
blockchain is viewed as a reliable database, storing requestor’s access control policies in
the form of transactions. Meanwhile, cryptographic currency is introduced as an index of
the policy, representing the authorization of the creator of the transaction to the recipient.
In the process of permission transfer, the access control contract determines the operation
on the resource according to the access control policy carried by the cryptocurrency.

In this model, access policies are defined by resource owners in Ccoin according to their
own needs, and different granularity values correspond to the who, what, where, when, and
how fields. The access policy specifies legitimate accesses through the “who” field, which
can be a single object or group meeting conditions. Before Ccoin is exchanged for resource
access rights, the resource owner can update the access policy or revoke the Ccoin, achieving
fine-grained control over resource access rights. This method has four characteristics:

(1) Only the owner has the authority to create, update, and revoke Ccoin;
(2) The current Ccoin holder can transfer Ccoin freely to other participants;
(3) Ccoin exchange is only permitted when conditions defined in the access policy are

met, and access activities must strictly follow the policy;
(4) All access activities are recorded on the chain for audit.

The model entities include the resource owner (RO), the resource user (RU), the
permission holder (PH), and the reliable access control object (RACO), and all participants
in the model are identified for interaction using addresses. Each participant has a wallet
that stores the cryptocurrency Ccoin representing the access permission. The transactions
involved in this model mainly include the following three steps, as shown in Figure 1:

Authorization process: The resource owner RO drafts the access policy and creates
Ccoin, and then transfers Ccoin to the permission transmitter PT, as shown in process 1© in
Figure 1.

Transfer process: If the permission holder PH is not the final user, Ccoin needs to be
further transferred to other participants, as shown in process 2© in Figure 1.

Exchange process: If the current Ccoin holder is the resource requester RU, Ccoin
needs to be transferred to the access control object RACO to exchange the resource operation
permission, as shown in process 3© in Figure 1. RACO will verify whether it meets the
access policy conditions and monitor the access process.



Processes 2023, 11, 723 6 of 19

Processes 2023, 11, x FOR PEER REVIEW 6 of 21 
 

 

(4) All access activities are recorded on the chain for audit. 
The model entities include the resource owner (RO), the resource user (RU), the 

permission holder (PH), and the reliable access control object (RACO), and all participants 
in the model are identified for interaction using addresses. Each participant has a wallet 
that stores the cryptocurrency Ccoin representing the access permission. The transactions 
involved in this model mainly include the following three steps, as shown in Figure 1: 

Authorization process: The resource owner RO drafts the access policy and creates 
Ccoin, and then transfers Ccoin to the permission transmitter PT, as shown in process ① 
in Figure 1. 

Transfer process: If the permission holder PH is not the final user, Ccoin needs to be 
further transferred to other participants, as shown in process ② in Figure 1. 

Exchange process: If the current Ccoin holder is the resource requester RU, Ccoin 
needs to be transferred to the access control object RACO to exchange the resource 
operation permission, as shown in process ③ in Figure 1. RACO will verify whether it 
meets the access policy conditions and monitor the access process. 

 
Figure 1. The access control model based on Ccoin. 

4. CcBAC System Implementation 
4.1. Basic Elements and Functions 

Definition 1. The cryptocurrency of the representative access permissions as Ccoin c = (tokenId, 
owner, holder, device, policy, timestamp, isValid). 

Table 1 shows the attributes of Ccoin, where owner and holder represent the owner of 
Ccoin and the public key address of the current holder; device represents the address of 
the device, which is also the address of RACO; tokenId is the only number of Ccoin, and it 
is required not to be repeated; policy stands for the access control strategy defined who 
can perform and what operations can be performed.; timestamp is a timestamp that 
indicates the time of creating Ccoin; isValid represents whether the current status of Ccoin 
is valid. If it is valid, isValid = TRUE, otherwise, isValid = false 

Table 1. Attributes of Ccoin. 

Type Name of Variable Defined by ERC-721 
uint256 tokenId Yes 
address owner Yes 
address holder No 
address device No 
json policy No 
uint256 timestamp No 
bool isValid No 

Figure 1. The access control model based on Ccoin.

4. CcBAC System Implementation
4.1. Basic Elements and Functions

Definition 1. The cryptocurrency of the representative access permissions as Ccoin c = (tokenId,
owner, holder, device, policy, timestamp, isValid).

Table 1 shows the attributes of Ccoin, where owner and holder represent the owner of
Ccoin and the public key address of the current holder; device represents the address of the
device, which is also the address of RACO; tokenId is the only number of Ccoin, and it is
required not to be repeated; policy stands for the access control strategy defined who can
perform and what operations can be performed.; timestamp is a timestamp that indicates
the time of creating Ccoin; isValid represents whether the current status of Ccoin is valid. If
it is valid, isValid = TRUE, otherwise, isValid = false.

Table 1. Attributes of Ccoin.

Type Name of Variable Defined by ERC-721

uint256 tokenId Yes
address owner Yes
address holder No
address device No

json policy No
uint256 timestamp No

bool isValid No

CcABC utilizes the blockchain to ensure the security of data storage and atomic
transmission of data, with the consistency of the ledger maintained by consensus participant
nodes. Ccoin is stored on the blockchain, and all operations on Ccoin are executed on
the chain by sending messages to all blockchain nodes via the function caller, such as
createCcoin, transferFrom, updatePolicy, revokeCcoin, and redeemCcoin. The function caller
must sign the message with a key to ensure the authenticity of the message. In CcBAC, the
message format from a calling party pki is as follows:

msg :
[
tokenId, op, {policy},

{
pk j
}]

σpki
(1)

where op denotes the operation code of the function. The parameters in curly braces are
optional. If op = createCcoin or updatePolicy, then {policy} must be a valid policy. If op =
transferFrom, then

{
pk j
}

is the new recipient’s public key. σpki
represents the key signature

of the function caller’s pki.
Table 2 shows the main functions and events defined in the CcBAC model interface,

where createCcoin, transferFrom, updatePolicy, revokeCcoin, and redeemCcoin are used to oper-
ate Ccoin. The pseudo-code of the functions is shown in Algorithms 1–5. The policyCheck
is called by the redeemCcoin function to redeem policy verification, and its pseudo-code is
shown in Algorithm 6.
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Algorithm 1 (createCcoin) Create a new Ccoin.

Input: _device, _policy
Output: tokenId
1: Generate new tokenId
2: Require !_exists(tokenId)
3: Set owner BCA address of tokenId = msg.sender
4: Set holder BCA address of tokenId = msg.sender
5: Set device BCA address of tokenId = _device
6: Set policy of tokenId = _policy
7: Set timestamp = block timestamp
8: Set isValid of tokenId = 1
9: Return tokenId

Table 2. Function and events of Ccoins.

Functions and Events Defined by ERC-721

function transferFrom (address _from, address _to, uint256 _tokenId)
external payable; Yes

function ownerOf (uint256 _tokenId) external view returns(address); Yes
function balanceOf (address _owner) external view returns(uint256); Yes
function createCcoin (address _device, address _owner) external view
returns (uint256); No

function updatePolicy (json _policy, uint256 _tokenId) external; No
function revokeCcoin (uint256 _tokenId) external view returns (bool); No
function redeemCcoin (uint256 _tokenId) external; No
function policyCheck (uint256 _tokenId) external view returns (bool); No
function createCcoin (address _device, address _owner) external view
returns (uint256); No

event Transfer (address _from, address _to, uint256 _tokenId); Yes
event PolicyModified (uint256 _tokenId); No
event RevokeCcoin (uint256 _tokenId); No
event AccessAllowed (address _from, address _to, uint256 _tokenId); No
event AccessDenied (address _from, address _to, uint256 _tokenId); No
event DissatisfyPolicy(address _from, address _to, uint256 _tokenId); No

Algorithm 2 (transferFrom) Transfer Ccoin to other participants.

Input: _oldHolder, _newHolder, _tokenId
1: Require holder BCA address of tokenId == msg.sender
2: Set holder BCA address of tokenId == _newHolder
3: Send event Transfer

Algorithm 3 (updatePolicy) Modify the access policy of Ccoin.

Input: _newPolicy, _tokenId
1: Require owner BCA address of _tokenId == msg.sender
2: Set policy of tokenId = _newPolicy
3: Send event PolicyModified

Algorithm 4 (revokeCcoin) Revoke a Ccoin.

Input: _tokenId
1: Require owner BCA address of _tokenId == msg.sender
2: Require _exists(tokenId)
3: Set isValid of tokenId = false
4: Send event RevokeCcoin
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Algorithm 5 (redeemCcoin) Redeem resources using Ccoin.

Input: _tokenId
1: Require holder BCA address of _tokenId == msg.sender
2: transferFrom(msg.sender, device BCA address of _tokenId, tokenId)
3: If policyCheck(_tokenId) == true
4: then Set isValid of tokenId = false
5: And Send event AccessAllowed
6: else Send event AccessDenied

Algorithm 6 (policyCheck) Check if the current digital or physical environment satisfies the
redemption conditions defined in the access policy.

Input: _tokenId
1: Require device BCA address of _tokenId == msg.sender
2: if device.getParam ⊆ _policy of _tokenId
3: then Return true
4: else Send event DissatisfyPolicy
5: and Return false

Participants can be regular blockchain nodes or users that can communicate with the
blockchain. Participants operate Ccoin by sending signed messages to the blockchain, and
the authenticity of the message is verified by the blockchain. Before the Ccoin operation,
the function caller’s credentials also need to be checked. Ccoin stays on the chain until it is
redeemed, and a new transaction is issued every time a Ccoin operation function call is
made. The transaction includes Ccoin as well as a script that records the call information
and execution activities of the function for auditing purposes.

4.2. Workflow

CcBAC can provide fine-grained and responsible access control and has security trust
at the encryption level. Its workflow can be mainly divided into three parts: verification,
authorization, and audit, as shown in Figure 2.
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The verification process is divided into two parts: on the one hand, it includes the
verification of identity and transaction authenticity in the blockchain, and on the other hand,
it includes the verification of the access control policy in the authorization process, i.e.,
the policyCheck function. Specifically, policyCheck relies on the trusted access control object
RACO based on TEE to implement. First, after receiving the redemption request, RACO
collects data from the physical environment; then, it establishes a secure communication
with the blockchain system and extracts the access policy from the received Ccoin; finally,
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it compares the collected physical environment data with the access policy carried by the
Ccoin to determine whether the redemption conditions of the resource are met.

The authorization process in CcBAC evaluates a person’s or process’s eligibility for a
specific access activity. If approved, it allows for accessing resources, modifying permis-
sions, or redeeming Ccoin according to the access policy. This process encompasses five
functions: createCcoin, updatePolicy, transferFrom, revokeCcoin, and redeemCcoin. To facilitate
the management of Ccoin in the distributed ledger, we developed the UnRedeemed Policy
Output (URPO) model based on the Bitcoin UTXO model, whose block structure is shown
in Figure 3. In the URPO model, each block contains multiple Ccoin, and each Ccoin con-
tains its metadata and the TX script field that records the Ccoin transaction activities. The
Ccoin access policy is represented as JSON-formatted key-value pairs to achieve flexible
access policies at different granularity levels.
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CcBAC provides native auditability and traceability, as all operations on the chain,
including resource access, are stored in the TX script field of the blockchain. All nodes on
the blockchain can verify their accuracy.

5. Experiment Simulation and Analysis
5.1. Experiment Analysis

The proposed CcBAC system in this paper comprises two essential components: a
blockchain-based distributed ledger and a TEE chip group-based reliable access control
object. The blockchain securely manages Ccoin and records all activities in transaction form
for auditing purposes; the reliable access control object can embed the blockchain client
and sensor driver in its secure area to collect environmental status and make trustworthy
access control decisions.

In the first component of the system, the experiment designed two implementations:
one is the Golang implementation of Go-Ccoin. The other is the Ethereum-Ccoin based
on the Ethereum smart contract. In order to ensure the uniqueness and transferability of
Ccoin, this experiment uses the ERC-721 protocol to develop the smart contract interface
of CcBAC. Ethereum-Ccoin shows the adaptability of CcBAC to mainstream platforms.
These experiments are running on multiple virtual nodes on two PCs, the experimental
environment is Intel (R) Core (TM) i7-6700HQ CPU @ 2.6GHz 16GB RAM, the operating
system is Ubuntu 18.04.1.

For the second component of the system, we utilize the LPC55S69-EVK microcontroller,
which is protected by ARMv8-M TrustZone technology, and sensors (including GPS receiver,
temperature sensor, camera) as the main components of RACO, as shown in Figure 4.
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ARMv8-M TrustZone is a low-power architecture that uses isolation technology to divide
the address space into a secure world and a non-secure world, achieving spatial isolation.
Programs in the secure world can not only access resources in the secure world but also
those in the non-secure world, while programs in the non-secure world cannot access
resources in the secure world. To securely collect the environmental information required
for access policies, we implemented the sensor driver program in the TEE secure area to
directly connect with the sensor hardware. We also implemented a lightweight blockchain
client in the TEE secure area to ensure secure communication with the blockchain through
SSL/TLS. The experimental environment and configuration are detailed in Table 3.
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Table 3. Experimental environment and configuration.

Name Configuration

Operating system Ubuntu 18. 04. 1 GNU/Linux

CPU 8 Intel (R) Core (TM) i7-6700HQ CPU @ 2. 6 GHz

Network card Intel Corporation Ethernet Connection (2) I219-LM (rev 31)

Memory 16 G Samsung PC4-2400T-UA2

Hard disk 512 G SSD Samsung SSD, 1 T HDD ST1000DM003-1SB1 CC4

TEE chip set ARMv8-M TrustZone, LPC55S69-EVK

(1) Adaptive Analysis

In order to verify the adaptability of the prototype system proposed in this paper to
mainstream platforms, we implemented the prototype on three different platforms: Golang,
Ethereum mainnet, and the Ethereum-based consortium chain Quorum. We performed 50 in-
dependent tests on each of the functions in the model, calculating the average time each
function took to run on each platform. Figure 5 shows the performance testing process of
each function in the Golang prototype, and the results are displayed in Figure 6. The time
scatter plot in Figure 6 shows that the time distribution of each function is relatively uniform
and performance is relatively stable. Among them, the running time of the functions createC-
coin, transferFrom, updatePolicy, and revokeCcoin is relatively short, approximately distributed
between 30 and 80 milliseconds. The function redeemCcoin takes longer because it not only in-
cludes the time of policyCheck, but also requires the access control object CcBAC to sample and
analyze sensor readings and take appropriate measures when necessary, and communicate the
data back to the blockchain. Figure 7 shows the total time for each Ccoin operation function in
the three prototype systems. Due to the maximum change in confirmation time for Go-Ccoin
and Ethereum-Ccoin on three different platforms, the logarithmic scale is chosen to represent
the data. Figure 7 displays that the normal Go-Ccoin confirmation time for each transaction is
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around 40–60 milliseconds, while Ethereum-Ccoin in the Quorum takes approximately 1 s
and in the Ethereum mainnet takes approximately 30 to 50 s. It can be seen that the proposed
CcBAC model has good adaptability.
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(2) Performance Analysis

To evaluate the performance of the CcBAC system, we take the Go-Ccoin prototype as
an example and design two comparative experiments by simulating the concurrent access
of multi-threaded clients to the system. First, we tested the processing time of each function
under different concurrent request scenarios with 50, 100, 200, 500, 1000 virtual clients and
recorded the time cost for each function to complete its execution. The statistical results
can be seen in Figures 8 and 9, with the x-axis representing the number of requests and
the y-axis representing the cost in time. Figure 8 shows that the total running time of each
function increases as the number of requests increases from 50 to 500, but when the number
of requests further increases, the increase in the total running time slows down. Figure 9
shows that when the number of requests increases from 50 to 200, the average time cost
of the function slightly increases, but when the number of requests further increases, the
average time cost of the function starts to decline and gradually levels off. From these
figures, it can be seen that the system’s throughput increases with the increase in the
number of requests, and when the throughput reaches a certain value, it tends to be stable.
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Furthermore, as the number of clients increases, the throughput does not show a noticeable
downward trend.
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Second, we implemented CcBAC and PoW consensus algorithms using Golang accord-
ing to their mechanism principles, and set a reasonable difficulty for the PoW algorithm.
We tested the efficiency of data consistency of the system by comparing the time cost of
Tendermint-BFT and PoW consensus mechanisms under different numbers of nodes. The
number of nodes in the experiment was set to 5 to 100. The calculation results are shown in
Figure 10. As can be seen from the figure, under the assumption of a secure PoW difficulty,
the cost time of CcBAC consensus is far less than that of PoW.
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(3) Performance Comparison

Finally, we compared the performance of three different schemes (the schemes of Pal
et al. [27], the schemes of Alansari et al. [31], and our CcBAC) in the evaluation process
of their policies. We randomly defined 20 policies and executed each of them 50 times,
recording the time spent in the decision-making process. Here, we only consider the
decision-making process, not the process of RACO collecting environmental parameters.
The test results are shown in Figure 11, where the horizontal axis represents the policy
number, and the vertical axis represents the running time.
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Figure 11 shows that the execution time of policies using the CcBAC scheme is shorter
than the time used by the other two schemes. We speculate that there might be two reasons
for this.

(1) We used the JSON syntax format to describe the access control policy, which
occupies less memory and has less parsing time compared to the XML used by the other
two schemes.

(2) The decision process for the other two schemes requires building a policy decision
tree, while our control policy can be directly executed by the script interpreter.

The above experiments and analysis prove that our CcBAC model can not only take
into account the advantages of fine-grained, autonomous authorization, security, and
auditability, but also maintain high performance in large-scale request environments. In
distributed systems, it can effectively achieve consensus and ensure data consistency.

5.2. Security Analysis

In practical situations, an access control system may be subject to two types of attacks:
the forging of access privileges and the violation of access policies. Based on the analysis in
reference [38], this paper adopts a binomial random process to describe the competitive
relationship between honest nodes and attack nodes. Only when the length of the block
created by the attack node is greater than that created by the honest node can the attack be
successful. Suppose the honest node extends z blocks, the attack node extends k blocks, the
probability that the attack node obtains the right to account is q, and honest nodes have
a probability p of obtaining the next block, p + q = 1, then the likelihood that the attacker
closes the block gap is equivalent to the gambler’s ruin problem (Gambler’s Ruin Problem,
referred to as GRP). Because k may be any non-negative integer. The probability of k taking
values follows a Poisson distribution, and the probability of k occurring is:

pk =
λke−λ

k!
(2)

where λ is the mean of k, satisfying the following proportionality:

λ = z· q
p

(3)

When the tampering chain extends k blocks, the probability of catching up to the
honest chain is:

qz = f (x) =

{
1, p ≤ q(

q
p

)z−k
, p > q

(4)
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We calculate the probability for all values of k ranging from 0 to positive infinity and
sum them up to determine Attacker’s likelihood of successfully tampering the block data:

P =
∞

∑
k=0

λke−λ

k!
·
{(

q
p

)z−k
, k ≤ z

1, k > z
(5)

To avoid infinite series summation when calculating the final result, we further trans-
form it:

P = 1−
z

∑
k=0

λke−λ

k!
·
(

1−
(

q
p

)(z−k)
)

(6)

We use MATLAB to conduct simulation experiments, and obtain the relationship
between the probability P of the attacker successfully tampering with the block and the
number n of blocks, as shown in Figure 12. When q is less than 0.5, the probability of
successful attack decreases rapidly with the increase of the number of blocks. On the
contrary, only when the probability q that the attacker obtains the ownership of the next
node is greater than or equal to 0.5, the attacker can possibly succeed in tampering with the
next block. In other words, only when the attacker obtains more than 50% of the nodes on
the block chain can, it control the data flow of the entire block chain. Because the number
of devices in the IoT ecosystem is usually huge, each device can serve as a light node of the
block chain. This paper is based on the block chain IoT device access control mechanism,
which can effectively resist the access rights of the forged attack, meeting the security
requirements of the device access control in the IoT ecosystem.
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For the second type of attack, we consider two types of access policy violations.
On the one hand, it stems from the IoT device itself having weak security, unable to
guarantee the confidentiality and integrity of the code. Most IoT devices are lightweight,
and typical lightweight devices cannot guarantee their own security. Attackers may be able
to compromise the security of access control through IoT devices with weak security. Our
CcABC model adopts TEE to implement a reliable access control object, providing a secure
environment for executing code and storing data. Interacting with the real world through
TEE ensures privacy and trust, establishes a secure connection with the blockchain, extends
trust from the chain to the off-chain, and ensures the safe retrieval of access policies from
Ccoin in the blockchain. Based on the access conditions, it makes access decisions and
monitors the access process, ensuring that the resource accessor strictly follows the access
policy defined by the resource owner, and safely defending against violations of access
policies. On the other hand, the coarse-grained nature of access control models themselves
is also an important factor contributing to policy violations and attacks. The PBAC access
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control model that this paper is based on can ensure sufficient fine-grainedness because
its primary focus is on the resources, while other access control models focus on the users.
For example, other models ask “What users do I have and what can they do to which
resources?” Control is composed of subjects (who is gaining access), permissions (what is
being accessed or used), and roles (what permissions can be assigned to the subject). Our
access control model asks “what types of resources do I have and who/how is using or
managing these resources?” Control is determined by the subject (who is granted access),
the action (what behavior is being discussed), the object (what resource is being accessed
or used), and the context (defining the acceptable environment or other parameters for
access). Defining who, what, where, when, and how provides the access control policy with
finer granularity, thus preventing policy violations.

5.3. Comparative Analysis

The following is a translation of the content: In terms of comparison, the proposed
access control model in this paper is evaluated from two aspects: first, it is compared with
traditional models (as shown in Table 4), and second, the advantages and disadvantages of
the CcBAC model in this paper are analyzed. It can be seen that the model in this paper
has certain advantages in the aspects of massiveness, dynamicity, and distributed of the
new Internet of Things.

Table 4. Comparison analysis of our model and traditional access control models.

Name Massiveness Dynamicity Distributed

Traditional Access
Control Models

As the data and
access requests
increase, access

control policies grow
exponentially, leading

to high system
overhead and low
access efficiency.

Static allocation of
access rights is unable

to meet dynamic
access needs;

coarse-grained
granularity cannot
flexibly respond to
frequent changes in

access requests.

Does not support a
unified standard for

access control policies,
making it difficult for

parties to share
information.

Our Model

As the amount of
data and access

requests increases, the
access control policy

grows linearly,
resulting in low

system overhead and
high access efficiency.

With the increase of
data and access

requests, the access
control policy grows
linearly, resulting in

low system overhead
and high access

efficiency.

Fine granularity and
good flexibility can

support uniform
access control policy

standards among
parties, and the use of

blockchain storage
strategy for policy
storage facilitates

information sharing.

Furthermore, in comparison with the existing research models, as shown in Table 5,
the CcBAC model has the following advantages:

Fine-grained: CcBAC access control can precisely define who, what, where, when and
how, making the access policy have better granularity.

Security: The model in this paper performs all access control operations on the
blockchain, ensuring secure storage and atomic data transitions. The RACO implemented
by TEE ensures the accuracy of access policies and makes proper decisions while monitoring
the access process.

User-friendly access: If you need to request a resource, you only need to use Ccoin to
exchange the corresponding resource. You can also flexibly transfer Ccoin from one holder
to another through the audit program, realizing dynamic transfer of access permissions.
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Self-authorization: Access to resources can only be decided by the resource owner
when needed, through Ccoin definition and issuance, without the need for third-party
intervention.

Table 5. Comparison and analysis of the proposed model with existing research solutions.

Model Based on
Blockchain

Fine-
Grainedness Security Ease of Access Self-Granting

Authorization Auditability Access Process
Control

DCapBAC [21] No Yes Access control
mechanism

Different
requests are
required for

different
resources, which
is inconvenient

for access.

No No No

BlendCAC [15] Yes Yes
Access control

mechanism;
Blockchain

As above, not
convenient for

access.
Yes Yes No

The model in
reference [31] Yes No

Access control
mechanism,
Asymmetric
encryption;

TEE

As above, not
convenient for

access.
No Yes No

Our model Yes Yes

Access control
mechanism;
Blockchain;

TEE

Flexible access
policy

formulation, no
need to send

different
requests, easy

access.

Yes Yes Yes

Auditability: The CcBAC model in this paper has native auditability because all
operations on the chain are stored in the TX script field of the blockchain. All nodes on the
blockchain can verify its accuracy.

Access process control: RACO is a reliable access control object representing the
resource owner, which is responsible for verifying the validity of the Ccoin function,
checking whether access policy are met, and monitoring the access process. By combining
with the trusted execution environment (TEE), all activities in the access process are ensured
to be securely recorded.

6. Conclusions

Applying blockchain technology to access control is a major trend in current blockchain
research. In this paper, we adopt blockchain technology and propose a crypto-currency-
based access control model CcBAC. On the one hand, it fully plays the characteristics
of decentralization and tamper resistance of blockchain; on the other hand, it effectively
controls and manages resources through fine-grained access control. The core idea of this
paper is: using blockchain as the carrier of access control policy, changing the traditional
“centralized” policy decision-making mode to automatic mode by smart contract, and
making the policy execution process and result public and verifiable; by using the crypto-
currency Ccoin, access permissions are solidified as secure digital assets, allowing the
resource owner to independently define access to their resources without the need for third-
party intervention; access constraints and access process and its contextual relationship can
be precisely defined in Ccoin, and access control can be implemented in fine granularity by
constructing access policies; all operations on Ccoin, whether on-chain or off-chain, can be
safely recorded, and policy compliance can be verified by blockchain and powerful access
control objects, thus achieving powerful auditability.

In recent years, with the rapid development of the Internet of Things, the trend of IoT
access control policies has become increasingly complex, presenting new challenges for the
efficiency of IoT access control policies. Optimization algorithms such as the bat algorithm [39]
and particle swarm algorithm [40] provide us with new ideas for solving this problem. In
future work, we will use the bat algorithm or low discrepancy sequence initialization methods
to evaluate user/resource access behavior and adjust the access control policy in real-time
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based on the evaluation results, thereby improving the security of the system and allowing
administrators to better control and monitor access control policies.
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