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Abstract: Antibiotic pollution has become a serious concern due to the extensive use of antibiotics,
their resistance to removal, and their detrimental effects on aquatic habitats and humans. Hence,
developing an efficient antibiotic removal process for aqueous solutions has become vital. Amoxicillin
(Amox) is one of the antibiotics that has been efficiently removed from an aqueous solution using
hydroxyapatite nanoparticles (HAP NPs). The current study synthesizes and utilizes hydroxyapatite
nanoparticles as a cost-effective adsorbent. Adsorbent dose, pH solution, initial Amox concentration,
equilibrium time, and temperature are among the factors that have an evident impact on Amox
antibiotic adsorption. The (200) mg dose, pH (5), temperature (25) ◦C, and time (120) min are shown
to be the best-optimized values. The nonlinear Langmuir’s isotherm and pseudo-second-order
kinetic models with equilibrium capacities of 4.01 mg/g are highly compatible with the experimental
adsorption data. The experimental parameters of the thermodynamic analysis show that the Amox
antibiotic adsorption onto HAP NPs powder is spontaneous and exothermic.

Keywords: adsorption; amoxicillin; hydroxyapatite NPS; kinetic and thermodynamic studies

1. Introduction

Antibiotics are one of the few medications that primarily target bacteria, including
infections, yet they cause little harm to human tissues and cells [1]. Antibiotics can be
classified based on their mechanisms of action or chemical structures. In human and
veterinary medicine, more than 250 antibiotic entities have been approved [2]. These
antibiotics have been used as potent medications for treating and preventing infections and
infection-related illnesses in animals and humans for decades [3]. Antibiotics are rapidly
expanding worldwide, attracting increasingly significant attention [4]. The antibiotic
residue in the environment is of particular concern because prolonged low-level exposure
can result in antibiotic-resistant genes (ARGs) [5]. The extensive use of antibiotics in the past
and present has led to substantial residues being transported into terrestrial and aquatic
habitats either indirectly or directly [6]. Antibiotic residues from humans and animals
have been discovered in various matrices [7–9]. Antibiotics have different half-lives in
the environment; a few are exceptionally long, resulting in rising levels of environmental
contamination [10]. Many investigations reveal that antibiotic exposure (µg/L-mg/L) has
significantly affected the aquatic growth, survival, and body weight of different species [11–13].
Typically, they are released into natural water bodies via pharmaceutical manufacturing
effluents and sewage treatment plant effluents [14]. Due to their classification as recalcitrant
bio-accumulative compounds, pharmaceutical chemicals, notably antibiotics, are identified
as emerging environmental pollutants [15,16]. Antibiotics are hazardous and poisonous [17].
Amoxicillin (Amox) is one of the semisynthetic, broad-spectrum antibiotics routinely
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used to treat common human infections. It is a beta-lactam antibiotic with a molecular
weight of 365.4 g/mol and a molecular formula of C16H19N3O5S [18]. Its antibacterial
activity is connected with the beta-lactam ring system in its structure. Blocking connections
between the linear peptidoglycan chains hinders bacterial cell wall synthesis [19]. The
researchers in Greece investigated the impacts of TiO2/UV-A on Amox and concluded
that the applied technique was acceptable [20]. The photocatalytic ozonation was used to
conduct rapid mineralization and detoxification of diclofenac and Amox. Such methods
were applied in the treatment of urban wastewater [21]. Modern oxidation approaches
convert antibiotic molecules into simple complexes or fully mineralize them. However,
they are prohibitively costly and too complicated to be sustainably applied to eliminate
chemicals such as antibiotics on an industrial scale [22]. Physicochemical technologies have
emerged as a viable option for treating organic pollutants [23]. Adsorption, dissimilar to
biologically based processes, is easy-to-design, highly efficient, simple to operate, relatively
inexpensive, and unaffected by possible toxicity [24]. However, around 30 antibiotics have
only been documented utilizing adsorption techniques to extract organic pollutants from
contaminated streams onto adsorbent surfaces [25,26].

Nevertheless, this method’s most widely used adsorbents are activated carbons
(GACs), which are expensive in terms of industry costs. Therefore, there has been
a growing interest in identifying easy-to-use alternative adsorbents. Nanoparticles (NPs)
are efficient antimicrobials and may be employed as photocatalysts, adsorbents, and mem-
brane materials [27–30].

Chemical and physical processes are used for designing and manufacturing nanos-
tructures [31,32]. Recently, green NP synthesis has risen as an environmentally acceptable
and cost-effective alternative to chemical and physical approaches [33].

Nanoparticles have been utilized in the removal of amoxicillin. Pham et al. reported
the synthesis and characterization of core–Shell ZnO@SiO2 adsorbent for amoxicillin re-
moval [34]. Machado et al. applied iron nanoparticles to the degradation of amoxicillin [35].
Gaim and his co-workers have invested in the photocatalytic degradation of amoxicillin
with Mn-doped Cu2O nanoparticles [36]. Hydroxyapatite (HAP) [Ca10 (PO4)6 (OH)2]
was widely used as an adsorbent in several applications due to its eco-friendliness, bio-
compatibility, low solubility in water, high adsorption efficiency for heavy metals, good
stability within the oxidized and reduced processes, and wide surface area [37–39]. Hy-
droxyapatite NPs have been applied to remove water pollutants such as organic dyes
and antibiotics [40,41]. Moreover, hydroxyapatite has been reported in the literature as
a nanocarrier in drug delivery [42,43]. Amoxicillin was loaded onto hydroxyapatite [43,44].

This study aims to investigate the functional activity of HAP NPs, synthesized from
eggshells, i.e., biowaste (food waste), in removing Amox from aqueous solutions, taking ad-
vantage of the excellent properties of hydroxyapatite nanoparticles, their biocompatibility,
and their ability to adsorb many chemicals. The thermodynamics, kinetics, and isotherm
parameters are evaluated. In addition, the impact of the experimental conditions, such
as pH, contact time, temperature, initial concentrations upon Amox adsorption, and the
removal efficiency of Amox utilizing HAP NPs, is investigated.

2. Experimental
2.1. Materials and Reagents

In the present study, all solvents and chemical materials have unpurified analytical
reagent grades. An amount of 200 µg/mL of amoxicillin trihydrate stock solution (Figure 1)
was prepared in deionized water (DI) (Aldrich Chemical Co. Ltd., Milwaukee, WI, USA).
Additional diluted standard (10–60 µg/mL) solutions were prepared by diluting the stock
solution with deionized water and kept in the refrigerator for a month or less before being
used to avoid decomposition. The pH of the final solution was adjusted for all experiments
using (0.1 mol/L) of HCl and NaOH.
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2.2. Apparatus

A Hanna pH meter (301 models) was used to adjust the solutions and measure the pH.
A Perkin-Elmer UV–vis (190 nm–1100 nm) spectrophotometer (model Lambda 25, USA)
with a 10 mm (path width) quartz cell was employed to record all of the spectrophotometric
readings. The ADP 110 L, a digitally sensitive balance with three decimal numbers, was
also utilized. All solutions were prepared using deionized water from the Milli-Q Plus
system (Millipore, Bedford, MA, USA).

2.3. Preparations of HAP-NPs

Calcined eggshells as a calcium basis and (97%) phosphoric acid as a phosphate
source were used in the preparation of HAP NPS. Eggshell wastes were collected and
then purified using deionized water (DI). The eggshells were dried for 24 h in an oven
at 100 ◦C to eliminate odors and other contaminants, then milled and sieved in a 350 µm
sieve. The eggshells were calcined in a furnace at 900 ◦C for (3) hours at a (10 ◦C/min)
heating rate. In this operation, calcium carbonate (CaCO3) was converted into calcium
oxide (CaO) [45]. Subsequently, a 0.3 M suspension solution was prepared by mixing CaO
with DI. The resultant solution was used in a wet chemical precipitation reaction by adding
H3PO4 dropwise to the suspension solution. This process involved adjusting the pH to 10
using an NH4OH solution.

The reaction was mixed for (6 h) at (120 ◦C) to obtain a homogeneous solution. Then,
the suspension was filtered before being washed with DI and dried at 100 ◦C for 24 h. The
outcome was calcined for 2 h at 900 ◦C. The synthesized powder was grounded and sieved
through a mesh size of (0.350 mm) to save homogeneous particles [46,47].

2.4. Characterization Techniques

X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) were used to
characterize the prepared HAP NPs studied in our previous work [40]. The crystal phase
was determined using a Siemens D-5000 XRD equipped with Cu-Kα (λ = 0.154 nm). The
shape and size of the HAP were measured using a TEM (JEM 20 Japan) at 200 kV.

2.5. Batch Adsorption Experiments

An aqueous solution (25 mL) containing Amox (30 mg/L) in pH = 5 was used to
balance the precise weight (0.2 ± 0.01 g) solid phase of the HAP-NPs. A mechanical
shaker was utilized to shake the sample solutions for 120 min. The residue concentra-
tion of amoxicillin in the solution was measured using a (UV–Vis) spectrophotometer at
(227 ± 2 nm) [48]. The separation efficiency percentage (%E) and the quantity of Amox
adsorbed (qt) per unit mass of HAP solid-phase were calculated using Equations (1) and (2),
respectively.

% E =
Co − Ct

Co
× 100 (1)
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qt =
(Co − Ct) V

m
(2)

Co represents the initial concentration of Amox, and Ct represents the remaining Amox
concentration in the solution after shaking.

3. Results and Discussion
3.1. Characterizations of HAP NPs

X-Ray Diffraction (XRD) and Transmission electron microscopy (TEM) were used to
characterize the prepared HAP NPs studied. All the results were analyzed in our previous
work [43].

3.2. Retention of Amox from Aqueous Solutions on HAP

The solution’s pH is one of the essential parameters for studying the adsorption of
heavy metal ions and pollutants. After shaking for 120 min at room temperature, the ad-
sorption profile of aqueous solutions that contain Amox at various pH levels via the HAP
solid phase was investigated. The quantity of Amox in the aqueous phase after equilibrium
was measured using photometry [48]. The adsorption percentage %E of Amox onto HAP
increases significantly with the rise in the solution pH up to 5 and then decreases with an
increase in the pH, as shown in the representative data (Figure 2). The mechanism of amox-
icillin absorption by hydroxyapatite can be explained by several physical processes, such
as ion exchange. An exchange may occur between the hydroxyapatite and the protonated
functional groups of amoxicillin, such as carboxylate, amine, and hydroxyphenyl. Since
amoxicillin has a positive charge at low pH, the adsorption of amoxicillin on hydroxyapatite
increases when the pH of the solution increases from 2 to 6, due to the amoxicillin charge
shifting to neutral molecules. On the contrary, the absorption of amoxicillin decreases
when the pH increases from 7 to 10 as a result of changing the amoxicillin charge to nega-
tive [49,50]. Subsequently, pH = 5 is chosen as the best-optimized pH value for the current
research work.
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Figure 2. Effects of pH solution on Amox adsorption percentage from the aqueous solutions using
(0.2 ± 0.01 g) HAP and shaking for 120 min at 25 ± 0.1 ◦C.

At the 30 mg/L concentration, the impact of the solid-phase HAP mass on the ratio
of Amox adsorbed from the solution has been investigated (Figure 3). The figure shows
that the HAP proportion eliminated from the aqueous solution ranges from 22.5% to 93.5%
when the HAP dose rises from 50 mg to 600 mg. The high amount of solid phase increases
the availability of more active sites for adsorption, resulting in a rise in the percentage. In
this study, 200 mg of HAP, equivalent to 63.3%, were used to observe the influence of other
parameters on adsorption.
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Figure 3. Effects of pH solution on Amox adsorption percentage from the aqueous solutions on
(0.2 ± 0.01 g) HAP with shaking time 120 min at 25 ± 0.1 ◦C.

The contact time between an adsorbent and its adsorbate represents one of the critical
factors in the adsorption ability to remove pollutant substances. The impact of contact
time upon Amox elimination via HAP has been examined, and the results are presented
in Figure 4. The steepness of the graph depicts how the increasing contact time results
in an increasing process of adsorption. This impact is most noticeable within the first
75 min, when most Amox is physically absorbed (dotted parallel lines). Within 120 min, the
proportion of Amox elimination reaches equilibrium. This suggests that Amox adsorption
on HAP progresses in two phases, the first of which is the fastest and includes the Amox
transfer from the aqueous phase to the external surface of the HAP. The diffusion of Amox
between the HAP bundles under the chemical interaction gradient is the second stage,
which takes a longer time, thereby representing chemical absorption or adsorption (solid,
parallel lines).
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The temperature profile at a constant contact time duration is also studied in terms of
solution temperature impact on adsorption capability at different optimized temperature
values (K) (288, 298, 308, and 323). It is found that the rise in the solution temperature from
288 to 323 K results in a considerable reduction in the Amox adsorption percentage extracted
by the HAP (Figure 5). These findings show that the instant adsorption is exothermic and
has a negative Gibbs free energy value, thereby showing the spontaneity of the overall
adsorption process.

The retention profile of Amox from aqueous solutions with a pH of 5 is examined
over a broad range of equilibrium values (10 mg/L–60 mg/L). In (Figure 6), %E of Amox
species adsorbed onto HAP is shown against the corresponding concentration in the
aqueous solution. More dilute aqueous solutions produce the most favorable %E of Amox
adsorption onto HAP sorbent. With the rising Amox concentrations, the %E values decline,
and the HAP membranes become increasingly saturated with the retained Amox species.
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Figure 4. Effects of shaking time upon adsorption percentage of Amox (30 mg/L) from aqueous
solutions onto (0.2 ± 0.01 g) HAP at 25 ◦C and pH 5.
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Figure 6. Effects on initial concentration upon removal Amox percentage from aqueous solutions
onto (0.2 ± 0.01 g) HAP at 25 ◦C; pH 5; shaking time 120 min.
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3.3. Kinetic of Amox Adsorption on HAP solid Phase

The adsorption kinetics of pollutants such as those of the Amox species from aqueous
solutions through the solid sorbent are essential. It delivers important insights into the
reaction pathways and net adsorption. The retention of Amox species adsorption on the
solid-phase HAP depends on intra-particle and film diffusion. The more rapid one controls
the overall transport rate [51]. Based on the effect of shaking time, the study conclusions
have been supported by calculating the (t1/2) half-life time of the Amox adsorption from
solutions onto HAP of solid sorbent. The (t1/2) values are estimated based on log C/Co
plots vs. the time of Amox adsorption onto HAP. The (t1/2) value is 1.60 ± 0.04 min
and agrees with the (t1/2) values reported previously [52,53]. This is why the kinetics
of Amox species adsorption onto HAP adsorbent depend on the film and intra-particle
diffusion, where a more rapid one can control the overall transport rate. The Amox species
sorbed onto the HAP sorbent, which was subjected to investigation using the Weber–Morris
model [54]:

qt = Rd(t)
1/2 (3)

Rd and qt represent the intra-particle transport rate constant and sorbed Amox concen-
tration at the time, respectively. The qt against the time plot has been depicted (Figure 7).
The Rd values calculated from distinct Weber–Morris plot slopes (Figure 7) equal 0.27 with
(R2 = 0.986) as a correlation coefficient.
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Figure 7. Weber–Morris plot of adsorbed Amox from the aqueous solutions onto the HAP vs. the
value of the square root of the time.

The kinetic model of a fractional power function modified from Freundlich’s equation
can be represented by the following relation [55]:

ln qt = ln a + b ln t (4)

qt refers to the amount of the Amox species adsorbed per HAP unit mass (mg/g) at
a time (t), and (a and b) represent coefficients with b < 1. The experimental data from the
adsorption process apply to the fractional power equation (Figure 8).

The values of (a and b) are displayed in Table 1, and the data are consistent with the
coefficient of correlation (R2) value of 0.988.

The data also indicate that the kinetic model does not apply to the description of Amox
adsorption by HAP.
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Figure 8. Fractional power model plots of Amox from the aqueous solutions onto the HAP.

Adsorption rates in liquid-phase systems are described by the common Lagergren
equation. The variation of the adsorption of Amox species from an aqueous medium onto
the solid phase of HAP is subjected to Lagergren’s equation [56]:

log (qe − qt) = log qe − klagert/2.303 (5)

The adsorption of Amox per sorbent unit mass is represented by (qe). For the retention
process, (KLager) represents a general rate constant of the first order, and (t) denotes time.
The log (qe − qt) vs. time plot (Figure 9) is linear, and (KLager) and the calculated (qe) values
are (0.039 min−1) and (3.49 mg/g), respectively, with the correlation coefficient (R2 = 0.973).
The resulting data do not agree with the first-order adsorption kinetics of Amox onto (HAP)
as a solid sorbent [57].
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Figure 9. Lagergren model of Amox uptake onto HAP vs. time.

A pseudo-second-order equation is utilized, as well as a particular kinetics model [53],
supported on the assumption that:

(a) The amount of adsorbate in the solution remains constant over time;
(b) In an equilibrium state, the amount of adsorbate adsorbed determines the whole

number of binding sites.
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A linearized pseudo-second-order rate form is represented in the below equation:

t
qt

=
1
h
+

(
1
qe

)
t (6)

(h = k2qe
2 relates to the rate of initial adsorption, and (qe and qt) denote the adsorbed

quantities per unit mass at any time (t). In these conditions, (t/qt) vs. (t) plots are linear
(Figure 10). The (k2) is a second-order rate constant, and the equilibrium capacity (qe) for
the Amox species is computed from the intercept and slope. They are equal to (3.9 × 10−3 g)
(mg. min)−1 and (4.01 mg/g), with a notable degree of correlation (R2 = 0.996). The data
show that all of the experimental data fit well with the excellent agreement values and the
pseudo-second-order rate constants, k2, which typically depend on the experimental conditions.
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Figure 10. Pseudo-second order of Amox uptake onto HAP vs. time.

The rate equation is formulated based on the capacity of adsorption that is typically
described by the Elovich model [58]. The latter is mainly applicable for the chemisorption
kinetics and valid for systems with heterogeneous adsorbing surfaces. The below equation
represents the model:

qt = β ln (αβ) + β ln t (7)

The α (g·mg−1 min−1) and β (mg·g−1 min−1) stand for the initial adsorption rate and
the desorption coefficient, respectively. The (qt) versus (lnt) plot is linear (Figure 11). The
figure shows that the parameters of the Elovich equation α and β calculated from intercepts
and slopes for Amox are (0.20 g·mg−1 min−1) and (0.84 mg·g−1 min−1), respectively, with
(R2 = 0.983).
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Based on kinetic data, it was determined that the pseudo-second-order kinetic model
is the most fitting for explaining the adsorption of Amox by HAP from the solution, which
has been shown in Table 1.

Table 1. The parameters of various kinetic models for Amox adsorption on HAP at 298 K.

Weber–Morris model

Rd R2

Amox 0.27 0.986

Fractional power function kinetic models

A B ab R2

Amox 0.141 0.626 0.088 0.988

The pseudo-first-order kinetic (lagregen) model

qe, exp (mg/g) qe, calc(mg/g) k1 R2

Amox 2.47 3.49 0.039 0.973

The pseudo-second-order kinetic models

qe, exp (mg/g) qe, calc(mg/g) k2 R2

Amox 2.47 4.01 3.9 × 10−3 0.996

Elovich kinetic model

α, (g/mg min) β, (mg/g min) R2

Amox 0.2 0.84 0.983

3.4. Adsorption Isotherms

The models of adsorption isotherms are applied to describe the Amox interaction
mechanism on the surface of the adsorbent. The equilibrium studies are valuable for
calculating the highest HAP adsorption capacity towards Amox and determining the
extensive surface features of the tested sorbent. A critical investigation is carried out to
study the profiles of the retention over a range of concentrations (10 mg/L–60 mg/L) from
Amox solutions on the used sorbent at optimum conditions.

The plot of the Amox amount adsorbed onto HAP vs. the Amox concentration values
in solution is depicted in (Figure 12). At moderate concentrations of the analyte, the amount
of Amox retained on the HAP linearly varies with the amount of Amox that remains in the
solution. A (3.10 ± 0.05 mg g−1) adsorption capacity of Amox onto HAP is achieved.
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Figure 12. A plot of Amox retained (qe) onto HAP (mg/g) vs. equilibrium concentration (Ce); at 25 ± 1 ◦C.
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The adsorption of Amox onto the sorbent (HAP) is subjected to the model of Langmuir
isotherm represented in the linear form below [58]:

Ce

Cads
=

1
Qb

+
Ce

Q
(8)

Ce refers to the concentration (mg/L) of Amox in the analysis solution, and Cads
represents the Amox amount that has been retained on HAP (per unit mass). The Q and b
constants represent Langmuir’s parameters related to the solute’s maximum adsorption
capacity per unit of adsorbent. These parameters are needed for surface monolayer cover-
age. The equilibrium constant is related to the binding energy of the solute’s adsorption.
The Ce/Cads against Ce plot over the entire Amox concentration range onto HAP is linear
(R2 = 0.998). The linearity indicates that the Amox adsorption onto the HAP follows the
Langmuir model (Figure 13). Q and B values calculated from the linear plot slope and
intercept are equal: (3.92 ± 0.03 mmol/g) and (0.11 ± 0.01 L/mol), respectively.

The behavior of the Amox retention from the solution on the deployed types of the
sorbent is subjected to the Freundlich model, which can be represented by the linear form
below [59]:

log qe = log A +
1
n

log Ce (9)

(A) and (1/n) represent the Freundlich parameters related to the highest solute adsorp-
tion capacity (mg/g), qe denotes the retained Amox onto the HAP concentration (mg/g) at
equilibrium, and Ce represents the Amox concentration in the solution (mg/L) (Figure 14).
The parameters (A and 1/n) of Freundlich are estimated based on the slope, and the in-
tercept is equal to (0.47) and (0.63) (R2 = 0.964). The data show that there is unfavorable
adsorption of Amox by HAP and that the model used is undoubtedly improper to fit well
with the data.
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Figure 13. Langmuir’s adsorption isotherms of the Amox aqueous solutions onto HAP at 25 ± 1 ◦C.



Processes 2023, 11, 749 12 of 16

Processes 2023, 11, x FOR PEER REVIEW 12 of 17 
 

 

(Figure 14). The parameters (A and 1/n) of Freundlich are estimated based on the slope, 
and the intercept is equal to (0.47) and (0.63) (R2 = 0.964). The data show that there is un-
favorable adsorption of Amox by HAP and that the model used is undoubtedly improper 
to fit well with the data. 

 
Figure 13. Langmuir’s adsorption isotherms of the Amox aqueous solutions onto HAP at 25 ± 1 °C. 

 
Figure 14. log qe vs. log Ce plot of Amox retention on HAP at 25 ± 1 °C (Freundlich isotherms). 

3.5. Thermo-Dynamic Features of Amox Retention on HAP 
The Amox adsorption onto the HAP solid phase is essential. It has been researched 

over many different temperatures (288–323 K) to determine the Amox retention on the 
HAP. The thermo-dynamic parameters (ΔS, ΔH, and ΔG) are assessed using equations 
(10, 11, and 12) [60]: 𝑙𝑛  𝐾 = −∆𝐻𝑅𝑇  + ∆𝑆𝑅  (10)∆𝐺 = ∆𝐻 − 𝑇∆𝑆 (11)∆𝐺 = −𝑅𝑇 𝑙𝑛 𝐾 (12)

y = 0.2549x + 2.343
R² = 0.9981

0

2

4

6

8

10

12

14

-10 0 10 20 30 40 50

C e/
q e

(m
g/

L)

Ce (mg/L)

y = 0.4719x  − 0.2005
R² = 0.9649

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 0.50 1.00 1.50 2.00

lo
g 

qe

log Ce

Figure 14. log qe vs. log Ce plot of Amox retention on HAP at 25 ± 1 ◦C (Freundlich isotherms).

3.5. Thermo-Dynamic Features of Amox Retention on HAP

The Amox adsorption onto the HAP solid phase is essential. It has been researched
over many different temperatures (288–323 K) to determine the Amox retention on
the HAP. The thermo-dynamic parameters (∆S, ∆H, and ∆G) are assessed using
equations (10, 11 and 12) [60]:

ln Kc =
−∆H

RT
+

∆S
R

(10)

∆G = ∆H − T∆S (11)

∆G = −RT ln Kc (12)

∆H, ∆S, and ∆ G are the enthalpy, entropy, and Gibbs free energy variations. T denotes
the degree of temperature (Kelvin), R represents a value of the gas constant (approximately
8.314 J·K−1 mol−1), and (KC) stands for the equilibrium constant. The (KC) values for
the Amox adsorption from the solution at equilibrium onto solid sorbent are calculated
according to the equation below:

kc =
Ca
Ce

(13)

(Ce) is the Amox concentration at equilibrium in solution (mg L–1), and (Ca) is the
amount of Amox adsorbed on the adsorbate per liter at equilibrium (mg L–1). The ln KC
versus (1000/T) plot is linear over a range of temperature degrees (288–323 K) (Figure 15).
The equilibrium constant decreases with an increase in temperature. This direct, propor-
tional increase reveals that the Amox retention process on utilized sorbent materials is
exothermic. The ∆H, ∆ S, and ∆G numerical values for the release of Amox calculated from
the slope and intercept of the (ln KC) versus (1000/T) linear plot are (−21.53 ± 0.1 kJ/mol),
(−67.51 ± 0.2 J mol−1 K−1), and (−1.42 ± 0.08 kJ mol−1) at 298 K temperature (Figure 15).
The negative ∆H value has revealed the exothermic nature of the uptake process. The
negative value of ∆S proves that the step of the re-orientation is entropy, and it is regu-
lated at the state of the activation, indicating non-electrostatic bonding of the adsorbent
phase and solid phase. However, the negative value of ∆G at 298 K for the formed solid
phase indicates the spontaneous nature of the adsorption of Amox onto HAP. Table 2
shows the comparison of adsorption conditions with those of other adsorbents reported in
the literature.
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4. Conclusions

The present research indicates that the HAP nanoparticle is an appropriate adsorbent
for eliminating the Amox antibiotic from the aqueous solution. The HAP adsorbent’s perfor-
mance is highly influenced by many parameters, such as contact time, Amox temperature,
the concentration of adsorbate, adsorbent dosage, and initial pH. The Langmuir isotherm
fits the equilibrium data on the adsorption of Amox compared with the Freundlich model,
which indicates monolayer adsorption with a maximal capacity of 4.01 mg/g of HAP at
25 ◦C and a pH of 5. The Amox adsorption onto HAP is well-fitted to the pseudo-second-
order kinetic model. The results of the thermo-dynamic study indicate the physisorption
process. The estimated thermo-dynamic parameters have shown that the adsorption pro-
cess is spontaneous and exothermic. Overall, the current study’s findings propose that
the HAP nanoparticles can be used as effective and ecologically acceptable adsorbents for
removing the Amox antibiotic from aqueous solutions.

Table 2. Comparison of adsorption conditions with other adsorbents reported in the literature.

Adsorbent Conditions Refs.

1 ZnO@SiO2
10 mg/L Amox, 25 mg/mL of ZnO@SiO2 at

pH 8 [34]

2 ZnO@CNF nanoadsorbent 25 mg/L of Amox, 0.09 g of ZnO@CNF at
pH7.5 [61]

3 Fe3O4@C nanoparticles 50 to 300 mg/L of Amox, 1 g/L Fe3O4@C at
pH 5 [62]

4 Maltodextrin/reduced
graphene/CuO nanocomposite

30 mg/L of Amox, 0.05 g of nanocomposite at
a pH of 7.4 [63]

5 Ag NPs 30 mg/L of Amox, 0.5 of Ag NPs at pH 4 [64]

6 Fe3O4-chitosan/Ag NPs 20 mg/L of Amox, 0.4 g/L
Fe3O4-chitosan/Ag NPs at pH 4 [65]

7 Fe3O4@AgNPs 100 and 500 µL of Amox, 10 and 100 mg/L of
Fe3O4@AgNPs at pH 7 [66]

8 MoS2 Nanosheets 45.2 µg/mL of Amox, 1.5 mg/mL of MoS2
Nanosheets at pH 10.2 [67]

9 Bismuth oxyiodide-chitosan
(BiOI-Ch) bionanocomposite 80 mg/g of Amox, 1.7 g/L of BiOI-Ch at pH 3 [68]

10 Hydroxyapatite HAP 30 mg/L of Amox, 4.01 mg/g of HAP at pH 5 This study
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