Effect of Different Drying Techniques on Total Bioactive Compounds and Individual Phenolic Composition in Goji Berries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Drying Procedure
2.2.2. The Modeling of the Dehydration Characteristic and Effective Moisture Diffusivity (Deff)
2.2.3. Extraction Procedure
2.2.4. Determination of Total Phenolic Content (TPC) and Antioxidant Capacity
2.2.5. The HPLC Determination of Phenolic Compounds
2.2.6. Color
2.2.7. Statistical Analysis
3. Results
3.1. Drying Kinetics
3.2. Bioactive Properties of Fresh and Dried Goji Berries
3.3. The Phenolic Profile of Fresh and Dried Goji Berries
3.4. Color Parameters of Fresh and Dried Goji Berries
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, R.-H.; Zhang, X.-X.; Ni, Z.-J.; Thakur, K.; Wang, W.; Yan, Y.-M.; Cao, Y.-L.; Zhang, J.-G.; Rengasamy, K.R.; Wei, Z.-J. Lycium barbarum (Goji) as functional food: A review of its nutrition, phytochemical structure, biological features, and food industry prospects. Crit. Rev. Food Sci. Nutr. 2022. [Google Scholar] [CrossRef] [PubMed]
- Ilić, T.; Dodevska, M.; Marčetić, M.; Božić, D.; Kodranov, I.; Vidović, B. Chemical characterization, antioxidant and antimicrobial properties of goji berries cultivated in Serbia. Foods 2020, 9, 1614. [Google Scholar] [CrossRef]
- Cui, C.; Zhao, D.; Huang, J.; Hao, J. Progress on research and development of goji berry drying: A review. Int. J. Food Prop. 2022, 25, 435–449. [Google Scholar] [CrossRef]
- Aparecida Plastina Cardoso, M.; Windson Isidoro Haminiuk, C.; Pedro, A.C.; de Andrade Arruda Fernandes Fernandes, I.; Akemi Casagrande Yamato, M.; Maciel, G.M.; Do Prado, I.N. Biological effects of goji berry and the association with new industrial applications: A review. Food Rev. Int. 2021. [Google Scholar] [CrossRef]
- Ozay-Arancıoglu, I.; Bekiroglu, H.; Karadag, A.; Saroglu, O.; Tekin-Çakmak, Z.H.; Karasu, S. Effect of different drying methods on the bioactive, microstructural, and in-vitro bioaccessibility of bioactive compounds of the pomegranate arils. Food Sci. Technol. 2022, 42, e06221. [Google Scholar] [CrossRef]
- Wojdyło, A.; Figiel, A.; Legua, P.; Lech, K.; Carbonell-Barrachina, Á.A.; Hernández, F. Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method. Food Chem. 2016, 207, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.-Z.; Corke, H. Production and properties of spray-dried Amaranthus betacyanin pigments. J. Food Sci. 2000, 65, 1248–1252. [Google Scholar] [CrossRef]
- Basunia, M.; Abe, T. Thin-layer solar drying characteristics of rough rice under natural convection. J. Food Eng. 2001, 47, 295–301. [Google Scholar] [CrossRef]
- Başlar, M.; Kılıçlı, M.; Toker, O.S.; Sağdıç, O.; Arici, M. Ultrasonic vacuum drying technique as a novel process for shortening the drying period for beef and chicken meats. Innov. Food Sci. Emerg. Technol. 2014, 26, 182–190. [Google Scholar] [CrossRef]
- Tekin, Z.H.; Baslar, M. The effect of ultrasound-assisted vacuum drying on the drying rate and quality of red peppers. J. Therm. Anal. Calorim. 2018, 132, 1131–1143. [Google Scholar] [CrossRef]
- Tekin, Z.H.; Başlar, M.; Karasu, S.; Kilicli, M. Dehydration of green beans using ultrasound-assisted vacuum drying as a novel technique: Drying kinetics and quality parameters. J. Food Process. Preserv. 2017, 41, e13227. [Google Scholar] [CrossRef]
- Wu, B.; Guo, X.; Guo, Y.; Ma, H.; Zhou, C. Enhancing jackfruit infrared drying by combining ultrasound treatments: Effect on drying characteristics, quality properties and microstructure. Food Chem. 2021, 358, 129845. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Chen, J.; Tiliwa, E.S.; Yan, W.; Azam, S.R.; Yuan, J.; Wei, B.; Zhou, C.; Ma, H. Effect of multi-mode dual-frequency ultrasound pretreatment on the vacuum freeze-drying process and quality attributes of the strawberry slices. Ultrason. Sonochemistry 2021, 78, 105714. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Tiliwa, E.S.; Wei, B.; Wang, B.; Hu, Y.; Zhang, L.; Mujumdar, A.S.; Zhou, C.; Ma, H. Multi-frequency power ultrasound as a novel approach improves intermediate-wave infrared drying process and quality attributes of pineapple slices. Ultrason. Sonochemistry 2022, 88, 106083. [Google Scholar] [CrossRef] [PubMed]
- Tekin Cakmak, Z.H.; Kayacan Cakmakoglu, S.; Avcı, E.; Sagdic, O.; Karasu, S. Ultrasound-assisted vacuum drying as alternative drying method to increase drying rate and bioactive compounds retention of raspberry. J. Food Process. Preserv. 2021, 45, e16044. [Google Scholar] [CrossRef]
- Kayacan, S.; Sagdic, O.; Doymaz, I.; Karasu, S. The effect of different drying methods on total bioactive properties, individual phenolic compounds, rehydration ability, color, and microstructural characteristics of Asian pear. J. Food Process. Preserv. 2022, 46, e16682. [Google Scholar] [CrossRef]
- Dermesonlouoglou, E.; Chalkia, A.; Taoukis, P. Application of osmotic dehydration to improve the quality of dried goji berry. J. Food Eng. 2018, 232, 36–43. [Google Scholar] [CrossRef]
- Zhao, D.; Wei, J.; Hao, J.; Han, X.; Ding, S.; Yang, L.; Zhang, Z. Effect of sodium carbonate solution pretreatment on drying kinetics, antioxidant capacity changes, and final quality of wolfberry (Lycium barbarum) during drying. Lwt 2019, 99, 254–261. [Google Scholar] [CrossRef]
- Ni, J.; Ding, C.; Zhang, Y.; Song, Z.; Xu, W. Influence of ultrasonic pretreatment on electrohydrodynamic drying process of goji berry. J. Food Process. Preserv. 2020, 44, e14600. [Google Scholar] [CrossRef]
- Lewis, W.K. The rate of drying of solid materials. Ind. Eng. Chem. 1921, 13, 427–432. [Google Scholar] [CrossRef]
- Page, G.E. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin Layers; Purdue University: West Lafayette, IN, USA, 1949. [Google Scholar]
- Henderson, S.; Pabis, S. Grain drying theory: IV. The effect of air flow rate on the drying index. J. Agric. Eng. Res. 1962, 7, 85–89. [Google Scholar]
- Yağcıoğlu, A.; Değirmencioğlu, A.; Çağatay, F. Drying characteristics of laurel leaves under different drying conditions. In Proceedings of the 7th Int Congress on Agricultural Mechanization and Enerdy, Adana, Turkey, 26–27 May 1999; pp. 565–569. [Google Scholar]
- Wang, C.; Singh, R. Use of variable equilibrium moisture content in modeling rice drying. Trans. Am. Soc. Agric. Eng. 1978, 11, 668–672. [Google Scholar]
- Zielinska, M.; Markowski, M. Air drying characteristics and moisture diffusivity of carrots. Chem. Eng. Process. Process Intensif. 2010, 49, 212–218. [Google Scholar] [CrossRef]
- Sharaf-Eldeen, Y.I.; Blaisdell, J.L.; Hamdy, M.Y. Model for ear corn drying. Trans. Am. Soc. Agric. Eng. 1980, 23, 1261–1265, 1271. [Google Scholar] [CrossRef]
- Sharma, G.P.; Prasad, S. Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. J. Food Eng. 2004, 65, 609–617. [Google Scholar] [CrossRef]
- Corzo, O.; Bracho, N.; Pereira, A.; Vásquez, A. Weibull distribution for modeling air drying of coroba slices. LWT-Food Sci. Technol. 2008, 41, 2023–2028. [Google Scholar] [CrossRef]
- Doymaz, İ. Prediction of drying characteristics of pomegranate arils. Food Anal. Methods 2012, 5, 841–848. [Google Scholar] [CrossRef]
- Goztepe, B.; Kayacan, S.; Bozkurt, F.; Tomas, M.; Sagdic, O.; Karasu, S. Drying kinetics, total bioactive compounds, antioxidant activity, phenolic profile, lycopene and β-carotene content and color quality of Rosehip dehydrated by different methods. LWT 2022, 153, 112476. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Singh, R.; Chidambara Murthy, K.; Jayaprakasha, G. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J. Agric. Food Chem. 2002, 50, 81–86. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Akter, F.; Muhury, R.; Sultana, A.; Deb, U.K. A Comprehensive Review of Mathematical Modeling for Drying Processes of Fruits and Vegetables. Int. J. Food Sci. 2022, 2022, 32445. [Google Scholar] [CrossRef] [PubMed]
- Batu, H.S.; Kadakal, Ç. Drying characteristics and degradation kinetics in some parameters of goji berry (Lycium barbarum L.) fruit during hot air drying. Ital. J. Food Sci. 2021, 33, 16–28. [Google Scholar] [CrossRef]
- Chen, Y.; Martynenko, A.; Mainguy, M. Wine grape dehydration kinetics: Effect of temperature and sample arrangement. In Proceedings of the CSBE/SCGAB 2016 Annual Conference, Halifax, NS, Canada, 3–6 July 2016; pp. 3–6. [Google Scholar]
- Ni, J.; Ding, C.; Zhang, Y.; Song, Z. Impact of different pretreatment methods on drying characteristics and microstructure of goji berry under electrohydrodynamic (EHD) drying process. Innov. Food Sci. Emerg. Technol. 2020, 61, 102318. [Google Scholar] [CrossRef]
- Fernandes, F.A.; Oliveira, F.I.; Rodrigues, S. Use of ultrasound for dehydration of papayas. Food Bioprocess Technol. 2008, 1, 339–345. [Google Scholar] [CrossRef]
- Puente-Díaz, L.; Ah-Hen, K.; Vega-Gálvez, A.; Lemus-Mondaca, R.; Scala, K.D. Combined infrared-convective drying of murta (Ugni molinae Turcz) berries: Kinetic modeling and quality assessment. Dry. Technol. 2013, 31, 329–338. [Google Scholar] [CrossRef]
- Chouaibi, M.; Snoussi, A.; Attouchi, S.; Ferrari, G. Influence of drying processes on bioactive compounds profiles, hydroxymethylfurfural, color parameters, and antioxidant activities of Tunisian eggplant (Solanum melongena L.). J. Food Process. Preserv. 2021, 45, e15460. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, Y.; Guo, L.; Sun, X. Drying process and quality characteristics of contact ultrasound reinforced heat pump drying on kiwifruit slices. J. Food Process. Preserv. 2019, 43, e14162. [Google Scholar] [CrossRef]
- Gao, Q.-H.; Wu, C.-S.; Wang, M.; Xu, B.-N.; Du, L.-J. Effect of drying of jujubes (Ziziphus jujuba Mill.) on the contents of sugars, organic acids, α-tocopherol, β-carotene, and phenolic compounds. J. Agric. Food Chem. 2012, 60, 9642–9648. [Google Scholar] [CrossRef] [PubMed]
- Donno, D.; Mellano, M.G.; Raimondo, E.; Cerutti, A.; Prgomet, Z.; Beccaro, G.L. Influence of applied drying methods on phytochemical composition in fresh and dried goji fruits by HPLC fingerprint. Eur. Food Res. Technol. 2016, 242, 1961–1974. [Google Scholar] [CrossRef]
- Terzić, M.; Majkić, T.; Zengin, G.; Beara, I.; Cespedes-Acuña, C.L.; Čavić, D.; Radojković, M. Could elderberry fruits processed by modern and conventional drying and extraction technology be considered a valuable source of health-promoting compounds? Food Chem. 2023, 405, 134766. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Wu, Z.; Wan, N.; Yang, M. Dehydration of hawthorn fruit juices using ultrasound-assisted vacuum drying. Ultrason. Sonochemistry 2020, 68, 105219. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhang, Y.; Li, F.; Zhang, N.; Yin, X.; Zhang, B.; Zhang, B.; Ni, W.; Wang, M.; Fan, J. Effects of traditional and advanced drying techniques on the physicochemical properties of Lycium barbarum L. polysaccharides and the formation of Maillard reaction products in its dried berries. Food Chem. 2023, 409, 135268. [Google Scholar] [CrossRef]
- Juan, C.; Montesano, D.; Manes, J.; Juan-García, A. Carotenoids present in goji berries Lycium barbarum L. are suitable to protect against mycotoxins effects: An in vitro study of bioavailability. J. Funct. Foods 2022, 92, 105049. [Google Scholar] [CrossRef]
- Song, H.; Bi, J.; Chen, Q.; Zhou, M.; Wu, X.; Song, J. Structural and health functionality of dried goji berries as affected by coupled dewaxing pre-treatment and hybrid drying methods. Int. J. Food Prop. 2018, 21, 2527–2538. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.-F.; Zhang, M.; Adhikari, B. The inactivation kinetics of polyphenol oxidase in mushroom (Agaricus bisporus) during thermal and thermosonic treatments. Ultrason. Sonochem. 2013, 20, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Niu, L.; Li, D.; Liu, C.; Ma, R.; Song, J.; Zhao, J. Low intensity ultrasound as a pretreatment to drying of daylilies: Impact on enzyme inactivation, color changes and nutrition quality parameters. Ultrason. Sonochemistry 2017, 36, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Orikasa, T.; Koide, S.; Okamoto, S.; Imaizumi, T.; Muramatsu, Y.; Takeda, J.-i.; Shiina, T.; Tagawa, A. Impacts of hot air and vacuum drying on the quality attributes of kiwifruit slices. J. Food Eng. 2014, 125, 51–58. [Google Scholar] [CrossRef] [Green Version]
Model | Equation | References |
---|---|---|
Newton | Y = exp(-kt) | Lewis [20] |
Page | Y = exp(-ktn) | Page [21] |
Henderson ve Pabis | Y = aexp(-ktn) | Henderson and Pabis [22] |
Logarithmic | Y = aexp(-ktn) + c | Yağcıoğlu, Değirmencioğlu [23] |
Wang and Singh | Y = 1 + at + bt2 | Wang and Singh [24] |
Two terms | Y = aexp(-k0t) + bexp(-k1t) | Zielinska and Markowski [25] |
Two terms exponential | Y = aexp(-kt) + (1-a)exp(-kat) | Sharaf-Eldeen, Blaisdell [26] |
Parabolic | Y = a + bt + ct2 | Sharma and Prasad [27] |
Weibull | Y = exp(-(t/b)a) | Corzo, Bracho [28] |
Model | Parameter | Drying Methods | ||
---|---|---|---|---|
HAD | VD | USVD | ||
Newton | k | 0.001656 | 0.007258 | 0.007279 |
R2 | 0.9984 | 0.9958 | 0.9883 | |
RMSE | 0.103547 | 0.098453 | 0.157556 | |
Page | k | 0.001153 | 0.005766 | 0.001377 |
n | 1.055739 | 1.045136 | 1.333373 | |
R2 | 0.9990 | 0.9961 | 0.9995 | |
RMSE | 0.083415 | 0.095091 | 0.031582 | |
Henderson and Pabis | k | 0.001671 | 0.007244 | 0.007738 |
a | 1.008327 | 0.998141 | 1.061663 | |
R2 | 0.9984 | 0.9958 | 0.9914 | |
RMSE | 0.101777 | 0.098423 | 0.135938 | |
Logarithmic | k | 0.001371 | 0.006587 | 0.005038 |
a | 1.072649 | 1.024806 | 1.271190 | |
c | −0.089219 | −0.037601 | −0.245337 | |
R2 | 0.9998 | 0.9963 | 0.9978 | |
RMSE | 0.032142 | 0.091639 | 0.068074 | |
Wang and Singh | b | 0.00000 | 0.000008 | 0.000008 |
a | −0.001317 | −0.005578 | −0.005537 | |
R2 | 0.9970 | 0.9953 | 0.9989 | |
RMSE | 0.140594 | 0.103632 | 0.048249 | |
Two-term | a | 0.262317 | 0.125892 | 0.205145 |
k0 | 0.001671 | 0.007244 | 0.007739 | |
k1 | 0.001671 | 0.007244 | 0.007738 | |
b | 0.746007 | 0.872250 | 0.856508 | |
R2 | 0.9984 | 0.9958 | 0.9913 | |
RMSE | 0.101777 | 0.098423 | 0.135938 | |
Two-term exponential | a | 0.001825 | 0.006373 | 0.001905 |
k | 0.905164 | 1.130985 | 3.799024 | |
R2 | 0.9984 | 0.9958 | 0.9881 | |
RMSE | 0.104389 | 0.09895 | 0.158857 | |
Parabolic | a | 0.9561649 | 0.955698 | 1.019876 |
b | −0.001190 | −0.005142 | −0.005788 | |
c | 0.0000000 | 0.000007 | 0.000009 | |
R2 | 0.9988 | 0.9971 | 0.9992 | |
RMSE | 0.088643 | 0.082026 | 0.043587 | |
Weibull | a | 1.0557 | 1.0451 | 1.3334 |
b | 606.7118 | 138.8014 | 139.8895 | |
R2 | 0.9990 | 0.9961 | 0.9995 | |
RMSE | 0.083415 | 0.095091 | 0.031582 |
Properties | Fresh | Dried Goji Berry | r | |||||
---|---|---|---|---|---|---|---|---|
FD | USFD | VD | USVD | HAD | DPPH | CUPRAC | ||
TPC 1 | 772.20 ± 9.31 e | 1115.03 ± 16.82 b | 1006.78 ± 5.17 d | 1060.54 ± 11.68 c | 1238.59 ± 66.19 a | 1002.54 ± 0.00 d | ||
DPPH 2 | 15.70 ± 0.32 d | 24.82 ± 1.33 bc | 23.26 ± 0.68 c | 24.97 ± 1.77 bc | 28.19 ± 3.71 ab | 29.90 ± 2.04 a | 1 | |
CUPRAC 3 | 40.98 ± 5.28 d | 203.39 ± 4.97 b | 152.98 ± 4.46 c | 210.35 ± 10.66 ab | 226.09 ± 10.00 a | 206.35 ± 16.91 b | 1 |
Phenolic Compounds (mg/g DM) | FRESH | FD | USFD | VD | USVD | HAD |
---|---|---|---|---|---|---|
Gallic acid | 0.160 d | 3.416 a | 2.811 b | 2.225 c | 2.860 b | 0.142 d |
Protocatechuic acid | 1.421 b | 1.292 c | 1.253 c | 1.781 a | 1.753 a | 0.592 d |
Catechin | 1.029 a | 0.341 d | 0.397 c | 0.302 e | 0.431 b | 0.234 f |
Chlorogenic acid | 0.314 a | 0.151 c | 0.154 c | 0.126 d | 0.177 b | 0.031 e |
4-hydroxybenzoic acid | 0.150 a | 0.056 c | 0.149 a | 0.128 b | 0.153 a | 0.007 d |
Syringic acid | 0.010 a | 0.004 b | 0.012 a | 0.013 a | 0.019 a | n.d. |
Ellagic acid | 0.181 a | 0.099 b | 0.122 b | 0.106 b | 0.127 b | n.d. |
Caffeic acid | 0.043 a | 0.051 a | 0.045 a | 0.061 a | 0.051 a | 0.050 a |
p-coumaric acid | 0.211 a | 0.082 b | 0.076 b | 0.080 b | 0.084 b | 0.013 c |
Color Parameters | FRESH | Goji Berry | ||||
---|---|---|---|---|---|---|
HAD | VD | USVD | FD | USFD | ||
L* | 42.90 ± 3.08 a | 29.83 ± 1.71 c | 36.50 ± 0.94 b | 39.51 ± 0.22 a | 40.74 ± 2.24 a | 41.06 ± 1.06 a |
a* | 29.77 ± 0.94 a | 17.52 ± 1.67 b | 29.52 ± 2.59 a | 27.65 ± 1.93 a | 31.95 ± 1.73 a | 28.41 ± 1.71 a |
b* | 23.35 ± 1.54 a | 6.86 ± 1.15 c | 21.81 ± 0.81 b | 19.66 ± 1.75 b | 19.56 ± 0.69 b | 18.39 ± 1.92 b |
∆E | - | 23.93 | 5.80 | 4.97 | 4.50 | 5.24 |
C | 37.83 a | 18.81 c | 36.70 a | 33.93 b | 37.51 a | 33.85 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turan, B.; Tekin-Cakmak, Z.H.; Kayacan Çakmakoglu, S.; Karasu, S.; Kasapoglu, M.Z.; Avci, E. Effect of Different Drying Techniques on Total Bioactive Compounds and Individual Phenolic Composition in Goji Berries. Processes 2023, 11, 754. https://doi.org/10.3390/pr11030754
Turan B, Tekin-Cakmak ZH, Kayacan Çakmakoglu S, Karasu S, Kasapoglu MZ, Avci E. Effect of Different Drying Techniques on Total Bioactive Compounds and Individual Phenolic Composition in Goji Berries. Processes. 2023; 11(3):754. https://doi.org/10.3390/pr11030754
Chicago/Turabian StyleTuran, Busra, Zeynep Hazal Tekin-Cakmak, Selma Kayacan Çakmakoglu, Salih Karasu, Muhammed Zahid Kasapoglu, and Esra Avci. 2023. "Effect of Different Drying Techniques on Total Bioactive Compounds and Individual Phenolic Composition in Goji Berries" Processes 11, no. 3: 754. https://doi.org/10.3390/pr11030754
APA StyleTuran, B., Tekin-Cakmak, Z. H., Kayacan Çakmakoglu, S., Karasu, S., Kasapoglu, M. Z., & Avci, E. (2023). Effect of Different Drying Techniques on Total Bioactive Compounds and Individual Phenolic Composition in Goji Berries. Processes, 11(3), 754. https://doi.org/10.3390/pr11030754